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Abstract. A stochastic SEIR(S) model with random total population, overall satura-
tion constant K > 0 and general, local Lipschitz continuous diffusion rates is pre-
sented. We prove the existence of unique, Markovian, continuous time solutions w.r.t.
filtered, complete probability spaces on certain, bounded 4D prisms. The total popu-
lation N(t) is governed by kind of stochastic logistic equations, which allows to have
an asymptotically stable maximum population constant K > 0. Under natural con-
ditions on our SEIR(S) model, we establish asymptotic stochastic and moment stabil-
ity of the disease-free and endemic equilibria. Those conditions naturally depend on
the basic reproduction number R0, the growth parameter µ > 0 and environmen-
tal noise intensity σ2

5 coupled with the maximum threshold K2 of total population
N(t). For the mathematical proofs, the technique of appropriate Lyapunov functionals
V(S(t), E(t), I(t), R(t)) is exploited. Some numerical simulations of the expected Lya-
punov functionals E[V(S, E, I, R)] depending on several parameters and time t support
our findings.

Keywords: stochastic SEIR(S) model, stochastic differential equations, random transi-
tion functions, variable diffusion rates, Lyapunov functionals, asymptotic stability.
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1 Introduction to stochastic SEIR(S) model based on SDEs

Research on epidemic modeling has gone quite far since the seminal contributions of Ker-
mack and McKendrick [15]. The random, erratic nature of evolution of populations forces
us to incorporate stochastic terms in modeling and analysis. For modeling of diseases with
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sensitive, randomly fluctuating transmissions such as COVID, here we suggest to make use
of and analyze the stochastic SEIR(S) models based on Itô-interpreted SDEs

dS =
(
− βSI + µ(K − S) + αI + ζR

)
dt − σ1SI · F1

(
S, E, I, R

)
dW1

+ σ4R · F4(S, E, I, R)dW4 + σ5S(K − N)dW5

dE =
(

βSI − (µ + η)E
)

dt + σ1SI · F1
(
S, E, I, R

)
dW1 − σ2E · F2

(
S, E, I, R

)
dW2

+ σ5E(K − N)dW5

dI =
(

ηE −
(
α + γ + µ

)
I
)

dt + σ2E · F2
(
S, E, I, R

)
dW2 − σ3 I · F3

(
S, E, I, R

)
dW3

+ σ5 I(K − N)dW5

dR =
(

γI − (µ + ζ)R
)

dt + σ3 I · F3
(
S, E, I, R

)
dW3 − σ4R · F4

(
S, E, I, R

)
dW4

+ σ5R(K − N)dW5,

(1.1)

driven by independent, standard Wiener processes Wk = (Wk(t))t≥0 on a complete, filtered
probability space (Ω,F , (Ft)t≥0, P) and the total initial population (note that they can be
supposed to be nonrandom since start values are known from real-time data)

0 < N(0) := S(0) + E(0) + I(0) + R(0) < K

with nonrandom constant K > 0 of maximum possible threshold for total population. These
models (1.1) are stochastic generalizations of deterministic counterparts in mathematical epi-
demiology (cf. [21, 22]). For an introduction to mathematical models in population biology
and epidemiology, see the textbooks [2, 5, 6]. In biological modeling Itô calculus has to be
used since the dynamics of offsprings can only depend on its past, parental generations.
For an overview on the theory of Itô-interpreted stochastic differential equations (SDEs), see
[1,3,10,11,14,23,24,33] for stochastic calculus with Wiener processes. Deterministic model vari-
ants of SEIR(S), SI, SIR, SIS, etc. are well-understood nowadays. The construction and analysis
of dynamics along Lyapunov functions plays a key role in understanding those models, cf.
[7, 9, 13, 17–19]. This is also the case with stochastic settings, cf. [12, 30–32, 34, 36]. Extinction,
ergodicity, stability and recurrence of some random SEIR(S) models with constant or absent
Fk are studied in [35, 37–39], restricted to unbounded cones Rd

+. Our models (1.1) allow all
solutions to live exclusively a.s. on bounded prisms of R4 or R5, resp., which represents a
real requirement for biologically relevant application (due to finite resources in real life of
organisms).

To the best of our knowledge, the class of SEIR(S) models (1.1) is fairly new to the literature.
Our model focuses on the possible sensitivity of diseases to random transitions between com-
partments S of susceptible, E of exposed, I of infected, and R of recovering sub-populations,
which are controlled by noise intensity functions σkFk in a fairly general manner. Those ran-
dom transitions can be interpreted as random perturbations of the incidence terms βSI (i.e.
direct contact terms), motivated by the CLT (= Central Limit Theorem, cf. Shiryaev [33]).
Moreover, we allow a possible return of a share of the recovered sub-populations R to the sus-
ceptible ones as an expression for the possible loss of immunity w.r.t. the modelled disease-
type, represented by the parameter ζ, and a possible switch of the infected sub-populations
I to the susceptible ones, represented by the parameter α. The parameter γ stands for the
rate of transitions from the infected to the recovering sub-populations. Our main focus in this
paper is to verify several qualitative properties such as the boundedness and stability of all
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dynamics of (1.1) on certain positive prisms - properties which relate to biologically relevant
models in order to to be able to replicate real scenarios.

We shall show that the new SEIR(S) model (1.1) is well-defined (P-a.s.) on 4D prism

D =
{
(S, E, I, R) ∈ R4

+ : 0 < S, E, I, R < K, S + E + I + R < K
}

.

For this purpose, first we shall analyze the total population N(t) of the SEIR(S) model (1.1) at
time t, which is defined by

N(t) = S(t) + E(t) + I(t) + R(t).

The understanding of their dynamics plays a crucial role in establishing qualitative properties
of the solutions of SDEs (1.1). By summing up all equations of SEIR(S) model (1.1), the SDE
for the total population N = S + E + I + R is found to be of the form

dN(t) = µ(K − N) dt + σ5N(K − N) dW5 (1.2)

on natural domain D0 =
(
0, K

)
, which can be treated in a separated fashion from the original

system (1.1).
The paper is organized as follows. Section 2 studies the boundedness of the total popula-

tion N and proves the existence of strong solutions of SDE (1.2) on open domain D0 = (0, K)
for all times t ≥ 0. Section 3 is devoted to establish the existence of unique, Markovian,
continuous time, strong solutions of the SEIR(S) model (1.1) on certain, positive 4D prisms.
There we present the two types of equilibrium solutions, namely the disease-free and the en-
demic ones. Section 4 investigates stochastic stability of the disease-free equilibrium and the
endemic equilibrium of SEIR(S) model (1.1). As usual, the associated basic reproduction num-
ber decides in which stable state the system is in (in the long-term sense). Moreover, we also
discuss the moment and stochastic stability of its saturation equilibrium n∗ = K for the SDE
(1.2) of the total populations. Finally, Section 5 is reporting on some graphical illustrations of
simulation results related to the associated mean Lyapunov functionals depending on diverse
parameters. Section 6 concludes the paper with a brief summary and outlook. An appendix
recalls a general standard result on the existence of bounded, unique solutions of systems of
Itô SDEs and the structure of associated infinitesimal generator, which plays a key role in our
studies.

2 Existence of bounded, unique solution of (1.2) on D0 = (0, K)

The proof of existence of global, unique solutions of nonlinear SDE (1.2) is far from trivial, due
to the quadratic nonlinearity in its diffusion term. For the sake of abbreviation, take σ = σ5.
Let N(t0) = N0 ∈ D0 with D0 = (0, K) and Dr =

( 1
r , K − 1

r

)
, r > 1/K. Now, consider the

events [N(t) = n]. Define

n ∈ D0 7→ V(n) := c − ln
(

n(K − n)
)
= c − ln(n)− ln(K − n).

Choose c sufficiently large such that V ≥ 0 on D0. e.g. c = ln
(K2

4

)
. The infinitesimal generator

L of SDE (1.2) applied to the function V (see the general formula (A.2) in appendix) takes the
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form

∀n ∈ D0 : LV(n) = µ(K − n)
(
−1
n

+
1

K − n

)
+

1
2

σ2n2(K − n)2
[

1
n2 +

1
(K − n)2

]
= − µ

(
K − n

n

)
+ µ +

1
2

σ2(K − n)2 +
1
2

σ2n2.

=⇒ LV(n)
µ>0
≤ µ +

1
2

σ2(K − n)2 +
1
2

σ2n2 = µ +
1
2

σ2
[
(K − n)2 + n2

]
< µ +

1
2

σ2K2 =: c0 since g(n) := (K − n)2 + n2 < K2 on D0.

Hence, by Dynkin’s formula (1965) (cf. Dynkin [8]), we arrive at

∀t ≥ 0 : E
[
V
(

N(t)
)]

= E
[
V
(

N(0)
)]

+ E
[ ∫ t

0
LV(s) ds

]
≤ E

[
V
(

N(0)
)]

+ c0 · t < +∞

with constant c0 = µ + σ2K2/2. Obviously, we have

lim
r→+∞

inf
t≥0,n∈∂Dr

V(n) = lim
r→+∞

min
(

V
(1

r

)
, V
(

K − 1
r

))
= c − lim

r→+∞
ln
(1

r

(
K − 1

r

))
= +∞.

By the remark below Theorem A.1, there exists exactly one strong, global, continuous time,
unique Markovian solution N = (N(t))t≥0 of SDE (1.2) with N(t) ∈ D0 = (0, K) (a.s.) for all
t ≥ 0. This gives the positivity of N (a.s.) and boundedness N(t) < K (a.s.). Of course, the
equilibrium n∗ = K represents a solution itself (i.e. the trivial solution). Consequently, we
verified the following theorem.

Theorem 2.1 (Solvability and boundedness of total population SDE (1.2)). Assume that either
N(0) = K or N(0) ∈ (0, K) (a.s.) is independent of sigma-algebra σ(W) = σ(W(t) : t ≥ 0) with

E
[

ln
(

N(0)(K − N(0))
)]

< +∞.

Then, there is a unique, strong solution process N = (N(t))t≥0 satisfying SDE (1.2) and ∀ nonran-
dom 0 < T < +∞ ∀0 < N(0) < K

sup
0≤t≤T

E
[

ln
(

N(t)(K − N(t))
)]

≤ E
[

ln
(

N(0)(K − N(0))
)]

+
(

µ +
σ2

2
K2
)
· T < +∞.

3 Existence of bounded, unique solution of (1.1) on 4D prism D

The following theorem establishes the existence of strong, unique solutions of SEIR(S) models
(1.1) bounded to stay on certain positive prisms (a.s.).

Theorem 3.1 (Existence theorem of unique solutions of SEIR(S) model on prisms). Let(
S(t0), E(t0), I(t0), R(t0)

)
= (S0, E0, I0, R0) ∈ D with

D =
{
(S, E, I, R) ∈ R4

+ : 0 < S, E, I, R < K, S + E + I + R < K
}

.
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Consider the stochastic SEIR(S) model with random, nonconstant total populations

dS =
(
− βSI + µ(K − S) + αI + ζR

)
dt − σ1SI · F1(S, E, I, R)dW1

+ σ4R · F4(S, E, I, R)dW4 + σ5S(K − N)dW5

dE =
(

βSI − (µ + η)E
)
dt + σ1SI · F1(S, E, I, R)dW1 − σ2E · F2(S, E, I, R)dW2

+ σ5E(K − N)dW5

dI =
(
ηE − (α + γ + µ)I

)
dt + σ2E · F2(S, E, I, R)dW2 − σ3 I · F3(S, E, I, R)dW3

+ σ5 I(K − N)dW5

dR =
(
γI − (µ + ζ)R

)
dt + σ3 I · F3(S, E, I, R)dW3 − σ4R · F4(S, E, I, R)dW4

+ σ5R(K − N)dW5

dN = µ(K − N) dt + σ5N(K − N) dW5.

(3.1)

Assume that all constants α, β, η, γ, ζ, µ ≥ 0 and

(i) (S0, E0, I0, R0) ∈ D is independent of σ
(
Wk : 1 ≤ k ≤ 5

)
,

(ii) ∀k = 1, 2, 3, 4, 5 : Fk ∈ C0
locLip(D) (i.e. local Lipschitz continuous on interior D)

⋂
C0(D),

(iii) E[V(S0, E0, I0, R0)] < +∞ with

V(S, E, I, R) =

{
R − ln(R) + I − ln(I) + E − ln(E) + S − ln(S),

+K − S − E − I − R − ln(K − S − E − I − R),

(iv) sup(S,E,I,R)∈D

S2 I2F2
1 (S,E,I,R)

E2 + sup(S,E,I,R)∈D

E2F2
2 (S,E,I,R)

I2 + sup(S,E,I,R)∈D

I2F2
3 (S,E,I,R)

R2 +

+ sup(S,E,I,R)∈D

R2F2
4 (S,E,I,R)

S2 < +∞.

Then, the stochastic SEIR model (1.1) with random total population size N(t) admits

(1) a unique, continuous time, Markovian, global strong solution
(
S(t), E(t), I(t), R(t)

)
on t ≥ t0,

(2) an a.s. D-invariant solution (i.e. a.s. uniform boundedness of solutions on positive cone of R4),

(3) a uniform estimate of moments (∀T < +∞ nonrandom)

sup
0≤t≤T

E[V(S(t), E(t), S(t), R(t))] ≤ E[V(S0, E0, S0, R0)] + [βK + 4µ + η + α + γ + ζ + c1] · T,

where c1 is an appropriate constant (one may extract that from proof below).

Proof. Define

Dn :=
{
(S, E, I, R, N) ∈ R5

+ : e−n < S, E, I, R < K − e−n, N = S + E + I + R < K(1 − e−n)
}

for n ∈ N. Then, due to its local Lipschitz continuous drift and diffusion coefficients, system
(3.1) has a unique solution up to stopping time τ(Dn) hitting the boundary of open sets Dn

(see [3, 11, 16]). Furthermore, define

V(S, E, I, R, N) =

{
R − ln(R) + I − ln(I) + E − ln(E) + S − ln(S)

+K − N − ln(K − N)

= V1(S, E, I, R) + V2(N)

where V1(S, E, I, R) = R − ln(R) + I − ln(I) + E − ln(E) + S − ln(S),

V2(N) = Ṽ2(S, E, I, R) = K − S − E − I − R − ln(K − S − E − I − R) = K − N − ln(K − N)

on D̃ =
{
(S, E, I, R, N) ∈ R5

+ : 0 < S, E, I, R < K, N = S + E + I + R < K
}

.
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Suppose that E
[
V(S0, E0, I0, R0, N0)

]
< +∞. Note that V(S, E, I, R, N) ≥ 5 for (S, E, I, R, N) ∈

D̃ (this fact will be used below to estimate LV). Now, calculate the infinitesimal generator
LV applied to our SEIR(S) model 3.1 using the general formula (A.2) as stated in appendix).
One encounters with the 2nd differential operator

LV(S, E, I, R, N) = (−βSI + µ(K − S) + αI + ζR)
∂V
∂S

+ (βSI − (µ + η)E)
∂V
∂E

+ (ηE − (α + γ + µ)I)
∂V
∂I

+ (γI − (µ + ζ)R)
∂V
∂R

+ µ(K − N)
∂V
∂N

+
σ2

1
2

S2 I2[F1(S, E, I, R)]2
(

∂2V
∂S2 − 2

∂2V
∂S∂E

+
∂2V
∂E2

)
+

σ2
2

2
E2[F2(S, E, I, R)]2

(
∂2V
∂E2 − 2

∂2V
∂E∂I

+
∂2V
∂I2

)
+

σ2
3

2
I2[F3(S, E, I, R)]2

(
∂2V
∂I2 − 2

∂2V
∂I∂R

+
∂2V
∂R2

)
+

σ2
4

2
R2[F4(S, E, I, R)]2

(
∂2V
∂R2 − 2

∂2V
∂R∂S

+
∂2V
∂S2

)
+

σ2
5

2
[K − N]2

(
S2 ∂2V

∂S2 + 2ES
∂2V

∂S∂E
+ E2 ∂2V

∂E2

)
+ σ2

5 [K − N]2
(

SI
∂2V
∂S∂I

+ SR
∂2V

∂S∂R
+ SN

∂2V
∂S∂N

)
+ σ2

5 [K−N]2
(

EI
∂2V
∂E∂I

+ER
∂2V

∂E∂R
+EN

∂2V
∂E∂N

+ IR
∂2V
∂I∂R

+ IN
∂2V

∂I∂N
+RN

∂2V
∂R∂N

)
+

σ2
5

2
[K − N]2

(
I2 ∂2V

∂I2 + R2 ∂2V
∂R2 + N2 ∂2V

∂N2

)

(3.2)

for any twice continuously differentiable function V ∈ C2(D̃). Next, an application LV to our
specific functional V yields that

LV(S, E, I, R, N) = LV1(S, E, I, R) + LV2(N),

LV1(S, E, I, R) = µ(K − S − E − I − R) + βI − 1
S

(
µ(K − S) + αI + ζR

)
− 1

E
βSI

+ µ + η − 1
I

ηE + α + γ + µ − 1
R

γI + µ + ζ +
σ2

1
2

I2 F2
1 (S, E, I, R)

+
σ2

4
2

R2 F2
4 (S, E, I, R)

S2 +
σ2

1
2

S2 I2 F2
1 (S, E, I, R)

E2 +
σ2

2
2

F2
2 (S, E, I, R)

+
σ2

2
2

E2 F2
2 (S, E, I, R)

I2 +
σ2

3
2

F2
3 (S, E, I, R)

+
σ2

3
2

I2 F2
3 (S, E, I, R)

R2 +
σ2

4
2

F2
4 (S, E, I, R) + 2σ2

5 (K − N)2

≤ µ(K − S − E − I − R) + βI + 3µ + α + γ + η + ζ + 2σ2
5 (K − N)2

+
σ2

1
2

sup
(S,E,I,R)∈D

S2 I2F2
1 (S, E, I, R)

E2 +
σ2

1
2

max
(S,E,I,R)∈D

I2F2
1 (S, E, I, R)

+
σ2

4
2

sup
(S,E,I,R)∈D

R2F2
4 (S, E, I, R)

S2 +
σ2

4
2

max
(S,E,I,R)∈D

F2
4 (S, E, I, R)
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+
σ2

3
2

sup
(S,E,I,R)∈D

I2F2
3 (S, E, I, R)

R2 +
σ2

3
2

max
(S,E,I,R)∈D

F2
3 (S, E, I, R)

+
σ2

2
2

sup
(S,E,I,R)∈D

E2F2
2 (S, E, I, R)

I2 +
σ2

2
2

max
(S,E,I,R)∈D

F2
2 (S, E, I, R) < +∞

since Theorem 3.1 (iv). Similarly, we find

LV2(N) = LṼ2(S, E, I, R) = −µ(K − N) + µ +
σ2

5
2

N2.

Note that we may estimate σ2
5 [4(K − N)2 + N2] ≤ 4σ2

5 K2/5 on 0 < N < K. Thus, we have

LV(S, E, I, R, N) ≤ βI + 4µ + η + α + γ + ζ + c1 ≤ βK + 4µ + η + α + γ + ζ + c1

on D̃, where

c1 =



2σ2
5

5
K2 +

σ2
1

2

[
sup

(S,E,I,R,N)∈D̃

S2 I2F2
1 (S, E, I, R)

E2 + max
(S,E,I,R,N)∈D̃

I2F2
1 (S, E, I, R)

]

+
σ2

4
2

[
sup

(S,E,I,R,N)∈D̃

R2F2
4 (S, E, I, R)

S2 + max
(S,E,I,R,N)∈D̃

F2
4 (S, E, I, R)

]

+
σ2

3
2

[
sup

(S,E,I,R,N)∈D̃

I2F2
3 (S, E, I, R)

R2 + max
(S,E,I,R,N)∈D̃

F2
3 (S, E, I, R)

]

+
σ2

2
2

[
sup

(S,E,I,R,N)∈D̃

E2F2
2 (S, E, I, R)

I2 + max
(S,E,I,R,N)∈D̃

F2
2 (S, E, I, R)

]
.

(3.3)

Note that c1 is finite due to hypotheses (ii) and (iv). Next, let τn(t) := min(τ(Dn), t) where
τ(Dn) is the stopping time of the first exit from the domain Dn. An application of Dynkin’s
formula [8] (1965) provides us the estimate

E[V(S(t), E(t), I(t), R(t), N(t))]

= E[V(S0, E0, I0, R0, N0)] + E

[∫ τn(t)

0
LV(S(s), E(s), I(s), R(s), N(s)) ds

]
≤ E[V(S0, E0, I0, R0, N0)] + [βK + 4µ + η + α + γ + ζ + c1] · E[τn(t)]

≤ E[V(S0, E0, I0, R0, N0)] + [βK + 4µ + η + α + γ + ζ + c1] · t since τn(t) ≤ t,

for all nonrandom times t > t0, as long as the solution
(
S(s), E(s), I(s), R(s), N(s)

)
on D̃. Note

that ∀n ∈ N : n > 0 and n > ln(K)/5

inf
(S,E,I,R,N)∈ ∂ Dn

V(S, E, I, R, N) > 5n − ln(K). (3.4)

Recall that we have defined the stopping time τn(t) := min{t, τ(Dn)} based on the stopping
time τ(Dn) arriving the first time at the boundary of Dn. Now, apply the above estimate to
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get to

0 ≤ P
([

τ(D̃) < t
]) Dn⊆D̃

≤ P
([

τ(Dn) < t
])

= P
([

τn(t) < t
])

= E
[
1τn(t)<t

]
where 1 is the indicator function

≤ E

V
(

S
(
τ(Dn)

)
, E
(
τ(Dn)

)
, I
(
τ(Dn)

)
, R
(
τ(Dn)

)
, N
(
τ(Dn)

))
inf(S,E,I,R,N)∈∂Dn V(S, E, I, R, N)

· 1τn<t


(3)
≤ E[V(S0, E0, I0, R0.N0)] + E[τn(t)] · [βK + 4µ + η + α + γ + ζ + c1]

inf(x,y,z,v,w)∈∂Dn V(x, y, z, v, w)

(3.4)
≤ E[V(S0, E0, I0, R0, N0)] + t[βK + 4µ + η + α + γ + ζ + c1]

5n − ln(K)
−→ 0 as n → ∞

for all (S0, E0, I0, R0, N0) ∈ Dn, and for all fixed, nonrandom t ∈ [s, ∞). Thus

=⇒ P
([

τ(D̃) < t
])

= lim
n→+∞

P
([

τ(Dn) < t
])

= 0

for all adapted (S0, E0, I0, R0, N0) ∈ D̃ and all t ≥ t0. That means that

P
([

τ(D̃) = +∞
])

= 1.

This proves the invariance property and global existence of solutions
(
S(t), I(t), R(t), N(t)

)
on D̃ for any finite time t. Thus, the proof of Theorem (3.1) is complete.

4 Asymptotic moment and stochastic stability, stability exponents

Let p > 0 be a real constant. Consider the d-dimensional, autonomous, Itô-interpreted SDEs

dX(t) = a
(
X(t)

)
dt + b

(
X(t)

)
dW(t). (4.1)

Definition 4.1. SDE (4.1) has a globally asymptotically p-th moment stable equilibrium (so-
lution) X = x∗ if and only if a(x∗) = b(x∗) = 0 and ∀ X(s) ∈ Lp(Ω, Fs, P), s ≥ 0, X(s) ̸= x∗

we have
lim

t→+∞
E
[
∥Xs,X(s)(t)− x∗∥p

d

]
= 0

(where d is the state-space dimension of the stochastic process X).

Definition 4.2. The equilibrium solution x∗ of SDE (4.1) is stochastically stable (stable in
probability) iff, for every ε > 0 and s ≥ t0, we have

lim
x0→x∗

P

([
sup

t0≤s<∞
∥Xs,x0(t)− x∗∥ ≥ ε

])
= 0 (4.2)

where Xs,x0(t) denotes the solution of SDE (4.1) satisfying X(s) = x0 at time t ≥ s.

Definition 4.3. The equilibrium solution x∗ of SDE (4.1) is said to be (locally) asymptotically
stochastically stable iff it is stochastically stable and

∀x0 ∈ N(x∗) : P

([
lim
t→∞

Xs,x0(t) = x∗
])

= 1. (4.3)
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Definition 4.4. The equilibrium solution x∗ of SDE (4.1) is said to be globally asymptotically
stochastically stable iff it is stochastically stable and, for every x0 and every s, we have

P

([
lim
t→∞

Xs,x0(t) = x∗
])

= 1. (4.4)

Theorem 4.5 (Stability theorem of Arnold [3]). Assume that the SDE (4.1) has a unique solution
started at every nonrandom x0 in the nonrandom, a.s. invariant, open neighborhood N(x∗) ⊆ Rd.
Then, the equilibrium solution x∗ ∈ N(x∗) ⊆ Rd for SDE (4.1) is stochastically stable if ∃ positive
definite

V = V(t, x) ∈ C1,2
(
[t0, ∞)× N(x∗), R1

+

)
on N(x∗) such that ∀ (t, x) ∈ [t0, ∞)× N(x∗) :

LV(t, x) ≤ 0.

If additionally V is decrescent on N(x∗) and

∀ (t, x) ∈ [t0, ∞)× N(x∗) \ {x∗} : LV(t, x) < 0,

then x∗ is (locally) asymptotically stochastically stable for SDE (4.1).

We also call the equilibrium x∗ of SDE (4.1) to be globally asymptotically stochastically
stable iff it is asymptotically stochastically stable and LV < 0 on the entire domain D

where the dynamics of X live on (a.s.) (i.e., in this case, we may extend N(x∗) = D as
the relevant neighborhood of x∗ in above definition of stochastic stability). Note that the
equilibria x∗ do not have to be in the neighborhood N(x∗), but x∗ ∈ N(x∗). In fact, the
Theorem 4.5 remains valid for the cases like neighborhoods of the form N(K) = (0, K) or
N(K) = [ε, K) with equilibrium x∗ = K (or multidimensional variants of those examples) in
order to cover the important cases of semi-stability too. For the SDE of the total population N
of our SEIR(S) model, we can establish both stochastic and moment stability of the saturation
constant x∗ = K.

Theorem 4.6 (Stability of equilibrium n∗ = K for total populations). Consider the SDE for
random total population

dN = µ(K − N) dt + σ5N(K − N) dW5. (4.5)

Then, the equilibrium point n∗ = K of SDE (4.5) is

(1) global asymptotically stochastically stable if 2µ > K2σ2
5 ,

(2) p-th moment exponentially stable if 2µ > (2p − 1)K2σ2
5 and p ≥ 1

2 , and

(3) almost surely asymptotically stable if 2µ > (2p − 1)K2σ2
5 and p ≥ 1

2 .

Proof. The proof for the equilibrium n∗ = K is naturally divided into the items (1)–(3).

(1) Let n ∈ (0, K) for n∗ = K. Define the Lyapunov function V by

n ∈ (0, K) 7→ V(n) = (K − n)2.
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Then, we find that

LV(n) = µ(K − n) · 2(K − n) · (−1) +
1
2

σ2
5 n2(K − n)2 · 2

= (−2µ + σ2
5 n2)V(n)

on D0
≤ (−2µ + σ2

5 K2)V(n).

Now, note that LV(n) < 0 for all n ∈ (0, K) if 2µ > K2σ2
5 . Therefore, an application of

Arnold’s Stability Theorem 4.5 confirms the claim of stochastic stability.

(2) Next, consider the Lyapunov function

n ∈ (0, K) 7→ V(n) = (K − n)2p =
[
(K − n)2]p.

Then, for p ≥ 1
2 , we have

LV(n) = µ(K − n) · 2p(K − n)2p−1 · (−1) +
1
2

σ2
5 n2(K − n)2 · 2p(2p − 1)(K − n)2p−2

= 2p
[
−µ +

1
2
(2p − 1)σ2

5 n2
]
· V(n)

≤ 2p
[
−µ +

1
2
(2p − 1)σ2

5 K2
]
· V(n).

An application of Dynkin’s formula (cf. [8]) will give the conclusion that

E
[
V
(

N(t)
)]

= E
[
|K − N(t)|2p

]
≤ E

[
V
(

N(s)
)]

· e
2p
[
−µ+ 1

2 (2p−1)σ2
5 K2

]
(t−s)

(4.6)

t→+∞−→ 0

if 2µ > (2p − 1)K2σ2
5 and p ≥ 1

2 .

(3) The property of a.s. asymptotical stability of n∗ = K follows directly from the item (2) due
to the fact that all exponentially moment stable equilibria also possess a.s. asymptotically
stable pathwise solutions (for a proof of this fact, see [26]). This completes the proof of
Theorem 4.6.

As a by-product of the previous proof, we gain the following result on the asymptotic
behavior of Lyapunov functionals V(n) = |K − n|2p = ∥K − n∥2p

R1 .

Theorem 4.7 (Uniform estimation of moment V-exponents). Consider Itô SDEs (4.5) for random
total population N = (N(t))t≥0. Then

∀p > 0 ∀N(0) = n0 ∈ (0, K) : λ2p(n0) := lim
t→+∞

ln
(

E
[
|K − N(t)|2p])1/2p

t

≤ − µ +
1
2

max(2p − 1, 0)σ2
5 K2,

which represents a uniform estimation of moment V-exponents λ2p(n0) on (0, K).
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Proof. Return to the identity (4.6) with V(n) = |K − n|2p. Taking 2p-th root and the natural
logarithm yield that

ln
(

E
[
|K − N(t)|2p])1/2p

≤ ln
(

E
[
|K − N(0)|2p])1/2p

+

(
−µ +

1
2

max(2p − 1, 0)σ2
5 K2

)
· t.

Thus, dividing by t > 0 and taking the limit as t → +∞ confirms the conclusion on the
asymptotic behavior of ln

(
E[V(N(t))]

)
/t in the moment sense.

Remark 4.8 (Moment V-exponents). The moment V-exponents λ2p measure the speed of ex-
ponential convergence of total populations N(t) to the saturation constant K as time t → +∞
in the 2p-th moment sense. The definition of moment V-exponents is made in a consistent
manner (to incorporate the deterministic case). In passing, note that nonlinear V-exponents
may depend on initial quantity N(0) = n0, whereas V-exponents for linear systems do not
depend on N(0) = n0. Remarkably, for sufficiently small powers p or noise intensities σ5 or
very small constants K > 0, we find exponentially stable 2p-moments (i.e. exponential mo-
ment convergence of N(t) to equilibrium n∗ = K) due to the birth parameter µ > 0 in our
model.

The following lemma states the form of all existing equilibria (trivial solutions) of SEIR(S)
models (1.1). Its proof is an elementary exercise of algebra, hence it is omitted here.

Lemma 4.9 (Disease-free and endemic equilibria). For the drift coefficients of our SEIR(S) model
(1.1), we have two equilibrium points. One is disease-free and the other is the endemic equilibrium. The
disease-free equilibrium of (1.1) is given by

(S1, E1, I1, R1) = (K, 0, 0, 0) ∈ D

with its total sum N1 := S1 + E1 + I1 + R1 = K and the endemic equilibrium by

(S2, E2, I2, R2) ∈ D,

where S2 =
(µ + η)(α + γ + µ)

βη

E2 =
(µ + ζ)(α + γ + µ)

βη

[
βηK − (µ + η)(α + γ + µ)

(µ + ζ)(α + γ + µ) + η(γ + µ + ζ)

]
I2 =

(
µ + ζ

β

) [
βηK − (µ + η)(α + γ + µ)

(µ + ζ)(α + γ + µ) + η(γ + µ + ζ)

]
R2 =

γ

β

[
βηK − (µ + η)(α + γ + µ)

(µ + ζ)(α + γ + µ) + η(γ + µ + ζ)

]
.

(4.7)

The disease-free equilibrium is also an equilibrium of the diffusion coefficients. For biologically mean-
ingful occurrence of endemic equilibrium (i.e. (S2, E2, I2, R2) ∈ D), we need to require that

βηK > (µ + η)(α + γ + µ) (∗)

– a condition, which is equivalent to R0 > 1. For the classic concept of endemic equilibrium of both
drift and diffusion terms at the same location, vanishing Fk(S2, E2, I2, R2) = 0 are imposed. Moreover,
at the endemic equilibrium, we have total sum

N2 := S2 + E2 + I2 + R2 = K.
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Proof. Elementary calculus exercise.

Biologists and Ecologists usually express the qualitative state of systems in terms of basic
reproduction numbers R0. For our SEIR(S) model (1.1), this quantity takes the form

R0 =
βηK

(µ + η)(α + γ + µ)
.

Indeed, as we shall see below, this quantity decides about the long-term stability mode in
which the stochastic SEIR(S) models is and the value R0 = 1 serves as a bifurcation parameter
(cf. stability analysis in what follows). Moreover, the endemic equilibrium (S2, E2, I2, R2) can
be expressed in terms of R0 by

(
S2, E2, I2, R2

)
=

(
K
R0

, (µ + ζ)
K
R0

ρ,
(µ + ζ)

β
ρ,

γ

β
ρ

)
with

ρ :=
R0 − 1

(µ+ζ)
(µ+η)

+ (γ+µ+ζ)R0
βK

.

Clearly, the 2nd, 3rd and 4th components of (S2, E2, I2, R2) are positive iff ρ > 0 iff R0 > 1.

First, for stability investigation of SEIR(S) models (1.1), note that all equilibria (S∗
k , E∗

k , I∗k , R∗
k )

of SDEs (1.1) possess the total sum

N∗
k = S∗

k + E∗
k + I∗k + R∗

k = K

and are at the boundary of domain D, i.e.

N∗
k ∈ D.

This is also the unique equilibrium of dynamics N = (N(t))t≥0 of total populations governed
by SDE (1.2). Consequently, it remains to prove that the asymptotic stability of the disease-
free equilibrium when reproduction number R0 < 1 and the endemic equilibrium when
reproduction number R0 > 1.

Asymptotic stability of general epidemic or environmental systems has already been in-
vestigated in [4, 13, 20, 31, 32, 34], but not our SEIR(S) model (1.1) to the best of our knowl-
edge. These investigations are associated to appropriate Lyapunov functions or functionals
(cf. [4, 7, 9, 10, 17–19] among others).

Theorem 4.10 (Asymptotic stochastic stability of disease-free equilibrium). The disease-free equi-
librium solution (S1, E1, I1, R1) = (K, 0, 0, 0) of (1.1) is (globally) asymptotically stochastically stable
if

σ2K2 < 2µ, ζ ≥ 0, βK ≤ α. (4.8)

Proof. We shall apply Theorem 4.5. For this purpose, define the Lyapunov function

V4(S, E, I, R) =
1
2
(S − K + E + I + R)2 + KE + KI + KR

=
1
2
(K − N)2 + KE + KI + KR = V̂4(E, I, R, N)



Stochastic SEIR(S) with random total population 13

on D. The infinitesimal generator L (cf. (3.2) and generally presented one in Appendix A)
acting on the Lyapunov function V4 can be written as:

LV4(S, E, I, R) =
(
− βSI + µ(K − S) + αI + ζR

)
(S − K + E + I + R)

+
(

βSI − (µ + η)E
)
(S − K + E + I + R + K)

+
(
ηE − (α + γ + µ)I

)
(S − K + E + I + R + K)

+
(
γI − (µ + ζ)R

)
(S + E + I + R + K − K) +

σ2
5

2
N2(K − N)2

= − µ(S + E + I + R − K)2 + K
[
βSI − µ(E + I + R)− αI − ζR

]
+

σ2
5

2
N2(K − N)2

= − µ(N − K)2 − µ(KE + KI + KR) + K
[
(βS − α)I − ζR

]
+

σ2
5

2
N2(K − N)2

0<δ<1
= − µ(1 − δ)(N − K)2 − µ(KE + KI + KR) + K

[
(βK − α)I − ζR

]
−
[
δµ − σ2

5
2

N2
]
(K − N)2

≤ − µ(1 − δ)V4 + K
[
(βK − α)I − ζR

]
−
[
δµ − σ2

5
2

K2](K − N)2.

Now, let δ → 1−. Then, from some δ > 0 onwards as δ ↑ 1, we find a δ0 < 1 such that, for all
δ ∈ (δ0, 1], we have −δµ + σ2

5 K2/2 ≤ 0 by hypothesis 2µ > σ2
5 K2.

Thus, LV4(S, E, I, R) ≤ 0 is indeed negative-definite on D under the presumptions that
βK − α ≤ 0, ζ ≥ 0 and 2µ > σ2

5 K2. It remains to apply stochastic stability Theorem 4.5 to
confirm Theorem 4.10.

Remark 4.11 (Role of basic reproduction number). One of the most important quantities in
epidemiology is the basic reproduction number R0, expected number of secondary infections
produced when one infected individual entered a fully susceptible population [15]. It usually
determines whether there is an epidemic or not. If R0 < 1 then the outbreak will disappear.
On the contrary, if R0 > 1 then the epidemic will spread a population. Recall that the basic
reproduction number of our SEIR(S) model is R0 = ηβK

(µ+η)(α+γ+µ)
. Later we will see that this

number R0, the magnitude of µ > 0 and the parameter σ2
5 K2 involving environmental noise

intensity σ5 decide about whether the disease-free or the endemic equilibrium is (asymptoti-
cally) stochastically stable (cf. Theorems 4.10 and 4.15).

Remark 4.12 (Possible extinction of disease). Theorem 4.10 concludes that, if α − βK ≥ 0 and
the environmental noise level σ2

5 is so small such that 2µ ≥ σ2
5 K2, then the disease will die

out. This statement does not contradict to the fact R0 < 1. Because the stability condition
α − βK ≥ 0 can be written in terms of the basic reproduction number as follows

βK ≤ α < (α + γ + µ)
(µ + η)

η
⇒ ηβK

(µ + η)(α + γ + µ)
= R0 < 1.

Corollary 4.13 (Exponential moment stability of disease-free equilibrium). Since

LV4(S, E, I, R) ≤ −µV4(S, E, I, R)
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under condition that βK ≤ α, ζ ≥ 0 and µ ≥ σ2
5 K2, by Dynkin’s formula, the disease-free equilibrium

(K, 0, 0, 0) is exponentially moment V-stable [26, 27] with rate −µ, i.e. ∀t ≥ 0 :

E
[
V4(S(t), E(t), I(t), R(t))

]
≤ E

[
V4(S(0), E(0), I(0), R(0))

]
· exp

(
− µ · t

)
,

hence lim
t→∞

ln
[
E[V4(S(t), E(t), I(t), R(t))]

]
t

= −µ < 0. (4.9)

Proof. Recall the structure of associated infinitesimal generator L and the computations of
LV4 in the proof of Theorem 4.10. There we have found that

LV4(S, E, I, R) = −µ(N − K)2 − µ(KE + KI + KR) + K
[
(βS − α)I − ζR

]
+

σ2
5

2
N2(K − N)2.

Under µ ≥ σ2
5 K2, we further estimate

LV4(S, E, I, R) =− µ

2
(N − K)2 − µ(KE + KI + KR) + K

[
(βS − α)I − ζR

]
− µ − σ2

5 N2

2
(K − N)2

≤− µV4 + K
[
(βS − α)I − ζR

]
− µ − σ2

5 K2

2
(K − N)2︸ ︷︷ ︸

≤ 0 on D since βK ≤ α, ζ ≥ 0, µ ≥ σ2
5 K2

≤− µV4.

Then, Dynkin’s formula [8] gives

E
[
V4
(
S(t), E(t), I(t), R(t)

)]
= E

[
V4
(
S0, E0, I0, R0

)]
+ E

[ ∫ t

0
LV4

(
S(s), E(s), I(s), R(s)

)
ds
]

≤ E
[
V4
(
S0, E0, I0, R0

)]
− µE

[ ∫ t

0
V4
(
S(s), E(s), I(s), R(s)

)
ds
]
.

Now, apply the well-known Bellman–Gronwall lemma to the dynamics of

v(t) := E
[
V4
(
S(t), E(t), I(t), R(t)

)]
to conclude exponentially moment V-stability with V = V4 (for the general concept of moment
V-stability, see [26, 27]). This finishes the proof of Corollary 4.13.

Remark 4.14 (Extension of exponential stability at reduced rates). There is a verification of a
small extension of the range of exponential stability of disease-free equilibrium possible for
the case σ2

5 K2/2 < µ < σ2
5 K2. However, this is verified only at reduced rate −µ + σ2

5 K2/2
of exponential convergence, compared to rate −µ < 0 of Corollary 4.13. For this, one may
establish the estimates LV4 ≤ [−µ + σ2

5 K2/2]V4 from the above proof.

Now, let us turn to the study of asymptotic stability of the endemic equilibrium.

Theorem 4.15 (Asymptotic stochastic stability of endemic equilibrium). Assume that

βηK > (µ + η)(α + γ + µ)

(i.e. R0 > 1) and 2µ ≥ σ2
5 K2. Then, the endemic equilibrium solution (S2, E2, I2, R2) of the system

(1.1) is (globally) stochastically stable on

D =
{
(S, E, I, R) : S > 0, E > 0, I > 0, R > 0, S + E + I + R < K

}
.

If even 2µ > σ2
5 K2, then the endemic equilibrium (S2, E2, I2, R2) of (1.1) is (globally) asymptotically

stochastically stable on D.
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Proof. Introduce the function

V5(S, E, I, R) =


S − S2 + E − E2 + I − I2 + R − R2

−(S2 + E2 + I2 + R2) ln
(

S + E + I + R
S2 + E2 + I2 + R2

) (4.10)

on D. Note that V5 ≥ 0 on D and V5 = 0 ⇐⇒ S + E + I + R = K on D (by elementary
calculus applied to V5(S, E, I, R) = Ṽ5(N) with N = S + E + I + R ∈ (0, K]. Actually Ṽ5 is
strictly decreasing in N ∈ [0, K)). Thus, it is fairly easy to recognize that V5 possesses all
properties of a Lyapunov function on D. Then, we have ∀(S, E, I, R) ∈ D

LV5(S,E,I,R) =
(
− βSI + µ(K − S) + αI + ζR

) (
1 − S2 + E2 + I2 + R2

S + E + I + R

)
+
(

βSI − (µ + η)E
) (

1 − S2 + E2 + I2 + R2

S + E + I + R

)
+
(
ηE − (α + γ + µ)I

) (
1 − S2 + E2 + I2 + R2

S + E + I + R

)
+
(
γI − (µ + ζ)R

) (
1 − S2 + E2 + I2 + R2

(S + E + I + R)

)
+

σ2
5

2
N2(K − N)2 · K

N2

=

(
1 − S2 + E2 + I2 + R2

S + E + I + R

)
µ(K − S − E − I − R) +

σ2
5

2
K(K − N)2. (4.11)

Note that, with N = S + E + I + R, we find that

µ(K − N) = µ(K − S − E − I − R)LEM4.9
= −µ(S + E + I + R − S2 − E2 − I2 − R2).

Hence, we arrive at

LV5(S, E, I, R) = − µ(S + E + I + R − S2 − E2 − I2 − R2)

(
1 − S2 + E2 + I2 + R2

S + E + I + R

)
+

σ2
5

2
K(K − N)2

= − µ
(S − S2 + E − E2 + I − I2 + R − R2)2

S + E + I + R
+

σ2
5

2
K(K − N)2

= − µ
(K − N)2

N
+

σ2
5

2
KN

(K − N)2

N
σ2

5≥0
≤ −

(
µ − σ2

5
2

K2
)
(K − N)2

N
≤ 0 (4.12)

since 0 < N < K on D and by hypothesis 2µ ≥ σ2
5 K2.

Therefore, by Theorem 4.5, the endemic equilibrium (S2, E2, I2, R2) is stochastically stable
(globally on D) if R0 > 1 and 2µ ≥ σ2

5 K2. Moreover, when additionally 2µ > σ2
5 K2, a careful

look again at estimation (4.12) yields that

LV5(S, E, I, R) ≤ −
(

µ − σ2
5

2
K2
)
(K − N)2

N
< 0

on D. Consequently, by Theorem 4.5, the endemic equilibrium (S2, E2, I2, R2) of SDEs (1.1)
indeed is asymptotically stochastically stable (globally on D) if R0 > 1 and 2µ > σ2

5 K2. This
conclusion completes the proof of Theorem 4.15.



16 H. Schurz, T. Chandrasena and S. Chandrasena

Remark 4.16 (Nonlinear distance measure to endemic equilibrium). The function V5 of the
form (4.10) measures the distance of solutions (S, E, I, R) to the endemic equilibrium
(S2, E2, I2, R2) in a nonlinear fashion.

Corollary 4.17 (Exponential moment stability of endemic equilibrium). Assume that

βηK > (µ + η)(α + γ + µ)

(i.e. R0 > 1), 2µ > σ2
5 K2 and the initial total population 0 < N(0) := S(0) + E(0) + I(0) + R(0) <

K is nonrandom.
Then, the endemic equilibrium solution (S2, E2, I2, R2) of system (1.1) is exponentially moment V5-
stable with rate −(µ − σ2

5 K2/2)N(0)/K, i.e. ∀t ≥ 0 :

E[V5
(
S(t), E(t), I(t), R(t)

)
] ≤ E[V5

(
S(0), E(0), I(0), R(0)

)
] · exp

(
−
(

µ − σ2
5 K2

2

)
N(0)

K
· t
)

,

hence

lim
t→+∞

ln
[
E[V5

(
S(t), E(t), I(t), R(t)

)
]
]

t
≤ −

(
µ − σ2

5 K2

2

)
N(0)

K
< 0.

Proof. Define the total population N(t) = S(t) + E(t) + I(t) + R(t) for t ≥ 0. Suppose that
N(0) is nonrandom. Recall that S2 + E2 + I2 + R2 = K by Lemma 4.9. Now, return to the proof
of Theorem 4.15 where we have computed

LV5(S, E, I, R) =
(

1 − S2 + E2 + I2 + R2

S + E + I + R

)
µ(K − S − E − I − R)

=

(
1 − K

N

)(
µ − σ2

5
2

K2
)
(K − N) = −

(
µ − σ2

5
2

K2
)
· (N − K)2

N

≤ −
(

µ − σ2
5

2
K2
)

N(0)
K

· V5(S, E, I, R) for N ≥ N(0)

since the total population N(t) is monotonically increasing for our SEIR model and Lyapunov
functional V5(S, E, I, R) = N − K − K · ln

[N
K

]
=: Ṽ5(N) on D with monotonically decreasing

Ṽ5(N) in N (calculate Ṽ ′
5(N) = (N − K)/N < 0 on N ∈ (0, K) and the simple calculus fact

that

− (N − K)2

N
< −N

K
Ṽ5(N) < −N(0)

K
Ṽ5(N)

for all N ≥ N(0). Finally, with nonrandom initial N(0) = S(0) + E(0) + I(0) + R(0) < K,
apply Dynkin’s formula to arrive at

E
[
Ṽ5(N(t))

]
= E

[
Ṽ5(N(0))

]
+ E

[∫ t

0
LṼ5(N(s)) ds

]
≤ E

[
Ṽ5(N(0))

]
−
(

µ − σ2
5

2
K2
)

N(0)
K

∫ t

0
E
[
Ṽ5(N(s))

]
ds.

It remains to use the well-known Bellman–Gronwall lemma to conclude that

v(t) := E
[
Ṽ5(N(t))

]
(recall that V5(S(t), E(t), I(t), R(t))= Ṽ5(N(t))) in order to verify exponential moment stability

along functional V5 with a “least” rate estimated by −
(
µ − σ2

5
2 K2)N(0)

K .



Stochastic SEIR(S) with random total population 17

Remark 4.18 (A.s. stability and rates of exponential stability). Since exponential moment sta-
bility also implies a.s. asymptotic stability, from Corollary 4.17, we also gain the conclusion on
a.s. asymptotic V5-stability of the endemic equilibrium (S2, E2, I2, R2) on D under the hypoth-
esis that R0 > 1 and 2µ > σ2

5 K2 (by dissipative techniques from [27]). Besides, the continuous
time and discrete time moment attractivity exponents of other appropriate functionals V ≥ 0
can also be estimated by some results from [26]. But, this would sprinkle the frame of this
paper. Note, it is common that the rates of stability or attractivity of nonlinear dynamical
systems depend on the initial values like N(0) above (in contrast to linear systems).

5 Illustrations of moment functionals and reproduction number

Here we illustrate the behavior of moment Lyapunov functionals along the solutions of SEIR(S)
model (1.1) and the structure of reproduction number. First, we plot the 2D surface of repro-
duction number R0 depending on growth parameter µ and transition parameters α + γ. The
conceivable hyperplane R0 = 1 decides whether the system (1.1) has an asymptotically stable
disease-free or endemic equilibrium. For examples, above the hyperplane R0 = 1 we locate
the region where the endemic equilibrium is asymptotically stochastically stable (similar be-
low that plane for stability of disease-free equilibrium). Figure 5.1 shows that increasing µ

stabilizes the dynamics of SEIR model (1.1) toward the disease-free equilibrium. This also
happens with increasing the transition parameter sum α + γ, but at a much slower scale. For
sufficiently small µ and small α + γ, the endemic equilibrium is asymptotically stochastically
stable since the reproduction number is well above the hyperplane R0 = 1, as clearly seen in
left corner of Figure 5.1.

Figure 5.1: Reproduction number R0(µ, α+γ) with β = 25 · 10−5, η = 0.005,
ζ = 0.002, K = 1000 depending on µ = mu and α + γ = r.

Next, we illustrate the dynamics of total population process N = (N(t))t≥0 in pathwise
(a.s.) and mean sense. Figure 5.2 shows several paths of total population N(t) generated by
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Figure 5.2: Several trajectories of total population with µ = 10−2, K = 1000,
σ = 10−5, T = 10, step size h = 10−2, started at N(0) = 950.

the Euler–Maruyama method in MATLAB. This demonstrates the variety and erratic effect of
noise on the solution-paths.

Figure 5.3: Expected Lyapunov functional E[K − N(t)]2 versus t and µ with
K = 1000, σ = 10−5, T = 10, M = 106, step size h = 10−2, started at N(0) = 950.

Figure 5.3 displays the expected Lyapunov functional E[K − N(t)]2 versus time t and pa-
rameter µ, generated by M = 106 samples started with same total population size N(0) =

950 < K = 103 and discretized by standard Euler–Maruyama method with uniform step size
h = 10−2 in MATLAB. As seen there, the dynamics stabilize with increasing parameter µ and
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with advancing time t. The decline of 2D surface of E[K − N(t)]2 in time t and µ also confirms
Theorem 4.6 that, for sufficiently large µ, we find asymptotically stable equilibrium n∗ = K
for total population.

In Figure 5.4 the expected Lyapunov functional E[K − N(10)]2 versus parameters µ and σ

is depicted, generated by M = 106 samples started with same total population size N(0) =

950 < K = 103 and discretized by standard Euler–Maruyama method with uniform step size
h = 10−2 in MATLAB. Clearly, we reckon that the dynamics of that functional is “destabi-
lized” with increasing noise intensity σ and “stabilized” with increasing parameter µ. This
gives us some statistical evidence for our Theorems 4.7 (i.e. decline of moments with growing
µ > 0) and 4.6 (i.e. the destabilizing effect of growing σ2 on moments and stability). Of course,
care is needed since growing variance with increasing σ2 reduces our confidence in the esti-
mation process and perhaps larger sample sizes are needed to confirm simulation results. All
in all, larger noise intensities reveal a fairly nontrivial, nonlinear dependence of functionals
E[K − N(10)]2 on model parameters (µ, σ).

Figure 5.4: Expected Lyapunov functional E[K − N(10)]2 versus µ and σ with
K = 1000, T = 10, M = 106, step size h = 10−2, started at N(0) = 950.

Figure 5.5 plots the 2D surface of expected Lyapunov functional E[K−N(t)]2 versus time
t and parameter σ with µ = 0.09, generated by M = 106 samples started with same total
population size N(0) = 950 < K = 103 and discretized by standard Euler–Maruyama method
with step size h = 10−2 in MATLAB. For small σ > 0, the surface of this functional declines
at lower right corner of Figure 5.5. That is an empirical indicator that the SEIR(S) model is
in the stable regime. However, for larger, increasing values of σ > 0, the 2D surface gets
“destablized” as time t advances, as we especially reckon at upper right corner of Figure 5.5.

We could continue with showing more and more simulation results. Clearly, we have
demonstrated the applicability of our analysis and have suggested to plot 2D surface of multi-
dimensional expected Lyapunov functionals in order to get empirical evidence about which
stable or unstable mode the SEIR(S) model is in. Eventually, by Figure 5.6, we display 2D sur-
faces of expected Lyapunov functional m(t, p) = (E[|K − N(t)|2p])1/2p depending on powers
p ≥ 0.5 and time t, while µ = 1.0, K = 1000 and σ = 10−5 are fixed. This shows the depen-
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Figure 5.5: Expected Lyapunov functional E[K − N(t)]2 versus time t and σ with
µ = 0.09, K = 1000, T = 10, M = 106, step size h = 10−2, started at N(0) = 950.

Figure 5.6: Expected Lyapunov functional
(
E[K − N(t)]2p)1/2p versus time t and

power p with µ = 1.0, K = 1000, T = 10, M = 106, step size h = 0.05, started at
N(0) = 950.
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dence of expected Lyapunov functionals m(t, p) on powers p ≥ 0.5 and time t ≥ 0. As time
t advances,the depicted hyperplane declines toward zero, giving some evidence of the stable
mode of our SEIR(S) model since 2µ > σ2K2 in our simulation. There are only small changes
in p in that range. The decline of 2D-surface m(t, p) in Figure 5.6 with increasing time t con-
firms the findings of Theorems 4.6 and 4.7 on asymptotic stability of equilibrium n∗ = N using
Lyapunov functionals. The simulation has been conducted with the Euler–Maruyama method
using step size h = 0.05 in MATLAB. The crude step size h = 0.05 is applied since the limited
computational capacity of our computers, and we put our main emphasis on large sample
sizes M and fine discretization of parameter space p ∈ (0, 25] in order to get more statistical
evidence (instead of higher numerical accuracy). To get some assurance of our graphical plots
and stable computations, we repeated the experiments to get some confirmation by much
smaller step sizes h (but at the expense of reduced sample sizes).

Similar experiments can be conducted for other functionals of biological interest like the
convergence to all their equilibria. Such an endeavor is left to interested reader.

6 Summary, conclusions and outlook

This paper introduced a stochastic SEIR(S) model (1.1) based on Itô stochastic differential
equations (SDEs) with a deterministic maximum saturation constant K > 0. The main empha-
sis is on the incorporation of possible random transitions from one compartment to another
(sub-populations). As one of the major differences to previously introduced SEIR(S) models,
our model (1.1) possesses a random total population N = (N(t))t≥0, which itself is governed
by a logistic Itô SDE with the equilibrium n∗ = K. It was shown that the total population
N(t) is a.s. positive and bounded by the saturation constant K > 0 - a requirement for the
practical relevance of any SEIR(S) models. Moreover, conditions have been worked out for
the asymptotic stochastic and moment stability of the equilibrium K of the total population
process N = (N(t))t≥0. The analysis of dynamics of the total population N is essential for the
understanding and qualitative control of the solutions of SEIR models (1.1).

The paper proves the existence of unique, strong solutions (S, E, I, R) of original SEIR(S)
models (1.1) on bounded, positive prisms D ⊂ R4

+ for all adapted, initial data residing inside
D (with finite initial “energy”). We have also verified reasonable criteria for the asymptotic
stochastic and moment stability of the disease-free and the endemic equilibria of (1.1). As
commonly expected, the basic reproduction number R0 decides about the stable character of
the equilibria (R0 < 1 for stability of the disease-free equilibrium and R0 > 1 for stability of
the endemic equilibrium). Finally, we illustrated our major findings w.r.t. declining moment
Lyapunov functionals, depending on several parameters. Very recently during submission of
this paper, it came to our attention that there is already a generalization of SEIR(S) models with
stochastic transmission by [36]. However, his model only allows back-and-forth transitions
from S to E to S and there is no back coupling from R or I back to S and E, and he does
not incorporate general functions Fk controlling the rates of nonlinearities (i.e. just the case
of constant rates in the incidence terms). Moreover, a verification of a.s. exponential stability
of equilibria is only conducted there. Our model also admits random transitions from the
remaining population K − N to the sub-populations S, E, I, R with N = S + E + I + R.

There are plenty of possible generalizations. One could try out Levy-type- or jump-
processes for the random noise sources or Markovian switching or non-Markovian regimes.
However, all generalizations should be done through semi-martingale theory due to the conti-
nuity requirement of the underlying integration operator in biologically relevant applications.
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Itô calculus interpretations are the commonly adopted models for the sake of the fact that the
offspring populations should only depend on the past, i.e. the closest parental generations.
At the end, statistical matching to real data would decide on the relevance of each SEIR(S)
model. We leave the practical execution of all of those ideas to the interested reader. We are
convinced that our model class already offers enough flexibility and interesting phenomena,
however restricted to Markovian modeling by this contribution.

A Appendix: A general existence result of solutions of SDEs

Consider d-dimensional, Itô-interpreted stochastic differential equations (SDEs) of the form

dX(t) = f
(
X(t), t

)
dt + g

(
X(t), t

)
dW(t) (A.1)

with initial value X(t0) = X0, t0 ≤ t ≤ T < +∞, where f : Rd × [t0, T] → Rd and g :
Rd × [t0, T] → Rd×m are Borel measurable functions, W = {W(t)}t≥t0 is a Rm−valued Wiener
process and X0 is a Rd−valued random variable. Recall that its infinitesimal generator L
associated with the above SDE (A.1) is given by

L =
∂

∂t
+

d

∑
i=1

fi(x, t)
∂

∂xi
+

1
2

m

∑
j=1

d

∑
i=1

d

∑
k=1

gj
i(x, t)gj

k(x, t)
∂2

∂xi∂xk
. (A.2)

Theorem A.1 (Improved version of a theorem from Khas’minskii (1980)). Assume that

(i) f , g ∈ C0
locLip(L)

(
D × [0, T]

)
,

(ii) (Dr)r>0 nondecreasing, bounded, connected, all Dr ⊆ Rd and D = ∪r>0Dr,

(iii) σ
(
X(0)

)
is independent of σ

(
W(s) : s ≤ T

)
and X(0) ∈ D,

(iv) ∃V ∈ C2,1(D × [0, T]
)

with V : D × [0, T] → R1
+, ∃ a ∈ L1([0, T]

)
∀ x ∈ D ∀ t ∈ [0, T] : LV(x, t) ≤ a · V(x, t),

(v) E
[
V
(
X(0), 0

)]
< +∞,

(vi) inft>0, x ∈ ∂Dr V(x, t) r→+∞−→ +∞.

Then, ∃ strong, unique, continuous time, Markovian solution X of SDE (A.1) with X(0) = X0 and
X(t) ∈ D for all t > 0.

Remark A.2 (Linear versus exponential moment bounds). The conclusion of Theorem A.1
remains valid if one replaces the assumption (iv) by the hypothesis

(iv)′ ∃V ∈ C2,1(D × [0, T]
)

with V : D × [0, T] → R1
+, ∃ a ∈ L1([0, T]

)
∀ x ∈ D ∀t ∈ [0, T] : LV(x, t) ≤ c0,

where c0 is an appropriate constant. In this case, one is able to prove the uniform boundedness

sup
0≤t≤T

E
[
V(X(t), t)

]
≤ E

[
V(X(0), 0)

]
+ [c0]+ · T
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of the moments along the functionals V of solutions X. In contrast to that fact, the original as-
sumption (iv) of Theorem A.1 with any constant a(t) = c1 guarantees the uniform exponential
bounds

sup
0≤t≤T

E
[
V(X(t), t)

]
≤ E

[
V(X(0), 0)

]
· exp

(
[c1]+ · T

)
of the moments E[V(X(t), t)] as worst-case estimate. Here, [·]+ denotes the nonnegative part
of the inscribed mathematical expression.

Remark A.3 (Comment on uniqueness of solutions). Uniqueness of strong solutions X of SDEs
(A.1) with local Lipschitz continuous coefficients f , g on open, connected sets D ⊆ Rd can only
be lost when the solutions explode on the boundary of D. Common (nonrandom) equilibria x∗

of both f and g are considered unique solutions X = x∗ of SDEs (A.1) itself, sometimes called
trivial solutions or equilibrium solutions (i.e., in this case, applied to SDEs with extended
drift and diffusion coefficients vanishing on entire D). In our paper the existence of local
solutions is established for SDEs with Lipschitz coefficients inside the open prism D. The
uniqueness of such local solutions inside D is clear from standard texts on SDEs (such as [3],
[14] and [23]) since the closed prism D is a compact set and we do not hit the boundary of
D at any finite time, provided that we start inside the prism (that latter is what we presumed
anyway). Recall that the equilibria of our SEIR(S) model are located on the boundary of the
open prism D. Hence, they can not be reached in any finite time from the interior of D.
Moreover, we have proved the boundedness of moments along certain Lyapunov functionals
V, which implies that the solutions can not hit the boundary of the prism D. This is obvious
from the application of Khasminskij’s Theorem A.1 in this appendix. We just had to construct
and verify a related Lyapunov functional V and the appropriate set D for our SEIR(S) model.
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