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Abstract. In this paper, we study the following Schrödinger equations with potentials
and general nonlinearities−∆u + V(x)u + λu = |u|q−2u + β f (u),∫

|u|2dx = Θ,

both on RN as well as on domains Ωr where Ωr ⊂ RN is an open bounded convex
domain and r > 0 is large. The exponent satisfies 2+ 4

N ≤ q ≤ 2∗ = 2N
N−2 and f : R→ R

satisfies L2-subcritical or L2-critical growth. This paper generalizes the conclusion of
Bartsch et al. in [4]. Moreover, we consider the Sobolev critical case and L2-critical case
of the above problem.

Keywords: Schrödinger equations, normalized solutions, variational methods, mixed
nonlinearity.

2020 Mathematics Subject Classification: 35A15, 35B09, 35B38, 35J50.

1 Introduction and main results

This paper studies the existence of normalized solutions for the following Schrödinger equa-
tions with potentials and general nonlinearities

−∆u + V(x)u + λu = |u|q−2u + β f (u), x ∈ Ωr,∫
Ωr

|u|2dx = Θ, u ∈ H1
0(Ωr), x ∈ Ωr,

(1.1)

where Ωr ⊂ RN is either all of RN or a bounded smooth convex domain, N ≥ 3, 2 + 4
N ≤

q ≤ 2∗ = 2N
N−2 , the mass Θ > 0 and the parameter β ∈ R are prescribed. The frequency λ is

unknown and to be determined.
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Such problems are motivated in particular by searching for solitary waves (stationary
states) in nonlinear equations of the Schrödinger type. Specifically, consider the following
nonlinear Schrödinger equation−i

∂

∂t
Ψ = ∆Ψ−V(x)Ψ + f

(
|Ψ|2

)
Ψ = 0, (x, t) ∈ RN ×R,

Ψ = Ψ(x, t), (x, t) ∈ C,

where N ≥ 1. Researchers are interested in finding the existence of standing wave solutions
to the above equations, that is, Ψ(x, t) = eiλtu(x), λ ∈ R, and u : RN → R, so we get the
equation

−∆u + (V(x) + λ)u = Q(u), x ∈ RN ,

where Q(u) = f (|u|2)u. For physical reasons, we focus on the existence of normalized solu-
tions for the following problem−∆u + (V(x) + λ)u = Q(u), x ∈ RN ,∫

RN
|u|2dx = Θ, x ∈ RN .

(1.2)

For more physical background about the above equation, please refer to [9, 16].
If potential V(x) in (1.2) is constant, we call (1.2) is autonomous. In this case, recalling

paper [21], Jeanjean developed an approach based on the Pohozaev identity which has been
used successfully in recent years. The key to this method is to find a bounded Palais–Smale
sequences by using the transformation s ∗ u(x) = e

sN
2 u(esx). After that, by weakening the

conditions in [21], Jeanjean [22] and Bieganowski [8] improved these results. Of course, these
articles only consider the problem of a single nonlinear term. Recently, there have been many
studies on mixed nonlinear terms. For example, Soave [26, 27] studied normalized solution
of (1.2) with mixed nonlinearity f (|u|)u = µ|u|q−2u + |u|p−2u, 2 < p < 2 + 4

N < q ≤ 2∗ =
2N

N−2 . Specifically, Soave in [26] obtained many results of existence and non-existence. More
precisely, if 2 < q < p = 2 + 4

N , that is, the leading nonlinearity is L2-critical and a L2-
subcritical lower order term. (1.2) had a real-valued positive and radially symmetric solution
for some λ < 0 in RN provided µ > 0 and Θ > 0 small enough. Moreover, if µ < 0, (1.2)
had no solution. If 2 + 4

N = q < p < 2∗, that is, the leading term is L2-critical and L2-
supercritical, (1.2) had a real-valued positive, radially symmetric solution for some λ < 0 in
RN provided µ > 0 and µ, Θ satisfy the appropriate conditions. If 2 < q < 2 + 4

N < p < 2∗,
that is, the leading term L2-subcritical and L2-supercritical, (1.2) also had a real-valued positive
and radially symmetric solution for some λ < 0 in RN provided Θ > 0, µ < 0 and µ, Θ
satisfy the appropriate conditions. Soave in [27] considered the Sobolev critical case and
obtained some similar results. In particular, the Sobolev critical case also has been considered
in [1, 2, 24, 25](see also the references therein). It is worth mentioning that many researchers
are also interested in the existence of normalized multiple solutions. In [23], Jeanjean et al.
obtained the existence of normalized multiple solutions for Sobolev critical case in (1.2). For
more results on this aspect, please refer to [5–7, 10, 29] and its references.

If (1.2) is non-autonomous, Ikoma and Miyamoto in [19] considered question (1.2) with
V(x) ∈ C(RN), 0 ̸≡ V(x) ≤ 0, V(x) → 0(|x| → ∞), they obtained some existence and non-
existence results. After that, Ding and Zhong in [14] proved the existence of normalized
solutions to the following Schrödinger equation{

−∆u(x) + V(x)u(x) + λu(x) = g(u(x)), x ∈ RN ,

0 ≤ u(x) ∈ H1(RN), N ≥ 3,



Normalized solutions for Schrödinger equations with potential and general nonlinearities 3

where g satisfies:

(G1) g : R→ R is C1 and odd.

(G2) There exists some (α, β) ∈ R2
+ satisfying 2 + 4

N < α ≤ β < 2N
N−2 such that

αG(s) ≤ g(s)s ≤ βG(s) with G(s) =
∫ s

0
g(t)dt.

(G3) The functional defined by G̃(s) := 1
2 g(s)s− G(s) is of class C1 and

G̃′(s)s ≥ αG̃(s), ∀s ∈ R,

where α is given by (G2).

Note that, (G3) plays a crucial role in the uniqueness of tu(see [14] or [21, Lemma 2.9]). How-
ever, we do not need this condition, since we directly perform scaling and complex calcula-
tions on energy functionals. Recently, Bartsch et al. in [4] considered following Schrödinger
equations with potentials and inhomogeneous nonlinearities on large convex domains−∆u + V(x)u + λu = |u|q−2u + β|u|p−2u,∫

|u|2dx = Θ,

they developed a robust method to study the existence of normalized solutions of nonlinear
Schrödinger equations with potential. Under the stimulation of [4], our goal is to generalize
its conclusion to general nonlinear terms and the Sobolev critical case.

In order to state our main results, we introduce some notations. Set s+ = max{s, 0},
s− = min{s, 0} for s ∈ R. The Aubin–Talenti constant [3] is denoted by S, that is, S is the
best constant in the Sobolev embedding D1,2(RN) ↪→ L2∗(RN), where D1,2(RN) denotes the
completion of C∞

c (RN) with respect to the norm ∥u∥D1,2 := ∥∇u∥2. It is well known [28] that
the optimal constant is achieved by (any multiple of)

Uε,y(x) = [N(N − 2)]
N−2

4

(
ε

ε2 + |x− y|2

) N−2
2

, ε > 0, y ∈ RN , (1.3)

which are the only positive classical solutions to the critical Lane–Emden equation

−∆w = w2∗−1, w > 0 in RN .

Let CN,s be the best constant in the Gagliardo–Nirenberg inequality

∥u∥s
s ≤ CN,s∥u∥

2s−N(s−2)
2

2 ∥∇u∥
N(s−2)

2
2 , 2 < s < 2∗.

For some results, we expect that V is C1 and consider the function

Ṽ : RN → R, Ṽ(x) = ∇V(x) · x.

For Ω ⊂ RN and r > 0, let
Ωr =

{
rx ∈ RN : x ∈ Ω

}
and

Sr,Θ := SΘ ∩ H1
0(Ωr) =

{
u ∈ H1

0(Ωr) : ∥u∥2
L2(Ωr)

= Θ
}

.

From now on we assume that Ω ⊂ RN is a bounded smooth convex domain with 0 ∈ Ω.
Our assumptions on V are:
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(V0) V ∈ C1(RN) ∩ L
N
2 (RN) is bounded and ∥V−∥ N

2
< S.

(Ṽ0) V ∈ C1(RN) ∩ L
N
2 (RN) is bounded and ∥V−∥ N

2
< N(q−p2)−2[N(p2−2)−4]

N(q−p2)
S.

(V̂0) V ∈ C1(RN) ∩ L
N
2 (RN) is bounded and ∥V−∥ N

2
<
(

1− NCNΘ
2
N

N+2

)
S.

(V1) V is of class C1, lim|x|→∞ V(x) = 0, and there exists ρ ∈ (0, 1) such that

lim inf
|x|→∞

inf
y∈B(x,ρ|x|)

(x · ∇V(y))eτ|x| > 0 for any τ > 0.

Remark 1.1. In order to obtain the existence of normalized solutions in RN by taking Ω = B1,
the unit ball centered at the origin in RN , and analyzing the compactness of the solutions ur,Θ

established in Theorems 1.3, 1.4 and 1.5 as r tends to infinity, we require the condition (V1).

Now, we make the following assumptions on the nonlinearity f :

( f1) f ∈ C1(R, R) and f is odd.

( f2) There exists some (p1, p2) ∈ R2
+ satisfying 2 < p2 ≤ p1 < 2 + 4

N such that

p2F(τ) ≤ f (τ)τ ≤ p1F(τ) with F(τ) =
∫ τ

0
f (t)dt.

( f̃2) There exists some (p1, p2) ∈ R2
+ satisfying 2 < p2 < p1 = 2 + 4

N such that

p2F(τ) ≤ f (τ)τ ≤ p1F(τ).

Remark 1.2. If f (u) = ∑m
i=1 ai|u|σi−2u, where ai > 0 and 2 < σi < 2 + 4

N , then the assump-
tion ( f1) can be weakened to f ∈ C(R, R) and f is odd. In order to ensure the bounded-
ness of Palais–Smale sequence under constraint conditions in Lemma 3.3, we need to slightly
strengthen the conditions for the nonlinear term f , that is, f ∈ C1(R, R).

The main results of this paper are as follows. Firstly, we consider the Sobolev subcritical
case, that is, 2 + 4

N < q < 2∗.

Theorem 1.3 (case β ≤ 0). Assume V satisfies (V0), is of class C1 and Ṽ is bounded, f satisfies
( f1)–( f2). There hold:

(i) For every Θ > 0, there exists rΘ > 0 such that (1.1) on Ωr with r > rΘ has a mountain pass
type solution (λr,Θ, ur,Θ) with ur,Θ > 0 in Ωr and positive energy Ir (ur,Θ) > 0. Moreover,
there exists CΘ > 0 such that

lim sup
r→∞

max
x∈Ωr

ur,Θ(x) < CΘ.

(ii) If in addition ∥Ṽ+∥ N
2
< 2S, then there exists Θ̃ > 0 such that

lim inf
r→∞

λr,Θ > 0 for any 0 < Θ < Θ̃.
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Theorem 1.4 (case β > 0). Assume V satisfies (V0), f satisfies ( f1)–( f2) and set

ΘV =

[
1− ∥V−∥ N

2
S−1

2N(q− p1)

] N
2 [

q(4− N(p1 − 2))
CN,q

] 4−N(p1−2)
2(q−p1)

[
N(q− 2)− 4

αβCN,p1

] N(q−2)−4
2(q−p1)

.

Then the following hold for 0 < Θ < ΘV :

(i) There exists rΘ > 0 such that (1.1) on Ωr with r > rΘ has a local minimum type solution
(λr,Θ, ur,Θ) with ur,Θ > 0 in Ωr and negative energy Ir (ur,Θ) < 0.

(ii) There exists CΘ > 0 such that

lim sup
r→∞

max
x∈Ωr

ur,Θ(x) < CΘ, lim inf
r→∞

λr,Θ > 0.

Theorem 1.5 (case β > 0). Assume V satisfies (V0), is of class C1 and Ṽ is bounded, f satisfies
( f1)–( f2). Set

Θ̃V =
1
2

(
1− ∥V−∥ N

2
S−1

) N
2
(

CN,q

q
Ap1,q +

CN,q

q

)− N
2
(

αβqCN,p1

CN,q Ap1,q

) N(q−2)−4
2N(q−p1)

,

where

Ap1,q =
(q− 2)(N(q− 2)− 4)
(p1 − 2)(4− N(p1 − 2))

.

Then the following hold for 0 < Θ < Θ̃V :

(i) There exists r̃Θ > 0 such that (1.1) in Ωr admits for r > rΘ a mountain pass type solution
(λr,Θ, ur,Θ) with ur,Θ > 0 in Ωr and positive energy Ir (ur,Θ) > 0. Moreover, there exists
CΘ > 0 such that

lim sup
r→∞

max
x∈Ωr

ur,Θ(x) < CΘ.

(ii) There exists 0 < Θ̄ ≤ Θ̃V such that

lim inf
r→∞

λr,Θ > 0 for any 0 < Θ ≤ Θ̄.

If Ω = RN , (V1) is significant for obtaining the following results.

Theorem 1.6 (case β > 0). Assume V satisfies (V0)–(V1). Then problem (1.1) with Ω = RN admits
for any 0 < Θ < ΘV , where ΘV is as in Theorem 1.4, a solution (λΘ, uΘ) with uΘ > 0, λΘ > 0, and
I (uΘ) < 0.

Theorem 1.7 (case β > 0). Assume V satisfies (V0)–(V1). Then (1.1) with Ω = RN admits for
0 < Θ < Θ̄, Θ̄ > 0 as in Theorem 1.5 (ii), a solution (λΘ, uΘ) with uΘ > 0, λΘ > 0, and I(uΘ) > 0.
Moreover, limΘ→0 I(uΘ) = ∞.

Theorem 1.8 (case β ≤ 0). Assume V satisfies (V0)–(V1), and ∥Ṽ+∥ N
2
< 2S. Then problem (1.1)

with Ω = RN admits for 0 < Θ < Θ̃, Θ̃ > 0 as in Theorem 1.3, a solution (λΘ, uΘ) with uΘ >

0, λΘ > 0, and I(uΘ) > 0. Moreover, limΘ→0 I (uΘ) = ∞.

For the Sobolev critical case, that is q = 2∗, we have the following results.
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Theorem 1.9 (case β > 0). Assume V satisfies (V0), f satisfies ( f1)–( f2). Set

ΘV =

(
1

NαβCN,p1

) 4
2p1−N(p1−2) (

1− ∥V−∥ N
2

S−1
) N

2 S
N
2 ·

4−N(p1−2)
2p1−N(p1−2) .

Then the following hold for 0 < Θ < ΘV :

(i) There exists rΘ > 0 such that (6.2) on Ωr with r > rΘ has a local minimum type solution
(λr,Θ, ur,Θ) with ur,Θ > 0 in Ωr and negative energy Ir (ur,Θ) < 0.

(ii) There exists CΘ > 0 such that

lim sup
r→∞

max
x∈Ωr

ur,Θ(x) < CΘ, lim inf
r→∞

λr,Θ > 0.

Theorem 1.10 (case β ≤ 0). Assume V satisfies (V0), is of class C1 and Ṽ is bounded, f satisfies
( f1)–( f2). There hold:

(i) There exists rΘ > 0 such that (7.1) on Ωr with r > rΘ has a mountain pass type solution
(λr,Θ, ur,Θ) with ur,Θ ≥ 0 in Ωr and positive energy Ir (ur,Θ) > 0.

(ii) There exists CΘ > 0 such that

lim sup
r→∞

max
x∈Ωr

ur,Θ(x) < CΘ.

Theorem 1.11 (case β > 0). Assume V satisfies (V0), is of class C1 and Ṽ is bounded, f satisfies
( f1)–( f2). Set

Θ̃V =

(
αβCN,p1 S

2∗
2

Ap1

)− 4
2p1−N(p1−2)

[
S

2∗
2

2 · 2∗
(

1− ∥V−∥ N
2

S−1
)
(2∗Ap1 + 1)

] 2[2·2∗−N(p1−2)]
(2∗−2)[2p1−N(p1−2)]

where

Ap1 =
4(2∗ − 2)

N(p1 − 2)(4− N(p1 − 2))
.

Then the following hold for 0 < Θ < Θ̃V :

(i) There exists r̃Θ > 0 such that (8.1) in Ωr admits for r > rΘ a mountain pass type solution
(λr,Θ, ur,Θ) with ur,Θ ≥ 0 in Ωr and positive energy Ir (ur,Θ) > 0.

(ii) There exists CΘ > 0 such that

lim sup
r→∞

max
x∈Ωr

ur,Θ(x) < CΘ.

For the L2-critical case, that is p1 = 2 + 4
N or q = 2 + 4

N , we have the following results.

Theorem 1.12 (case β > 0 and p1 = 2 + 4
N ). Assume V satisfies (Ṽ0), f satisfies ( f1) and ( f̃2). Set

Θ̃V =

[
N(q− p2)− 4

Nαβ(q− p2)CN

] N
2

.

Then the following hold for 0 < Θ < Θ̃V :
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(i) There exists r̃Θ > 0 such that (1.1) in Ωr admits for r > rΘ a mountain pass type solution
(λr,Θ, ur,Θ) with ur,Θ > 0 in Ωr and positive energy Ir (ur,Θ) > 0. Moreover, there exists
CΘ > 0 such that

lim sup
r→∞

max
x∈Ωr

ur,Θ(x) < CΘ.

(ii) There exists 0 < Θ̄ ≤ Θ̃V such that

lim inf
r→∞

λr,Θ > 0 for any 0 < Θ ≤ Θ̄.

Theorem 1.13 (case β ≤ 0 and p1 = 2 + 4
N ). Assume V satisfies (V0), is of class C1 and Ṽ is

bounded, f satisfies ( f1) and ( f̃2). Set

Θ̂V =

[
(N − 2)q− 2N

2Nαβ(q− p2)CN

] N
2

.

Then the following hold for 0 < Θ < Θ̂V :

(i) There exists rΘ > 0 such that (1.1) on Ωr with r > rΘ has a mountain pass type solution
(λr,Θ, ur,Θ) with ur,Θ > 0 in Ωr and positive energy Ir (ur,Θ) > 0. Moreover, there exists
CΘ > 0 such that

lim sup
r→∞

max
x∈Ωr

ur,Θ(x) < CΘ.

(ii) If in addition ∥Ṽ+∥ N
2
< 2S, then there exists Θ̃ > 0 such that

lim inf
r→∞

λr,Θ > 0 for any 0 < Θ < Θ̃.

Theorem 1.14. (case β > 0 and q = 2 + 4
N ) Assume V satisfies (V̂0), f satisfies ( f1)–( f2) and set

ΘV =

(
N + 2
NCN

) N
2

.

Then the following hold for 0 < Θ < ΘV :

(i) There exists rΘ > 0 such that (1.1) on Ωr with r > rΘ has a global minimum type solution
(λr,Θ, ur,Θ) with ur,Θ > 0 in Ωr and negative energy Ir (ur,Θ) < 0.

(ii) There exists CΘ > 0 such that

lim sup
r→∞

max
x∈Ωr

ur,Θ(x) < CΘ, lim inf
r→∞

λr,Θ > 0.

Remark 1.15.

(i) Theorems 1.3–1.11 are valid if 2 = p2 < p1 < 2 + 4
N in ( f2). Moreover, the proof of

Theorems 1.6–1.8 is very similar to [4], so we omit it in this paper.

(ii) Our conclusion also applies to p1 = p2 = 2+ 4
N if 2+ 4

N < q < 2∗, such as f (u) = |u| 4
N u.

Therefore, our results cover certain conclusions in [26].
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Remark 1.16. Theorems 1.4 and 1.9 (resp. Theorems 1.5 and 1.11) both require some limi-
tations on ΘV (resp. Θ̃V), although their values are different, they all stem from changes in
the geometric structure of the energy functional. In addition, there are still some unknown
results for the Sobolev critical case, that is, lim infr→∞ λr,Θ > 0 may not necessarily hold when
β > 0 or β ≤ 0. In fact, the methods and techniques in Theorem 1.4 (or Theorem 1.5) cannot
be applied to the Sobolev critical case since (N−2)q−2N

2Nq = 0, thus λΘ > 0 cannot be obtained
0 < Θ ≤ Θ̄.

Remark 1.17. In this paper, whether in subcritical or critical situations, the monotonicity trick
in [20] is one of the keys to get the conclusion. Proposition 3.2 does not ensure the existence
of a mountain pass solution for the original problem obtained when s = 1. However, it gives
the existence of a sequence sn → 1−, with a corresponding sequence of mountain pass critical
points ur,sn of Ir,sn , constrained on Sr,Θ. We aim to show that ur,sn strongly converges to a
constrained critical point of Ir. For this purpose, it is sufficient to prove that ur,sn is bounded
in H1

0(Ωr), thanks to Proposition 3.1 in [15].

The structure of this paper is arranged as follows. In section 2, we provide some ideas in
the proof of main theorems. In section 3, we obtain the mountain pass type positive solution
in the case β ≤ 0 and have completed the proof of Theorem 1.3. If β > 0, there are two
situations, that is, Theorems 1.4 and 1.5. We get the two results in sections 3 and 4 by using
different geometric analysis. After that, we consider the Sobolev critical case. Finally, we
consider the L2-critical case and give some comments.

2 Preliminary

Consider the problem
−∆u + V(x)u + λu = |u|q−2u + β f (u), x ∈ Ωr,∫

Ωr

|u|2dx = Θ, u ∈ H1
0(Ωr), x ∈ Ωr,

(2.1)

where N ≥ 3, 2+ 4
N ≤ q ≤ 2∗ = 2N

N−2 , the mass Θ > 0 and the parameter β ∈ R are prescribed.
The frequency λ is unknown and to be determined. The energy functional Ir : H1

0(Ωr) → R

is defined by

Ir(u) =
1
2

∫
Ωr

|∇u|2dx +
1
2

∫
Ωr

V(x)u2dx− 1
q

∫
Ωr

|u|qdx− β
∫

Ωr

F(u)dx (2.2)

and the mass constraint manifold is defined by

Sr,Θ =
{

u ∈ H1
0(Ωr) : ∥u∥2

2 = Θ
}

. (2.3)

If Ω = RN , the energy functional I : H1
0 (Ωr)→ R is defined by

I(u) =
1
2

∫
RN
|∇u|2dx +

1
2

∫
RN

V(x)u2dx− 1
q

∫
RN
|u|qdx− β

∫
RN

F(u)dx (2.4)

and the mass constraint manifold is defined by

SΘ =
{

u ∈ H1
0(R

N) : ∥u∥2
2 = Θ

}
. (2.5)
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The proof idea of Theorem 1.3 is as follows. In order to find a mountain pass type solution
(λr,Θ, ur,Θ), we first need to analyze the geometric structure of the energy functional corre-
sponding to the equation (3.1). In Lemma 3.1, we perform precise geometric analysis on the
energy functional corresponding to (3.1) and know that the energy functional Ir,s has a global
maximum. Next, we obtain the bounded Palais–Smale sequence by using [11, Theorem 1] and
get a solution (λr,s, ur,s) for (3.1). Finally, we consider Lagrange multiplier and establish an a
priori estimate for the solutions of (1.1). Theorem 1.4 is relatively simple because the energy
functional has a local minimum, which can be proved using the method of constrained mini-
mization. The proof of Theorem 1.5 is similar to Theorem 1.3, but the geometric structures of
the two cases are significantly different and require refined estimate of energy.

Note that, there are some differences between the proof of Lemma 5.3 and Lemma 3.4, and
we cannot directly use the method of Lemma 3.4, even if q can be reduced to p2 according to
condition ( f2) and p2 < 2 + 4

N < q < 2∗. More precisely, it then follows from β > 0 and ( f2)

that

1
N

∫
Ωr

|∇u|2dx− 1
2N

∫
∂Ωr

|∇u|2(x · n)dσ− 1
2N

∫
Ωr

(∇V · x)u2dx

=
(q− 2)s

2q

∫
Ωr

|u|qdx + s
∫

Ωr

(
β

2
f (u)u− βF(u))dx

≥ p2 − 2
2

(
1
2

∫
Ωr

|∇u|2dx +
1
2

∫
Ωr

Vu2dx−mr,s(Θ)

)
.

Consequently, we have

p2 − 2
2

mr,s(Θ) ≥ p2 − 2
2

(
1
2

∫
Ωr

|∇u|2dx +
1
2

∫
Ωr

Vu2dx
)
− 1

N

∫
Ωr

|∇u|2dx

+
1

2N

∫
∂Ωr

|∇u|2(x · n)dσ +
1

2N

∫
Ωr

(∇V · x)u2dx

≥ N(p2 − 2)− 4
4N

∫
Ωr

|∇u|2dx−Θ
(

1
2N
∥∇V · x∥∞ +

p2 − 2
4
∥V∥∞

)
.

However, this method is useless because N(p2−2)−4
4N < 0, we cannot obtain that

∫
Ωr
|∇u|2dx is

uniformly bounded in s and r.

3 Proof of Theorem 1.3

In this section, we assume β ≤ 0 and the assumptions of Theorem 1.3 hold. In order to obtain
a bounded Palais–Smale sequence, we will use the monotonicity trick inspired by [20]. For
1
2 ≤ s ≤ 1, we define the functional Ir,s : Sr,Θ → R by

Ir,s(u) =
1
2

∫
Ωr

|∇u|2dx +
1
2

∫
Ωr

Vu2dx− s
q

∫
Ωr

|u|qdx− β
∫

Ωr

F(u)dx. (3.1)

Note that if u ∈ Sr,Θ is a critical point of Ir,s, then there exists λ ∈ R such that (λ, u) is a
solution of the equation

−∆u + Vu + λu = s|u|q−2u + β f (u), x ∈ Ωr,∫
Ωr

|u|2dx = Θ, u ∈ H1
0(Ωr), x ∈ Ωr.

(3.2)
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Lemma 3.1. For any Θ > 0, there exist rΘ > 0 and u0, u1 ∈ SrΘ,Θ such that

(i) Ir,s(u1) ≤ 0 for any r > rΘ and s ∈
[ 1

2 , 1
]
,

∥∥∇u0∥∥2
2 <

[
2q

N(q− 2)CN,q

(
1− ∥V−∥ N

2
S−1

)
Θ

q(N−2)−2N
4

] 4
N(q−2)−4

<
∥∥∥∇u1

∥∥∥2

2

and

Ir,s
(
u0) < (N(q− 2)− 4)

(
1− ∥V−∥ N

2
S−1

)
2N(q− 2)

 2q
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)CN,qΘ
2q−N(q−2)

4


4

N(q−2)−4

.

(ii) If u ∈ Sr,Θ satisfies

∥∇u∥2
2 =

[
2q

N(q− 2)CN,q

(
1− ∥V−∥ N

2
S−1

)
Θ

q(N−2)−2N
4

] 4
N(q−2)−4

,

then there holds

Ir,s(u) ≥
(N(q− 2)− 4)

(
1− ∥V−∥ N

2
S−1

)
2N(q− 2)

 2q
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)CN,qΘ
2q−N(q−2)

4


4

N(q−2)−4

.

(iii) Set
mr,s(Θ) = inf

γ∈Γr,Θ

sup
t∈[0,1]

Ir,s(γ(t))

with
Γr,Θ =

{
γ ∈ C ([0, 1], Sr,Θ) : γ(0) = u0, γ(1) = u1

}
.

Then

(N(q− 2)− 4)
(

1− ∥V−∥ N
2

S−1
)

2N(q− 2)

 2q
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)CN,qΘ
2q−N(q−2)

4


4

N(q−2)−4

≤ mr,s(Θ) ≤ h(TΘ),

where h(TΘ) = maxt∈R+ h(t), the function h : R+ → R being defined by

h(t) =
1
2

(
1 + ∥V∥ N

2
S−1

)
t2θΘ− αβCN,p1 Θ

p1
2 θ

N(p1−2)
4 t

N(p1−2)
2 − 1

2q
Θ

q
2 |Ω|

2−q
2 t

N(q−2)
2 .

Here θ is the principal eigenvalue of −∆ with Dirichlet boundary conditions in Ω, and |Ω| is the
volume of Ω.

Proof. (i) Clearly, the set Sr,Θ is path connected. Since v1 ∈ S1,Θ be the positive eigenfunction
associated to θ and note that θ is the principal eigenvalue of −∆, then∫

Ω
|∇v1|2 dx = θΘ. (3.3)

By the Hölder inequality, we know that

Θ =
∫

Ω
|v1(x)|2dx ≤

(∫
Ω
|v1(x)|qdx

) 2
q

· |Ω|
q−2

q ,
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which implies ∫
Ω
|v1(x)|qdx ≥ Θ

q
2 · |Ω|

2−q
2 . (3.4)

According to ( f2), there exists a constant α > 0 such that

F(τ) ≤ ατp1 . (3.5)

For x ∈ Ω 1
t

and t > 0, define vt(x) := t
N
2 v1(tx). Using (3.3), (3.4), (3.5) and 1

2 ≤ s ≤ 1, it holds

I 1
t ,s (vt) ≤

1
2

∫
Ωr

|∇vt|2dx +
1
2

∫
Ωr

Vv2
t dx− 1

2q

∫
Ωr

|vt|qdx− αβ
∫

Ωr

|vt|p1 dx

≤ 1
2

(
1 + ∥V∥ N

2
S−1

) ∫
Ωr

|∇vt|2dx− αβCN,p1 Θ
2p1−N(p1−2)

4

(∫
Ωr

|∇vt|2 dx
) N(p1−2)

4

− 1
2q

∫
Ωr

|vt|qdx

≤ 1
2

(
1 + ∥V∥ N

2
S−1

)
t2
∫

Ω
|∇v1|2 dx− αβCN,p1 Θ

2p1−N(p1−2)
4

(
t2
∫

Ω
|∇v1|2 dx

) N(p1−2)
4

− 1
2q

t
N(q−2)

2

∫
Ω
|v1|q dx

≤ 1
2

(
1 + ∥V∥ N

2
S−1

)
t2θΘ− αβCN,p1 Θ

p1
2 θ

N(p1−2)
4 t

N(p1−2)
2 − 1

2q
t

N(q−2)
2 Θ

q
2 · |Ω|

2−q
2

=: h(t). (3.6)

Note that since 2 < p1 < 2 + 4
N < q < 2∗ and β ≤ 0 there exist 0 < TΘ < t0 such that

h (t0) = 0, h(t) < 0 for any t > t0, h(t) > 0 for any 0 < t < t0 and h (TΘ) = maxt∈R+ h(t). As a
consequence, there holds

Ir,s (vt0) = I 1
t0

,s (vt0) ≤ h (t0) = 0 (3.7)

for any r ≥ 1
t0

and s ∈
[ 1

2 , 1
]
. Moreover, there exists 0 < t1 < TΘ such that

h(t) <
(N(q− 2)− 4)

(
1− ∥V−∥ N

2
S−1

)
2N(q− 2)

 2q
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)CN,qΘ
2q−N(q−2)

4


4

N(q−2)−4

(3.8)

for t ∈ [0, t1]. On the other hand, it follows from the Gagliardo–Nirenberg inequality and the
Hölder inequality that

Ir,s(u) ≥
1
2

∫
Ωr

|∇u|2dx +
1
2

∫
Ωr

Vu2dx− 1
q

∫
Ωr

|u|qdx

≥

(
1− ∥V−∥ N

2
S−1

)
2

∫
Ωr

|∇u|2dx−
CN,qΘ

2q−N(q−2)
4

q

(∫
Ωr

|∇u|2dx
) N(q−2)

4

. (3.9)

Define

g(t) :=
1
2

(
1− ∥V−∥ N

2
S−1

)
t−

CN,qΘ
2q−N(q−2)

4

q
t

N(q−2)
4

and

t̃ =
[

2q
N(q− 2)CN,q

(
1− ∥V−∥ N

2
S−1

)
Θ

q(N−2)−2N
4

] 4
N(q−2)−4

,
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it is easy to see that g is increasing on (0, t̃) and decreasing on (t̃, ∞), and

g(t̃) =
(N(q− 2)− 4)

(
1− ∥V−∥ N

2
S−1

)
2N(q− 2)

 2q
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)CN,qΘ
2q−N(q−2)

4


4

N(q−2)−4

.

For r ≥ r̃Θ := max
{ 1

t1
,
√

2θΘ
t̃

}
, we have v 1

r̃Θ
∈ Sr,Θ and

∥∇v 1
r̃Θ
∥2

2 =

(
1

r̃Θ

)2

∥∇v1∥2
2

<

[
2q

N(q− 2)CN,q

(
1− ∥V−∥ N

2
S−1

)
Θ

q(N−2)−2N
4

] 4
N(q−2)−4

. (3.10)

Moreover, there holds

Ir̃Θ,s

(
v 1

r̃Θ

)
≤ h

(
1

r̃Θ

)
≤ h (t1) . (3.11)

Setting u0 = v 1
r̃Θ

, u1 = vt0 and

rΘ = max
{

1
t0

, r̃Θ

}
. (3.12)

Combining (3.7), (3.8), (3.10) and (3.11), (i) holds.
(ii) By (3.9) and a direct calculation, (ii) holds.
(iii) Since Ir,s

(
u1) ≤ 0 for any γ ∈ Γr,Θ, we have

∥∇γ(0)∥2
2 < t̃ < ∥∇γ(1)∥2

2.

It then follows from (3.9) that

max
t∈[0,1]

Ir,s(γ(t)) ≥ g(t̃)

=
(N(q− 2)− 4)

(
1− ∥V−∥ N

2
S−1

)
2N(q− 2)

 2q
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)CN,qΘ
2q−N(q−2)

4


4

N(q−2)−4

for any γ ∈ Γr,Θ, hence the first inequality in (iii) holds. Now we define a path γ ∈ Γr,Θ by

γ(τ)(x) =
(

τt0 + (1− τ)
1

r̃Θ

) N
2

v1

((
τt0 + (1− τ)

1
r̃Θ

)
x
)

for τ ∈ [0, 1] and x ∈ Ωr. Then by (3.6) we have mr,s(Θ) ≤ h(TΘ), where h(TΘ) = maxt∈R+ h(t).
Note that TΘ is independent of r and s.

By using Lemma 3.1, the energy functional Ir,s possesses the mountain pass geometry. To
obtain bounded Palais–Smale sequence, we recall a proposition from [11, 13].

Proposition 3.2 (see [11, Theorem 1]). Let (E, ⟨·, ·⟩) and (H, (·, ·)) be two infinite-dimensional
Hilbert spaces and assume there are continuous injections

E ↪→ H ↪→ E′.
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Let
∥u∥2 = ⟨u, u⟩, |u|2 = (u, u) for u ∈ E,

and
Sµ =

{
u ∈ E : |u|2 = µ

}
, TuSµ = {v ∈ E : (u, v) = 0} for µ ∈ (0,+∞).

Let I ⊂ (0,+∞) be an interval and consider a family of C2 functionals Φρ : E→ R of the form

Φρ(u) = A(u)− ρB(u), for ρ ∈ I,

with B(u) ≥ 0 for every u ∈ E, and

A(u)→ +∞ or B(u)→ +∞ as u ∈ E and ∥u∥ → +∞. (3.13)

Suppose moreover that Φ′ρ and Φ′′ρ are τ-Hölder continuous, τ ∈ (0, 1], on bounded sets in the following
sense: for every R > 0 there exists M = M(R) > 0 such that∥∥∥Φ′ρ(u)−Φ′ρ(v)

∥∥∥ ≤ M∥u− v∥τ and
∥∥∥Φ′′ρ (u)−Φ′′ρ (v)

∥∥∥ ≤ M∥u− v∥τ (3.14)

for every u, v ∈ B(0, R). Finally, suppose that there exist w1, w2 ∈ Sµ independent of ρ such that

cρ := inf
γ∈Γ

max
t∈[0,1]

Φρ(γ(t)) > max
{

Φρ (w1) , Φρ (w2)
}

for all ρ ∈ I,

where
Γ =

{
γ ∈ C

(
[0, 1], Sµ

)
: γ(0) = w1, γ(1) = w2

}
.

Then for almost every ρ ∈ I, there exists a sequence {un} ⊂ Sµ such that

(i) Φρ (un)→ cρ,

(ii) Φ′ρ
∣∣∣
Sµ

(un)→ 0,

(iii) {un} is bounded in E.

Lemma 3.3. For any Θ > 0, let r > rΘ, where rΘ is defined in Lemma 3.1. Then problem (3.1) has a
solution (λr,s, ur,s) for almost every s ∈

[ 1
2 , 1
]
. Moreover, ur,s ≥ 0 and Ir,s (ur,s) = mr,s(Θ).

Proof. By Proposition 3.2, it follows that

A(u) =
1
2

∫
Ωr

|∇u|2dx +
1
2

∫
Ωr

V(x)u2dx− β
∫

Ωr

F(u)dx and B(u) =
1
q

∫
Ωr

|u|qdx.

Note that the assumptions in Proposition 3.2 hold due to β ≤ 0 and Lemma 3.1. Hence, for
almost every s ∈

[ 1
2 , 1
]
, there exists a bounded Palais–Smale sequence {un} satisfying

Ir,s (un)→ mr,s(Θ) and I′r,s (un)
∣∣
Tun Sr,Θ

→ 0,

where Tun Sr,Θ denotes the tangent space of Sr,Θ at un. Then

λn = − 1
Θ

(∫
Ωr

|∇un|2 dx +
∫

Ωr

V(x)u2
ndx− β

∫
Ωr

f (un)undx− s
∫

Ωr

|un|q dx
)

is bounded and
I′r,s (un) + λnun → 0 in H−1 (Ωr) . (3.15)
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Moreover, since {un} is a bounded Palais–Smale sequence, there exist u0 ∈ H1
0 (Ωr) and λ ∈ R

such that, up to a subsequence,

λn → λ in R,

un ⇀ u0 in H1
0(Ωr),

un → u0 in Lt(Ωr) for all 2 ≤ t < 2∗,

where u0 satisfies {
−∆u0 + Vu0 + λu0 = s |u0|q−2 u0 + β f (u0) in Ωr

u0 ∈ H1
0 (Ωr) ,

∫
Ωr
|u0|2 dx = Θ.

Using (3.15), we have

I′r,s (un) u0 + λn

∫
Ωr

unu0dx → 0 as n→ ∞

and
I′r,s (un) un + λnΘ→ 0 as n→ ∞.

Note that

lim
n→∞

∫
Ωr

V(x)u2
ndx =

∫
Ωr

V(x)u2
0dx,

lim
n→∞

∫
Ωr

f (un)undx =
∫

Ωr

f (u0)u0dx,

lim
n→∞

∫
Ωr

f (un)u0dx =
∫

Ωr

f (u0)u0dx,

so we get un → u0 in H1
0(Ωr), hence Ir,s(u0) = mr,s(Θ).

Now, we show that ur,s ≥ 0. In order to obtain it, we only need to modify the proof of
Proposition 3.2. In fact, for almost every s ∈

[ 1
2 , 1
]
, the derivative m′r,s with respect to s is well

defined since the function s 7→ mr,s is nonincreasing, where mr,s denotes mr,s(Θ) for fixed Θ.
Let s be such that m′r,s exists and {sn} ⊂

[ 1
2 , 1
]

be a monotone increasing sequence converging
to s. Similar to the proof of Proposition 3.2, there exist {γn} ⊂ Γr,Θ and K = K

(
m′r,s

)
such

that:

(i) if Ir,s (γn(t)) ≥ mr,s −
(
2−m′r,s

)
(s− sn), then

∫
Ωr
|∇γn(t)|2 dx ≤ K.

(ii) maxt∈[0,1] Ir,s (γn(t)) ≤ mr,s −
(
2−m′r,s

)
(s− sn).

Letting γ̃n(t) = |γn(t)| for any t ∈ [0, 1], it follows that {γ̃n} ⊂ Γr,Θ. Observe that
∥∥∇|u|∥2

2 ≤
∥∇u∥2

2 for any u ∈ H1(RN). Now we have:

(I) if Ir,s (γ̃n(t)) ≥ mr,s −
(
2−m′r,s

)
(s− sn), then Ir,s (γn(t)) ≥ mr,s −

(
2−m′r,s

)
(s− sn). By

(i), there holds
∫

Ωr
|∇γn(t)|2 dx ≤ K, and hence

∫
Ωr
|∇γ̃n(t)|2 dx ≤ K. Thus (i) also holds

for γ̃n.

(II) maxt∈[0,1] Ir,s (γ̃n(t)) ≤ maxt∈[0,1] Ir,s (γn(t)) ≤ mr,s −
(
2−m′r,s

)
(s− sn).

By replacing γn with γ̃n in the proof of Proposition 3.2, we obtain a nonnegative bounded
Palais–Smale sequence {un}. Consequently, there exists a nonnegative normalized solution to
(3.1) for almost every s ∈

[ 1
2 , 1
]

as above.
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In order to obtain a solution of (1.1), we need to prove a uniform estimate for the solutions
of (3.1) established in Lemma 3.3.

Lemma 3.4. If (λr,s, ur,s) ∈ R× Sr,Θ is a solution of (3.1) established in Lemma 3.3 for some r and s,
then ∫

Ωr

|∇u|2dx ≤ 4N
N(q− 2)− 4

[
q− 2

2
h(TΘ) + Θ

(
1

2N
∥Ṽ∥∞ +

q− 2
4
∥V∥∞

)]
,

where the constant h(TΘ) is defined in (iii) of Lemma 3.1 and is independent of r and s.

Proof. For simplicity, we denote (λr,s, ur,s) as (λ, u) in this lemma. Since u is a solution of (3.1),
we have∫

Ωr

|∇u|2dx +
∫

Ωr

V(x)u2dx = s
∫

Ωr

|u|qdx + β
∫

Ωr

f (u)udx− λ
∫

Ωr

|u|2dx. (3.16)

The Pohozaev identity implies

N − 2
2N

∫
Ωr

|∇u|2dx +
1

2N

∫
∂Ωr

|∇u|2(x · n)dσ +
1

2N

∫
Ωr

Ṽ(x)u2dx +
1
2

∫
Ωr

Vu2dx

= −λ

2

∫
Ωr

|u|2dx +
s
q

∫
Ωr

|u|qdx + β
∫

Ωr

F(u)dx,

where n denotes the outward unit normal vector on ∂Ωr. It then follows from β ≤ 0 and ( f2)

that

1
N

∫
Ωr

|∇u|2dx− 1
2N

∫
∂Ωr

|∇u|2(x · n)dσ− 1
2N

∫
Ωr

(∇V · x)u2dx

=
(q− 2)s

2q

∫
Ωr

|u|qdx +
∫

Ωr

(
β

2
f (u)u− βF(u))dx

≥ (q− 2)s
2q

∫
Ωr

|u|qdx +
β(q− 2)

2

∫
Ωr

F(u)dx

=
q− 2

2

(
1
2

∫
Ωr

|∇u|2dx +
1
2

∫
Ωr

Vu2dx−mr,s(Θ)

)
.

Consequently, we have

q− 2
2

mr,s(Θ) ≥ q− 2
2

(
1
2

∫
Ωr

|∇u|2dx +
1
2

∫
Ωr

Vu2dx
)
− 1

N

∫
Ωr

|∇u|2dx

+
1

2N

∫
∂Ωr

|∇u|2(x · n)dσ +
1

2N

∫
Ωr

(∇V · x)u2dx

≥ N(q− 2)− 4
4N

∫
Ωr

|∇u|2dx−Θ
(

1
2N
∥∇V · x∥∞ +

q− 2
4
∥V∥∞

)
,

where the last inequality holds since x · n(x) ≥ 0 for any x ∈ ∂Ωr due to the convexity of Ωr.
Using Lemma 3.1, we have

N(q− 2)− 4
4N

∫
Ωr

|∇u|2dx−Θ
(

1
2N
∥∇V · x∥∞ +

q− 2
4
∥V∥∞

)
≤ q− 2

2
h(TΘ),

which implies∫
Ωr

|∇u|2dx ≤ 4N
N(q− 2)− 4

[
q− 2

2
h(TΘ) + Θ

(
1

2N
∥Ṽ∥∞ +

q− 2
4
∥V∥∞

)]
.

This completes the proof of lemma.
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Now, we obtain a solution of (1.1) by letting s→ 1.

Lemma 3.5. For every Θ > 0, problem (1.1) has a solution (λr, ur) provided r > rΘ where rΘ is as in
Lemma 3.1. Moreover, ur ≥ 0 in Ωr.

Proof. By using Lemma 3.3, there is a nonnegative solution (λr,s, ur,s) to (3.1) for almost every
s ∈

[ 1
2 , 1
]
. In view of Lemma 3.4, {ur,s} is bounded. By an argument similar to that in Lemma

3.3, there exist ur ∈ Sr,Θ and λr such that, going if necessary to a subsequence,

λr,s → λr and ur,s → ur in H1
0 (Ωr) as s→ 1.

Hence ur is a nonnegative solution of problem (1.1).

Next, we will consider the Lagrange multiplier. we first establish an a priori estimate for
the solutions of (1.1).

Lemma 3.6. If {(λr, ur)} is a family of nonnegative solutions of (1.1) such that ∥ur∥H1 ≤ C with
C > 0 independent of r, then lim supr→∞ ∥ur∥∞ < ∞.

Proof. Using the regularity theory of elliptic partial differential equations, we know that ur ∈
C(Ωr). Assume to the contrary that there exist a sequence, for simplicity denoted by {ur},
and xr ∈ Ωr such that

Mr := max
x∈Ωr

ur(x) = ur (xr)→ ∞ as r → ∞.

Suppose without loss of generality that, up to a subsequence, limr→∞
xr
|xr | = (1, 0, . . . , 0). Set

vr(x) =
ur (xr + τrx)

Mr
for x ∈ Σr :=

{
x ∈ RN : xr + τrx ∈ Ωr

}
,

where τr = M
2−q

2
r . Then τr → 0 as r → ∞, ∥vr∥L∞(Σr) ≤ 1, and vr satisfies

−∆vr + τ2
r V (xr + τrx) vr + τ2

r λrvr = |vr|q−2 vr + βM1−q
r f (Mrvr) in Σr. (3.17)

In fact, since ur is a nonnegative solution of (1.1), we obtain

− ∆ur (xr + τrx) + V (xr + τrx) ur (xr + τrx) + λrur (xr + τrx)

= |ur (xr + τrx)|q−2 ur (xr + τrx) + β f (ur (xr + τrx)) in Ωr,

then by a direct calculation and the definition of vr(x), τr, we know that (3.17) holds. In view
of (1.1), the Gagliardo–Nirenberg inequality and ∥ur∥H1 ≤ C with C independent of r, we
infer that the sequence {λr} is bounded. It then follows from the regularity theory of elliptic
partial differential equations and the Arzelà–Ascoli theorem that there exists v such that, up
to a subsequence

vr → v in H1
0(Σ) and vr → v in Cβ

loc(Σ) for some β ∈ (0, 1),

where Σ := lim
r→∞

Σr.
Similar to the proof of [4, Lemma 2.7], we have

lim inf
r→∞

dist (xr, ∂Ωr)

τr
= lim inf

r→∞

|yr − xr|
τr

≥ d > 0,
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where yr ∈ ∂Ωr is such that dist (xr, ∂Ωr) = |yr − xr| for any large r. As a result, by letting
r → ∞ in (3.17), we obtain that v ∈ H1

0(Σ) is a nonnegative solution of

−∆v = |v|q−2v in Σ,

where

Σ =

RN if lim inf
r→∞

dist(xr ,∂Ωr)
τr

= ∞,{
x ∈ RN : x1 > −d

}
if lim inf

r→∞
dist(xr ,∂Ωr)

τr
> 0.

It then follows from the Liouville theorems (see [17]) that v = 0 in H1
0(Σ), which contradicts

v(0) = limr→∞ vr(0) = 1.

Clearly, the proof of Lemma 3.6 does not depend on β.

Lemma 3.7. Let (λr,Θ, ur,Θ) be the solution of (1.1) from Lemma 3.5. If ∥Ṽ+∥ N
2
< 2S, then there

exists Θ̄ > 0 such that
lim inf

r→∞
λr,Θ > 0 for 0 < Θ < Θ̄.

Proof. Let (λr,Θ, ur,Θ) be the solution of (1.1) established in Theorem 3.5. By the regularity
theory of elliptic partial differential equations, we have ur,Θ ∈ C (Ωr). Using Lemma 3.6, it
holds

lim sup
r→∞

max
Ωr

ur,Θ < ∞.

Setting
Q(Θ) = lim inf

r→∞
max

Ωr
ur,Θ,

we claim that there is Θ1 > 0 such that Q(Θ) > 0 for any 0 < Θ < Θ1. Assume to the contrary
that there exists a sequence {Θk} tending to 0 as k → ∞ such that Q (Θk) = 0 for any k, that
is,

lim inf
r→∞

max
Ωr

ur,Θk = 0 for any k. (3.18)

As a consequence of (iii) in Lemma 3.1, for any r > rΘk , we have

Ir (ur,Θk) = mr,1 (Θk)→ ∞ as k→ ∞. (3.19)

For any given k, it follows from (3.18) and ur,Θk ∈ Sr,Θk that, up to a subsequence,∫
Ωr

|ur,Θk |
s dx =

∫
Ωr

|ur,Θk |
s−2 |ur,Θk |

2 dx ≤
∣∣∣∣max

Ωr
ur,Θk

∣∣∣∣s−2

Θk → 0 as r → ∞ (3.20)

for any s > 2. Hence, for any given large k, there exists r̄k > rΘk such that∣∣∣∣1q
∫

Ωr

|ur,Θk |
qdx + β

∫
Ωr

f (ur,Θk)dx
∣∣∣∣ < mr,1 (Θk)

2
for any r ≥ r̄k.

In view of (3.19) and Ir (ur,Θk) = mr,1 (Θk), we further have∫
Ωr

|∇ur,Θk |
2 dx +

∫
Ωr

V(x)u2
r,Θk

dx ≥ mr,1 (Θk)

2
for any large k and r ≥ r̄k. (3.21)

It follows from (3.18), (3.20) and (3.21) that there exists rk ≥ r̄k with rk → ∞ as k → ∞ such
that

lim
k→∞

max
Ωrk

urk ,Θk = 0, (3.22)
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∫
Ωrk

|urk ,Θk |
s dx ≤

∣∣∣∣∣max
Ωrk

urk ,Θk

∣∣∣∣∣
s−2

Θk → 0 as k→ ∞ for any s > 2 (3.23)

and ∫
Ωrk

|∇urk ,Θk |
2 dx +

∫
Ωr

Vu2
rk ,Θk

dx → ∞ as k→ ∞. (3.24)

By (1.1), (3.23) and (3.24), we have

λrk ,Θk → −∞ as k→ ∞. (3.25)

Now (1.1) implies

−∆urk ,Θk + V(x)urk ,Θk + λrk ,Θk urk ,Θk = |urk ,Θk |
q−2urk ,Θk + β f (urk ,Θk),

so

−∆urk ,Θk +

(
∥V∥∞ +

λrk ,Θk

2

)
urk ,Θk ≥ −

λrk ,Θk

2
urk ,Θk + |urk ,Θk |

q−2 urk ,Θk + β f (urk ,Θk).

Using (3.25) and (3.22), it follows that

−∆urk ,Θk +

(
∥V∥∞ +

λrk ,Θk

2

)
urk ,Θk ≥ 0

for large k. Let θrk be the principal eigenvalue of −∆ with Dirichlet boundary condition in
Ωrk , and vrk > 0 be the corresponding normalized eigenfunction. It follows that(

θrk + ∥V∥∞ +
λrk ,Θk

2

) ∫
Ωrk

urk ,Θk vrk dx ≥ 0.

Since
∫

Ωrk
urk ,Θk vrk dx > 0, we have

θrk + ∥V∥∞ +
λrk ,Θk

2
≥ 0,

which contradicts (3.25) for large k. Hence the claim holds, that is, there exists Θ1 > 0 such
that

Q(Θ) = lim inf
r→∞

max
Ωr

ur,Θ > 0 (3.26)

for any 0 < Θ < Θ1.
We consider H1(Ωr) as a subspace of H1(RN) for any r > 0. It follows from Lemma 3.4

that the set of solutions {ur,Θ : r > rΘ} established in Lemma 3.5 is bounded in H1(RN), so
there exist uΘ ∈ H1(RN) and λΘ ∈ R such that up to a subsequence:

λr,Θ → λΘ,

ur,Θ ⇀ uΘ in H1(RN),

ur,Θ → uΘ in Lk
loc(R

N) for all 2 ≤ k < 2∗,

ur,Θ → uΘ a.e. in RN

and uΘ is a solution of the equation

−∆u + V(x)u + λΘu = |u|q−2u + β f (u) in RN .
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Hence,∫
RN
|∇uΘ|2 dx +

∫
RN

V(x)u2
Θdx + λΘ

∫
RN

u2
Θdx =

∫
RN
|uΘ|q dx + β

∫
RN

f (uΘ)uΘdx (3.27)

and the Pohozaev identity gives

N − 2
2N

∫
RN
|∇uΘ|2 dx +

1
2N

∫
RN

Ṽu2
Θdx +

1
2

∫
RN

V(x)u2
Θdx +

λΘ

2

∫
RN

u2
Θdx

=
1
q

∫
RN
|uΘ|q dx + β

∫
RN

F(uΘ)dx. (3.28)

It follows from (3.27), (3.28), ( f2), the Gagliardo–Nirenberg inequality and the fact β ≤ 0 that

1
N

∫
RN
|∇uΘ|2 dx +

1
2N

∫
RN

Ṽ(x)u2
Θdx

=

(
1
2
− 1

q

) ∫
RN
|uΘ|q dx +

β

2

∫
RN

( f (uΘ)uΘ − 2F(uΘ))dx

≤
CN,q(q− 2)

2q

(∫
RN

u2
Θdx

) 2q−N(q−2)
4

(∫
RN
|∇uΘ|2 dx

) N(q−2)
4

.

By using the Hölder inequality, we have(
1
N
−
∥Ṽ+∥ N

2
S−1

2N

) ∫
RN
|∇uΘ|2 dx ≤ 1

N

∫
RN
|∇uΘ|2 dx +

1
2N

∫
RN

Ṽ(x)u2
Θdx.

Therefore, (
1
N
−
∥Ṽ+∥ N

2
S−1

2N

) ∫
RN
|∇uΘ|2 dx

≤
CN,q(q− 2)

2q

(∫
RN

u2
Θdx

) 2q−N(q−2)
4

(∫
RN
|∇uΘ|2 dx

) N(q−2)
4

.

If uΘ ̸= 0, Using ∥Ṽ+∥ N
2
< 2S, we obtain that

∫
RN
|∇uΘ|2 dx ≥

q
(

2− ∥Ṽ+∥ N
2

S−1
)

NCN,q(q− 2)


4

N(q−2)−4

Θ
q(N−2)−2N
N(q−2)−4 . (3.29)

Next, it follows from (3.5), (3.27), (3.28), (3.29), ( f2) and 2 + 4
N < q < 2∗ that(

1
q
− 1

2

)
λΘ

∫
RN

u2
Θdx =

(
N − 2

2N
− 1

q

) ∫
RN
|∇uΘ|2 dx +

1
2N

∫
RN

Ṽ(x)u2
Θdx

+

(
1
2
− 1

q

) ∫
RN

V(x)u2
Θdx− β

q

∫
RN

(qF(uΘ)− f (uΘ)uΘ)) dx

≤ (N − 2)q− 2N
2Nq

∫
RN
|∇uΘ|2 dx +

∥Ṽ∥∞

2N
Θ +

(q− 2)∥V∥∞

2q
Θ

− β(q− p2)α

q
CN,p1 Θ

2p1−N(p1−2)
4

(∫
RN
|∇uΘ|2 dx

) N(p1−2)
4

→ −∞ as Θ→ 0,
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since (N−2)q−2N
2Nq < 0. Therefore, if uΘ ̸= 0 for Θ > 0 small there exists Θ0 > 0 such that λΘ > 0

for 0 < Θ < Θ0.
In order to complete the proof, we consider the case that there is a sequence Θk → 0 such

that uΘk = 0 for any k. Assume without loss of generality that uΘ = 0 for any Θ ∈ (0, Θ1). Let
xr,Θ ∈ Ωr be such that ur,Θ (xr,Θ) = maxΩr ur,Θ. In view of (3.26), there holds |xr,Θ| → ∞ as
r → ∞. Otherwise, there exists x0 ∈ R such that, up to a subsequence, xr,Θ → x0, and hence
uΘ(x0) ≥ dΘ > 0. This contradicts uΘ = 0. We claim that dist(xr,Θ, ∂Ωr) → ∞ as r → ∞.
Arguing by contradiction we assume that lim infr→∞ dist(xr,Θ, ∂Ωr) = l < ∞. It follows from
(3.26) that l > 0. Let wr(x) = ur,Θ(x + xr,Θ) for any x ∈ Σr := {x ∈ RN : x + xr,Θ ∈ Ωr}.
Then wr is bounded in H1(RN), and there is w ∈ H1(RN) such that wr ⇀ w as r → ∞. By
the regularity theory of elliptic partial equations and lim infr→∞ ur,Θ (xr,Θ) > dΘ > 0, we infer
that w(0) ≥ dΘ > 0. Assume without loss of the generality that, up to a subsequence,

lim
r→∞

xr,Θ

|xr,Θ|
= e1.

Setting
Σ =

{
x ∈ RN : x · e1 < l

}
=
{

x ∈ RN : x1 < l
}

,

we have ϕ(· − xr,Θ) ∈ C∞
c (Ωr) for any ϕ ∈ C∞

c (Σ) and r large enough. It then follows that∫
Ωr

∇ur,Θ∇ϕ (· − xr,Θ) dx +
∫

Ωr

Vur,Θϕ (· − xr,Θ) dx + λr,Θ

∫
Ωr

ur,Θϕ (· − xr,Θ) dx

=
∫

Ωr

|ur,Θ|q−2 ur,Θϕ (· − xr,Θ) dx + β
∫

Ωr

f (ur,Θ)ϕ (· − xr,Θ) dx. (3.30)

Since |xr,Θ| → ∞ as r → ∞, it holds∣∣∣∣∫Ωr

Vur,Θϕ (· − xr,Θ) dx
∣∣∣∣ ≤ ∫Supp ϕ

|V (·+ xr,Θ)wrϕ| dx

≤ ∥wr∥2∗ ∥ϕ∥2∗

(∫
Supp ϕ

|V (·+ xr,Θ)|
N
2 dx

) 2
N

≤ ∥wr∥2∗ ∥ϕ∥2∗

∫
RN\B |xr,Θ |

2

|V| N
2 dx

 2
N

→ 0 as r → ∞. (3.31)

Letting r → ∞ in (3.30), we obtain for ϕ ∈ C∞
c (Σ):∫

Σ
∇w · ∇ϕdx + λΘ

∫
Σ

wϕdx =
∫

Σ
|w|q−2wϕdx + β

∫
Σ

f (w)ϕdx.

Thus w ∈ H1
0(Σ) is a weak solution of the equation

−∆w + λΘw = |w|q−2w + β f (w) in Σ. (3.32)

Hence we obtain a nontrivial nonnegative solution of (3.32) on a half space which is impossible
by the Liouville theorem (see [17]). This proves that dist (xr,Θ, ∂Ωr)→ ∞ as r → ∞. A similar
argument as above shows that (3.32) holds for Σ = RN . Now we argue as in the case uΘ ̸= 0
above that there exists Θ2 such that λΘ > 0 for any 0 < Θ < Θ2.

Setting Θ̄ = min {Θ0, Θ1, Θ2}, the proof is complete.

Proof of Theorem 1.3. The proof is an immediate consequence of Lemmas 3.5, 3.6 and 3.7.
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4 Proof of Theorem 1.4

In this section, we assume that the assumptions of Theorem 1.4 hold. Since β > 0,

Ir(u) ≥
1
2

(
1− ∥V−∥ N

2
S−1

) ∫
Ωr

|∇u|2dx−
CN,qΘ

2q−N(q−2)
4

q

(∫
Ωr

|∇u|2dx
) N(q−2)

4

− αβCN,p1 Θ
2p1−N(p1−2)

4

(∫
Ωr

|∇u|2dx
) N(p1−2)

4

= h1(t),

where

h1(t) :=
1
2

(
1− ∥V−∥ N

2
S−1

)
t2 −

CN,qΘ
2q−N(q−2)

4

q
t

N(q−2)
2 − αβCN,p1 Θ

2p1−N(p1−2)
4 t

N(p1−2)
2

= t
N(p1−2)

2

1
2

(
1− ∥V−∥ N

2
S−1

)
t

4−N(p1−2)
2 −

CN,qΘ
2q−N(q−2)

4

q
t

N(q−p1)
2


− αβCN,p1 Θ

2p1−N(p1−2)
4 t

N(p1−2)
2 .

Consider

ψ(t) :=
1
2

(
1− ∥V−∥ N

2
S−1

)
t

4−N(p1−2)
2 −

CN,qΘ
2q−N(q−2)

4

q
t

N(q−p1)
2 .

Note that ψ admits a unique maximum at

t̄ =

q(4− N(p1 − 2))
(

1− ∥V−∥ N
2

S−1
)

2N(q− p1)CN,q


2

N(q−2)−4

Θ
N(q−2)−2q

2(N(q−2)−4) .

By a direct calculation, we obtain

ψ(t̄) =

[
1− ∥V−∥ N

2
S−1

2N(q− p1)

] N(q−p1)
N(q−2)−4 [q(4− N(p1 − 2))

CN,q

] 4−N(p1−2)
N(q−2)−4

[N(q− 2)− 4] .

Hence,
ψ(t̄) > αβCN,p1 Θ

2p1−N(p1−2)
4

as long as

ΘV =

[
1− ∥V−∥ N

2
S−1

2N(q− p1)

] N
2 [

q(4− N(p1 − 2))
CN,q

] 4−N(p1−2)
2(q−p1)

[
N(q− 2)− 4

αβCN,p1

] N(q−2)−4
2(q−p1)

.

Now, let 0 < Θ < ΘV be fixed, we obtain

ψ(t̄) > αβCN,p1 Θ
2p1−N(p1−2)

4 (4.1)

and h1(t̄) > 0. In view of 2 < p1 < 2 + 4
N < q < 2∗ and (4.1), there exist 0 < R1 < TΘ < R2

such that h1(t) < 0 for 0 < t < R1 and for t > R2, h1(t) > 0 for R1 < t < R2, and h1 (TΘ) =

maxt∈R+ h1(t) > 0.
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Define
Vr,Θ =

{
u ∈ Sr,Θ : ∥∇u∥2

2 ≤ T2
Θ
}

.

Let θ be the principal eigenvalue of operator −∆ with Dirichlet boundary condition in Ω, and
let |Ω| be the volume of Ω.

Lemma 4.1.

(i) If r <
√

CΘ
TΘ

, then Vr,Θ = ∅.

(ii) If

r > max


√

CΘ
TΘ

,

 θ
(

1 + ∥V∥ N
2

S−1
)

2α1β
Θ

2−p2
2 |Ω|

p2−2
2


2

N(p2−2)+4
 ,

then Vr,Θ ̸= ∅ and
er,Θ := inf

u∈Vr,Θ
Ir(u) < 0

is attained at some interior point ur > 0 of Vr,Θ. As a consequence, there exists a Lagrange
multiplier λr ∈ R such that (λr, ur) is a solution of (2.1). Moreover lim infr→∞ λr > 0 holds
true.

Proof. (i) The Poincaré inequality implies there exists a positive constant C (only depending
on Ω) such that ∫

Ωr

|∇u|2dx =
1
r2

∫
Ω
|∇u|2dx ≥ C

r2

∫
Ω
|u|2dx =

CΘ
r2

for any u ∈ Sr,Θ. Since TΘ is independent of r, there holds Vr,Θ = ∅ if and only if r <
√

CΘ
TΘ

.
(ii) Let v1 ∈ S1,Θ be the positive normalized eigenfunction corresponding to θ. Setting

rΘ = max


√

CΘ
TΘ

,

 θ
(

1 + ∥V∥ N
2

S−1
)

2α1β
Θ

2−p2
2 |Ω|

p2−2
2


2

N(p2−2)+4
 . (4.2)

Now, we construct for r > rΘ a function ur ∈ Sr,Θ such that ur ∈ Vr,Θ and Ir (ur) < 0. Clearly,

∫
Ω
|∇v1|2 dx = θΘ, Θ =

∫
Ω
|v1|2 dx ≤

(∫
Ω
|v1|p2 dx

) 2
p2
|Ω|

p2−2
p2 .

Define ur ∈ Sr,Θ by ur(x) = r−
N
2 v1

(
r−1x

)
for x ∈ Ωr. Then∫

Ωr

|∇ur|2 dx = r−2θΘ and
∫

Ωr

|ur|p2 dx ≥ r
N(2−p2)

2 Θ
p2
2 |Ω|

2−p2
2 . (4.3)

According to ( f2), there exists a constant α1 > 0 such that

F(τ) ≥ α1τp2 . (4.4)

By (4.2), (4.3), (4.4), 2 < p2 < 2 + 4
N and a direct calculation we have ur ∈ Vr,Θ and

Ir (ur) ≤
1
2

(
1 + ∥V∥ N

2
S−1

)
r−2θΘ− α1βr

N(2−p2)
2 Θ

p2
2 |Ω|

2−p2
2

< 0.
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It then follows from the Gagliardo–Nirenberg inequality that

Ir (ur) ≥
1
2

(
1− ∥V−∥ N

2
S−1

) ∫
Ωr

|∇u|2dx− CN,p1 βΘ
2p1−N(p1−2)

4

(∫
Ωr

|∇u|2dx
) N(p1−2)

4

−
CN,q

q
Θ

2q−N(q−2)
4

(∫
Ωr

|∇u|2dx
) N(q−2)

4

. (4.5)

As a consequence Ir is bounded from below in Vr,Θ. By the Ekeland principle there exists a
sequence {un,r} ⊂ Vr,Θ such that

Ir(un,r)→ inf
u∈Vr,Θ

Ir(u), I′r(un,r)|Tun ,rSr,Θ → 0 as n→ ∞.

Consequently there exists ur ∈ H1
0(Ωr) such that un,r ⇀ ur in H1

0(Ωr) and

un,r → ur in Lk(Ωr) for all 2 ≤ k < 2∗.

Moreover, ∥∇ur∥2
2 ≤ lim infn→∞ ∥∇un,r∥2

2 ≤ T2
Θ, that is, ur ∈ Vr,Θ. Note that∫

Ωr

Vu2
n,rdx →

∫
Ωr

Vu2
r dx as n→ ∞,

hence
er,Θ ≤ Ir(ur) ≤ lim inf

n→∞
Ir(un,r) = er,Θ.

It follows that un,r → ur in H1
0 (Ωr), so Ir(ur) < 0. Therefore u is an interior point of Vr,Θ

because Ir(u) ≥ h1(TΘ) > 0 for any u ∈ ∂Vr,Θ by (4.5). The Lagrange multiplier theorem
implies that there exists λr ∈ R such that (λr, ur) is a solution of (2.1). Moreover,

λrΘ =
∫

Ωr

|ur|q dx + β
∫

Ωr

f (ur)urdx−
∫

Ωr

|∇ur|2 dx−
∫

Ωr

Vu2
r dx

=
∫

Ωr

|ur|q dx + β
∫

Ωr

f (ur)urdx− 2
q

∫
Ωr

|ur|qdx− 2β
∫

Ωr

F(ur)dx− 2Ir(ur)

> −2Ir(ur) = −2er,Θ. (4.6)

It follows from the definition of er,Θ that er,Θ is nonincreasing with respect to r. Hence,
er,Θ ≤ erΘ,Θ < 0 for any r > rΘ and 0 < Θ < ΘV . In view of (4.6), we have lim infr→∞ λr > 0.
Finally, the strong maximum principle implies ur > 0.

Proof of Theorem 1.4. The proof is a direct consequence of Lemma 4.1 and Lemma 3.6.

5 Proof of Theorem 1.5

In this subsection we assume that the assumptions of Theorem 1.5 hold. For s ∈
[ 1

2 , 1
]
, β > 0,

we define the functional Jr,s : Sr,Θ → R by

Jr,s(u) =
1
2

∫
Ωr

|∇u|2dx +
1
2

∫
Ωr

Vu2dx− s
(

1
q

∫
Ωr

|u|qdx + β
∫

Ωr

F(u)dx
)

.

Note that if u ∈ Sr,Θ is a critical point of Jr,s then there exists λ ∈ R such that (λ, u) is a
solution of the problem

−∆u + Vu + λu = s|u|q−2u + sβ f (u), x ∈ Ωr,∫
Ωr

|u|2dx = Θ, u ∈ H1
0(Ωr), x ∈ Ωr,

(5.1)
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Lemma 5.1. For 0 < Θ < Θ̃V where Θ̃V is defined in Theorem 1.5, there exist r̃Θ > 0 and u0, u1 ∈
SrΘ,Θ such that

(i) For r > r̃Θ and s ∈
[ 1

2 , 1
]

we have Jr,s
(
u1) ≤ 0 and

Jr,s
(
u0) < N(q− 2)− 4

4

2
(

1− ∥V−∥ N
2

S
)

N(q− 2)


N(q−2)

N(q−2)−4

A
4

4−N(q−2) Θ
N(q−2)−2q
N(q−2)−4 ,

where

A =

(
CN,q(q− 2)(N(q− 2)− 4)
q(p1 − 2)(4− N(p1 − 2))

+
CN,q

q

)
.

Moreover,

∥∥∇u0∥∥2
2 <

2
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)A


4

N(q−2)−4

Θ
N(q−2)−2q
N(q−2)−4

and ∥∥∥∇u1
∥∥∥2

2
>

2
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)A


4

N(q−2)−4

Θ
N(q−2)−2q
N(q−2)−4 .

(ii) If u ∈ Sr,Θ satisfies

∥∇u∥2
2 =

2
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)A


4

N(q−2)−4

Θ
N(q−2)−2q
N(q−2)−4 ,

then there holds

Jr,s(u) ≥
N(q− 2)− 4

4

2
(

1− ∥V−∥ N
2

S
)

N(q− 2)


N(q−2)

N(q−2)−4

A
4

4−N(q−2) Θ
N(q−2)−2q
N(q−2)−4 .

(iii) Let
mr,s(Θ) = inf

γ∈Γr,Θ
sup

t∈[0,1]
Jr,s(γ(t)),

where
Γr,Θ =

{
γ ∈ C ([0, 1], Sr,Θ) : γ(0) = u0, γ(1) = u1

}
.

Then

mr,s(Θ) ≥ N(q− 2)− 4
4

2
(

1− ∥V−∥ N
2

S
)

N(q− 2)


N(q−2)

N(q−2)−4

A
4

4−N(q−2) Θ
N(q−2)−2q
N(q−2)−4

and

mr,s(Θ) ≤ N(q− 2)− 4
2

 θ
(

1 + ∥V∥ N
2

S−1
)

N(q− 2)


N(q−2)

N(q−2)−4

(4q)
4

N(q−2)−4 |Ω|
2(q−2)

N(q−2)−4 Θ
N(q−2)−2q
N(q−2)−4 .

where θ is the principal eigenvalue of −∆ with Dirichlet boundary condition in Ω.
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Proof. Let v1 ∈ S1,Θ be the positive normalized eigenfunction of −∆ with Dirichlet boundary
condition in Ω associated to θ, then we have∫

Ω
|∇v1|2 dx = θΘ. (5.2)

By the Hölder inequality, we know∫
Ω
|v1(x)|p2 dx ≥ Θ

p2
2 · |Ω|

2−p2
2 . (5.3)

Setting vt(x) = t
N
2 v1(tx) for x ∈ B 1

t
and t > 0. Using (4.4), (5.2), (5.3) and 1

2 ≤ s ≤ 1, we get

J 1
t ,s (vt) ≤

1
2

(
1 + ∥V∥ N

2
S−1

)
t2θΘ− β

2
α1t

N(p2−2)
2

∫
Ω
|v1|p2 dx− 1

2q
t

N(q−2)
2 Θ

q
2 · |Ω|

2−q
2

≤ h2(t), (5.4)

where

h2(t) =
1
2

(
1 + ∥V∥ N

2
S−1

)
t2θΘ− 1

2q
t

N(q−2)
2 Θ

q
2 · |Ω|

2−q
2 .

A simple computation shows that h2(t0) = 0 for

t0 :=
[(

1 + ∥V∥ N
2

S−1
)

qθΘ
2−q

2 |Ω|
q−2

2

] 2
N(q−2)−4

and h2(t) < 0 for any t > t0, h2(t) > 0 for any 0 < t < t0. Moreover, h2(t) achieves its
maximum at

tΘ =

4q
(

1 + ∥V∥ N
2

S−1
)

θ

N(q− 2)
Θ

2−q
2 |Ω|

q−2
2


2

N(q−2)−4

.

This implies

Jr,s(vt0) = J 1
t0

,s(vt0) ≤ h2(t0) = 0 (5.5)

for any r ≥ 1
t0

and s ∈
[ 1

2 , 1
]
. There exists 0 < t1 < tΘ such that for any t ∈ [0, t1],

h2(t) <
N(q− 2)− 4

4

2
(

1− ∥V−∥ N
2

S
)

N(q− 2)


N(q−2)

N(q−2)−4

A
4

4−N(q−2) Θ
N(q−2)−2q
N(q−2)−4 . (5.6)

On the other hand, it follows from (3.5), the Gagliardo–Nirenberg inequality and the Hölder
inequality that

Jr,s(u) ≥
1
2

(
1− ∥V−∥ N

2
S−1

) ∫
Ωr

|∇u|2dx−
CN,qΘ

2q−N(q−2)
4

q

(∫
Ωr

|∇u|2dx
) N(q−2)

4

− αβCN,p1 Θ
2p1−N(p1−2)

4

(∫
Ωr

|∇u|2dx
) N(p1−2)

4

. (5.7)
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Define

g1(t) :=
1
2

(
1− ∥V−∥ N

2
S−1

)
t−

CN,qΘ
2q−N(q−2)

4

q
t

N(q−2)
4 − αβCN,p1 Θ

2p1−N(p1−2)
4 t

N(p1−2)
4

= t
N(p1−2)

4

1
2

(
1− ∥V−∥ N

2
S−1

)
t

4−N(p1−2)
4 −

CN,qΘ
2q−N(q−2)

4

q
t

N(q−p1)
4


− αβCN,p1 Θ

2p1−N(p1−2)
4 t

N(p1−2)
4 .

In view of 2 < p < 2 + 2
N < q < 2∗ and the definition of Θ̃V , there exist 0 < l1 < lM < l2 such

that g1(t) < 0 for any 0 < t < l1 and t > l2, g1(t) > 0 for l1 < t < l2 and g1 (lM) = max
t∈R+

g1(t) >

0. Let

t2 =

(
αβqCN,p1(p1 − 2)(4− N(p1 − 2))

CN,q(q− 2)(N(q− 2)− 4)

) 4
N(q−p1)

Θ
N−2

N .

Then by a direct calculation, we have g′′1 (t) ≤ 0 if and only if t ≥ t2. Hence

max
t∈R+

g1(t) = max
t∈[t2,∞)

g1(t).

Note that for any t ≥ t2,

g1(t) =
1
2

(
1− ∥V−∥ N

2
S−1

)
t−

CN,qΘ
2q−N(q−2)

4

q
t

N(q−2)
4 − αβCN,p1 Θ

2p1−N(p1−2)
4 t

N(p1−2)
4

=
1
2

(
1− ∥V−∥ N

2
S−1

)
t− αβCN,p1 Θ

(q−p1)(N−2)
4 ·Θ

2q−N(q−2)
4 t

N(p1−2)
4

−
CN,qΘ

2q−N(q−2)
4

q
t

N(q−2)
4

≥ 1
2

(
1− ∥V−∥ N

2
S−1

)
t−
(

CN,q(q− 2)(N(q− 2)− 4)
q(p1 − 2)(4− N(p1 − 2))

+
CN,q

q

)
Θ

2q−N(q−2)
4 · t

N(q−2)
4

=: g2(t). (5.8)

Now, we will determine the value of Θ̃V . In fact, g1 (lM) = maxt∈R+ g1(t) > 0 as long as
g2(t2) > 0, that is,

g2(t2) =
1
2

(
1− ∥V−∥ N

2
S−1

)( αβqCN,p1

CN,q Ap1,q

) 4
N(q−p1)

Θ
N−2

N −
(

CN,q

q
Ap1,q +

CN,q

q

)
·Θ

·
(

αβqCN,p1

CN,q Ap1,q

) q−2
q−p1

> 0,

where

Ap1,q =
(q− 2)(N(q− 2)− 4)
(p1 − 2)(4− N(p1 − 2))

.

Hence, we take

Θ̃V =
1
2

(
1− ∥V−∥ N

2
S−1

) N
2
(

CN,q

q
Ap1,q +

CN,q

q

)− N
2
(

αβqCN,p1

CN,q Ap1,q

) N(q−2)−4
2N(q−p1)

.
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Let

A =

(
CN,q(q− 2)(N(q− 2)− 4)
q(p1 − 2)(4− N(p1 − 2))

+
CN,q

q

)
and

tg =

2
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)A


4

N(q−2)−4

Θ
N(q−2)−2q
N(q−2)−4 ,

so that tg > t2 by the definition of Θ̃V , maxt∈[t2,∞) g2(t) = g2(tg) and

max
t∈R+

g1(t) ≥ max
t∈[t2,∞)

g2(t)

=
(N(q− 2)− 4)

4

2
(

1− ∥V−∥ N
2

S
)

N(q− 2)


N(q−2)

N(q−2)−4

A
4

4−N(q−2) Θ
N(q−2)−2q
N(q−2)−4 .

Set r̄Θ = max
{ 1

t1
,
√

2θΘ
tg

}
, then v 1

r̄Θ
∈ Sr,Θ for any r > r̄Θ, and

∥∥∥∥∇v 1
r̄Θ

∥∥∥∥2

2
=

(
1

r̄Θ

)2

∥∇v1∥2
2 < tg =

2
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)A


4

N(q−2)−4

Θ
N(q−2)−2q
N(q−2)−4 . (5.9)

Moreover,

Jr̄Θ,s

(
v 1

r̄Θ

)
≤ h2

(
1

r̄Θ

)
≤ h2 (t1) . (5.10)

Let u0 = v 1
τ̄Θ

, u1 = vt0 and

r̃Θ = max
{

1
t0

, r̄Θ

}
.

Then the statement (i) holds by (5.5), (5.6), (5.9), (5.10).
(ii) holds by (5.8) and a direct calculation.
(iii) In view of Jr,s

(
u1) ≤ 0 for any γ ∈ Γr,Θ and the definition of t0, we have

∥∇γ(0)∥2
2 < tg < ∥∇γ(1)∥2

2.

It then follows from (5.8) that

max
t∈[0,1]

Jr,s(γ(t)) ≥ g2
(
tg
)

=
N(q− 2)− 4

4

2
(

1− ∥V−∥ N
2

S−1
)

N(q− 2)


N(q−2)

N(q−2)−4

A
4

4−N(q−2) Θ
N(q−2)−2q
N(q−2)−4

for any γ ∈ Γr,Θ, hence the first inequality in (iii) holds. We define a path γ : [0, 1]→ Sr,Θ by

γ(t) : Ωr → R, x 7→
(

τt0 + (1− τ)
1
r̃ Θ

) N
2

v1

((
τt0 + (1− τ)

1
r̃Θ

)
x
)

.

Then γ ∈ Γr,Θ, and the second inequality in (iii) follows from (5.4).
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Lemma 5.2. Assume 0 < Θ < Θ̃V where Θ̃V is given in Theorem 1.5. Let r > r̃Θ, where r̃Θ is defined
in Lemma 5.1. Then problem (5.1) admits a solution (λr,s, ur,s) for almost every s ∈

[ 1
2 , 1
]
. Moreover,

there hold ur,s > 0 and Jr,s (ur,s) = mr,s(Θ).

Proof. The proof is similar to the Lemma 3.3. We omit it here.

Lemma 5.3. For fixed Θ > 0 the set of solutions u ∈ Sr,Θ of (5.1) is bounded uniformly in s and r.

Proof. Since u is a solution of (5.1), we have∫
Ωr

|∇u|2dx +
∫

Ωr

Vu2dx = s
∫

Ωr

|u|qdx + sβ
∫

Ωr

f (u)udx− λ
∫

Ωr

|u|2dx.

The Pohozaev identity implies

N − 2
2N

∫
Ωr

|∇u|2dx +
1

2N

∫
∂Ωr

|∇u|2(x · n)dσ +
1

2N

∫
Ωr

Ṽ(x)u2 +
1
2

∫
Ωr

Vu2dx

= −λ

2

∫
Ωr

|u|2dx +
s
q

∫
Ωr

|u|qdx + sβ
∫

Ωr

F(u)dx.

It then follows from β > 0 and ( f2) that

1
N

∫
Ωr

|∇u|2dx− 1
2N

∫
∂Ωr

|∇u|2(x · n)dσ− 1
2N

∫
Ωr

(∇V · x)u2dx

=
(q− 2)s

2q

∫
Ωr

|u|qdx + s
∫

Ωr

(
β

2
f (u)u− βF(u))dx

≥ q− 2
2

(
1
2

∫
Ωr

|∇u|2dx +
1
2

∫
Ωr

Vu2dx−mr,s(Θ)

)
+ s

β(p2 − q)
2

∫
Ωr

F(u)dx.

Using Gagliardo–Nirenberg inequality, (3.5) and (iii) in Lemma 5.1, we have

q− 2
2

mr,s(Θ) ≥ N(p2 − 2)− 4
4N

∫
Ωr

|∇u|2dx−Θ
(

1
2N
∥∇V · x∥∞ +

p2 − 2
4
∥V∥∞

)

+
sαβ(p2 − q)

2
CN,p1 Θ

2p1−N(p1−2)
4

(∫
Ωr

|∇u|2dx
) N(p1−2)

4

.

Since 2 < p1 < 2 + 4
N , we can bound

∫
Ωr
|∇u|2dx uniformly in s and r.

Lemma 5.4. Assume 0 < Θ < Θ̃V , where Θ̃V is given in Theorem 1.5, and let r > r̃Θ, where r̃Θ is
defined in Lemma 5.1. Then the following hold:

(i) Equation (2.1) admits a solution (λr,Θ, ur,Θ) for every r > r̃Θ such that ur,Θ > 0 in Ωr.

(ii) There is 0 < Θ̄ ≤ Θ̃V such that

lim inf
r→∞

λr,Θ > 0 for any 0 < Θ < Θ̄.

Proof. The proof of (i) is similar to that of Lemma 3.5, we omit it. As be consider H1
0 (Ωr) as

a subspace of H1(RN) for every r > 0. In view of Lemma 5.3, there are λΘ and uΘ ∈ H1(RN)

such that, up to a subsequence,

ur,Θ ⇀ uΘ in H1(RN) and lim
r→∞

λr,Θ → λΘ.
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Arguing by contradiction, we assume that λΘn ≤ 0 for some sequence Θn → 0. Let θr be the
principal eigenvalue of −∆ with Dirichlet boundary condition in Ωr and let vr > 0 be the
corresponding normalized eigenfunction. Testing (2.1) with vr, it holds

(θr + λr,Θn)
∫

Ωr

ur,Θn vrdx +
∫

Ωr

Vur,Θn vrdx ≥ 0.

In view of
∫

Ωr
ur,Θn vrdx > 0 and θr = r−2θ1, there holds

max
x∈RN

V + λr,Θn + r−2θ1 ≥ 0.

Hence there exists C > 0 independent of n such that |λΘn | ≤ C for any n.

Case 1. There is subsequence denoted still by {Θn} such that uΘn = 0. We first claim that
there exists dn > 0 for any n such that

lim inf
r→∞

sup
z∈RN

∫
B(z,1)

u2
r,Θn

dx ≥ dn. (5.11)

Otherwise, the concentration compactness principle implies for every n that

ur,Θn → 0 in Lt(RN) as r → ∞, for all 2 < t < 2∗.

By the diagonal principle, (2.1) and |λr,Θn | ≤ 2C for large r, there exists rn → ∞ such that∫
Ωr

|∇urn,Θn |
2 dx ≤ C

for some C independent of n, contradicting (iii) in Lemma 5.1 for large n. As a consequence
(5.11) holds, and there is zr,Θn ∈ Ωr with |zr,Θn | → ∞ such that∫

B(zr,Θn ,1)
u2

r,Θn
dx ≥ dn

2
.

Moreover, dist (zr,Θn , ∂Ωr)→ ∞ as r → ∞ by an argument similar to that in Lemma 3.7. Now,
for n fixed let vr(x) = ur,Θn (x + zr,Θn) for x ∈ Σr :=

{
x ∈ RN : x + zr,Θn ∈ Ωr

}
. It follows

from Lemma 5.3 that there is v ∈ H1(RN) with v ̸= 0 such that vr ⇀ v. Observe that for every
ϕ ∈ C∞

c
(
RN) there is r large such that ϕ (· − zr,Θn) ∈ C∞

c (Ωr) due to dist (zr,Θn , ∂Ωr) → ∞ as
r → ∞. It follows that∫

Ωr

∇ur,Θn∇ϕ (· − zr,Θn) dx +
∫

Ωr

Vur,Θn ϕ (· − zr,Θn) dx + λr,Θn

∫
Ωr

ur,Θn ϕ (· − zr,Θn) dx

=
∫

Ωr

|ur,Θn |
q−2 ur,Θn ϕ (· − zr,Θn) dx + β

∫
Ωr

f (ur,Θn)ϕ (· − zr,Θn) dx. (5.12)

Using |zr,Θn | → ∞ as r → ∞, it follows that∣∣∣∣∫Ωr

Vur,Θn ϕ (· − zr,Θn) dx
∣∣∣∣ ≤ ∫Supp ϕ

|V (·+ zr,Θn) vrϕ| dx

≤ ∥vr∥2∗ ∥ϕ∥2∗

∫
RN\B |zr,Θn |

2

|V| N
2 dx

 2
N

→ 0 as r → ∞.
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Letting r → ∞ in (5.12), we get for every ϕ ∈ C∞
c (RN) :∫

RN
∇v · ∇ϕdx + λΘn

∫
RN

vϕdx =
∫

RN
|v|q−2vϕdx + β

∫
RN

f (v)ϕdx.

Therefore v ∈ H1(RN) is a weak solution of the equation

−∆v + λΘn v = β f (v) + |v|q−2v in RN

and ∫
RN
|∇v|2dx + λΘn

∫
RN
|v|2dx = β

∫
RN

f (v)vdx +
∫

RN
|v|qdx.

The Pohozaev identity implies

N − 2
2N

∫
RN
|∇v|2dx +

λΘn

2

∫
RN
|v|2dx = β

∫
RN

F(v)dx +
1
q

∫
RN
|v|qdx,

hence

λΘn

N

∫
RN
|v|2dx

=
β(N − 2)

2N

∫
RN

[
2N

N − 2
F(v)− f (v)v

]
dx +

2N − q(N − 2)
2Nq

∫
RN
|v|qdx

≥ β(N − 2)
2N

(
2N

N − 2
− p1

) ∫
RN

F(v)dx +
2N − q(N − 2)

2Nq

∫
RN
|v|qdx. (5.13)

We have λΘn > 0 because of 2 < p1 < 2 + 4
N < q < 2∗, which is a contradiction.

Case 2. uΘn ̸= 0 for n large. Note that uΘn satisfies

−∆uΘn + VuΘn + λΘn uΘn = β f (uΘn) + |uΘn |
q−2 uΘn . (5.14)

If vr,Θn := ur,Θn − uΘn satisfies

lim sup
r→∞

max
z∈RN

∫
B(z,1)

v2
r,Θn

dx = 0, (5.15)

then the concentration compactness principle implies ur,Θn → uΘn in Lt(RN) for any 2 < t <
2∗. It then follows from (2.1) and (5.14) that∫

Ωr

|∇ur,Θn |
2 dx + Θnλr,Θn = β

∫
Ωr

f (ur,Θn)ur,Θn dx +
∫

Ωr

|ur,Θn |
q dx−

∫
Ωr

Vu2
r,Θn

dx

→ β
∫

RN
f (uΘn)ur,Θn dx +

∫
RN
|uΘn |

q dx−
∫

RN
Vu2

Θn
dx

=
∫

RN
|∇uΘn |

2 dx + λΘn

∫
RN

u2
Θn

dx.

Using λr,Θn → λΘn as r → ∞, we further have∫
Ωr

|∇ur,Θn |
2 dx + ΘnλΘn →

∫
RN
|∇uΘn |

2 dx + λΘn

∫
RN

u2
Θn

dx as r → ∞. (5.16)

Using (5.16), (iii) in Lemma 5.1 and |λΘn | ≤ C for large n, there holds∫
RN
|∇uΘn |

2 dx → ∞ as n→ ∞.
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By (5.14) and the Pohozaev identity

N − 2
2N

∫
RN
|∇uΘn |

2 dx +
1

2N

∫
RN

Ṽu2
Θn

dx +
1
2

∫
RN

V(x)u2
Θn

dx +
λΘ

2

∫
RN

u2
Θn

dx

=
1
q

∫
RN
|uΘn |

q dx + β
∫

RN
F(uΘn)dx.

It holds that

0 ≤ (2− q)λΘn

2q

∫
RN

u2
Θn

dx

≤ (N − 2)q− 2N
2Nq

∫
RN
|∇uΘn |

2 dx +
∥Ṽ∥∞

2N
Θn +

(q− 2)∥V∥∞

2q
Θn

→ −∞ as n→ ∞.

Therefore (5.15) cannot occur. Consequently there exist dn > 0 and zr,Θn ∈ Ωr with |zr,Θn | → ∞
as r → ∞ such that ∫

B(zr,Θn ,1)
v2

r,Θn
dx > dn.

Then ṽr,Θn := vr,Θn (·+ zr,Θn) ⇀ ṽΘn ̸= 0, and ṽΘn is a nonnegative solution of

−∆v + λΘn v = β f (v)v + |v|q−2v in RN .

In fact, we have lim infr→∞ dist (zr,Θn , ∂Ωr) = ∞ by the Liouville theorem on the half space.
It follows from an argument similar to that of (5.13) that λΘn > 0 for large n, which is a
contradiction.

Proof of Theorem 1.5. The proof is a direct consequence of Lemma 5.4 and Lemma 3.6.

6 Proof of Theorem 1.9

In this section we assume that the assumptions of Theorem 1.9 hold. Define the functional
Ir : Sr,Θ → R by

Ir(u) =
1
2

∫
Ωr

|∇u|2dx +
1
2

∫
Ωr

Vu2dx− 1
2∗

∫
Ωr

|u|2∗dx− β
∫

Ωr

F(u)dx. (6.1)

Note that if u ∈ Sr,Θ is a critical point of Ir,s, then there exists λ ∈ R such that (λ, u) is a
solution of the equation

−∆u + Vu + λu = |u|2∗−2u + β f (u), x ∈ Ωr,∫
Ωr

|u|2dx = Θ, u ∈ H1
0(Ωr), x ∈ Ωr.

(6.2)

Since β > 0,

Ir(u) ≥
1
2

(
1− ∥V−∥ N

2
S−1

) ∫
Ωr

|∇u|2dx− 1

2∗ · S 2∗
2

(∫
Ωr

|∇u|2dx
) 2∗

2

− αβCN,p1 Θ
2p1−N(p1−2)

4

(∫
Ωr

|∇u|2dx
) N(p1−2)

4

= h̃1(t),
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where

h̃1(t) :=
1
2

(
1− ∥V−∥ N

2
S−1

)
t2 − 1

2∗ · S 2∗
2

t2∗ − αβCN,p1 Θ
2p1−N(p1−2)

4 t
N(p1−2)

2 .

Consider
ψ̂(t) :=

1
2

(
1− ∥V−∥ N

2
S−1

)
t2 − 1

2∗ · S 2∗
2

t2∗ .

Note that ψ̂ admits a unique maximum at

t̂ =
[(

1− ∥V−∥ N
2

S−1
)

S
2∗
2

] 1
2∗−2 .

By a direct calculation, we obtain

ψ̂(t̂) =
1
N

(
1− ∥V−∥ N

2
S−1

) N
2 S

N
2 .

Hence,
ψ̂(t̂) > αβCN,p1 Θ

2p1−N(p1−2)
4 t̂

N(p1−2)
2

as long as

ΘV =

(
1

NαβCN,p1

) 4
2p1−N(p1−2) (

1− ∥V−∥ N
2

S−1
) N

2 S
N
2 ·

4−N(p1−2)
2p1−N(p1−2) .

Now, let 0 < Θ < ΘV be fixed, we obtain

ψ̂(t̂) > αβCN,p1 Θ
2p1−N(p1−2)

4 t̂
N(p1−2)

2

and h̃1(t̂) > 0. In view of 2 < p1 < 2+ 4
N < 2∗, there exist 0 < R̃1 < T̃Θ < R̃2 such that h̃1(t) <

0 for 0 < t < R̃1 and for t > R̃2, h̃1(t) > 0 for R̃1 < t < R̃2, and h̃1(T̃Θ) = maxt∈R+ h̃1(t) > 0.
Define

Ṽr,Θ =
{

u ∈ Sr,Θ : ∥∇u∥2
2 ≤ T̃Θ

2}
.

Let θ be the principal eigenvalue of operator −∆ with Dirichlet boundary condition in Ω, and
let |Ω| be the volume of Ω.

Lemma 6.1.

(i) If r <
√

CΘ
T̃Θ

, then Ṽr,Θ = ∅.

(ii) If

r > max


√

CΘ

T̃Θ
,

 θ
(

1 + ∥V∥ N
2

S−1
)

2α1β
Θ

2−p2
2 |Ω|

p2−2
2


2

N(p2−2)+4


then Ṽr,Θ ̸= ∅ and
ẽr,Θ := inf

u∈Ṽr,Θ

Ir(u) < 0

is attained at some interior point ur > 0 of Ṽr,Θ. As a consequence, there exists a Lagrange
multiplier λr ∈ R such that (λr, ur) is a solution of (6.1). Moreover lim infr→∞ λr > 0 holds
true.
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Proof. (i) The proof is similar to the Lemma 4.1. (ii) Let v1 ∈ S1,Θ be the positive normalized
eigenfunction corresponding to θ. Setting

rΘ = max


√

CΘ

T̃Θ
,

 θ
(

1 + ∥V∥ N
2

S−1
)

2α1β
Θ

2−p2
2 |Ω|

p2−2
2


2

N(p2−2)+4
 . (6.3)

Now, we construct for r > rΘ a function ur ∈ Sr,Θ such that ur ∈ Ṽr,Θ and Ir (ur) < 0. By (6.3),
(4.3), (4.4), 2 < p2 < 2 + 4

N and a direct calculation, we have ur ∈ Ṽr,Θ and

Ir (ur) ≤
1
2

∫
Ωr

|∇ur|2 dx +
1
2

∫
Ωr

Vu2
r dx− 1

2∗

∫
Ωr

|ur|2
∗

dx− α1β
∫

Ωr

|ur|p2 dx

≤ 1
2

(
1 + ∥V∥ N

2
S−1

)
r−2θΘ− α1βr

N(2−p2)
2 Θ

p2
2 |Ω|

2−p2
2

< 0.

It then follows from the Gagliardo–Nirenberg inequality that

Ir (ur) ≥
1
2

(
1− ∥V−∥ N

2
S−1

) ∫
Ωr

|∇u|2dx− CN,p1 βΘ
2p1−N(p1−2)

4

(∫
Ωr

|∇u|2dx
) N(p1−2)

4

− 1

2∗ · S 2∗
2

(∫
Ωr

|∇u|2dx
) 2∗

2

. (6.4)

As a consequence Ir is bounded from below in Ṽr,Θ. By the Ekeland principle there exists a
sequence {un,r} ⊂ Ṽr,Θ such that

Ir(un,r)→ inf
u∈Ṽr,Θ

Ir(u), I ′r(un,r)|Tun ,rSr,Θ → 0 as n→ ∞ (6.5)

Consequently there exists ur ∈ H1
0(Ωr) such that

un,r ⇀ ur in H1
0(Ωr)

and
un,r → ur in Lk(Ωr) for all 2 ≤ k < 2∗. (6.6)

We claim now that the weak limit ur does not vanish identically. Suppose by contradiction
that ur ≡ 0. Since {un,r} is bounded in H1(Ωr), up to a subsequence we have that ∥∇un,r∥2

2 →
ℓ ∈ R. Using ( f2), (6.5), (6.6), we have

⟨I ′r(un,r), un,r⟩ =
∫

Ωr

|∇un,r|2 dx +
∫

Ωr

Vu2
n,rdx−

∫
Ωr

|un,r|2
∗

dx− β
∫

Ωr

f (un,r)un,rdx

→ 0,

hence
∥un,r∥2∗

2∗ = ∥∇un,r∥2
2 → ℓ

as well. Therefore, by the Sobolev inequality ℓ ≥ Sℓ
2

2∗ , and we deduce that either ℓ = 0, or
ℓ ≥ S

N
2 . Let us suppose at first that ℓ ≥ SN/2. Since Ir(un,r)→ ẽr,Θ < 0, we have that

0 > ẽr,Θ + o(1) = Ir(un,r)

=
1
2

∫
Ωr

|∇un,r|2 dx +
1
2

∫
Ωr

Vu2
n,rdx− 1

2∗

∫
Ωr

|un,r|2
∗

dx− β
∫

Ωr

F(un,r)dx

=
1
N
∥∇un,r∥2

2 + o(1) =
ℓ

N
+ o(1),
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which is not possible. If instead ℓ = 0, we have ∥un,r∥2∗ → 0, ∥∇un,r∥2 → 0 and F(un,r) → 0.
But then Ir(un,r) → 0 ̸= ẽr,Θ, which gives again a contradiction. Thus, ur does not vanish
identically.

Since {un,r} is a bounded minimization sequence for Ir(un,r)|Sr,Θ , there exists {λn} ⊂ R

such that for every φ ∈ H1(Ωr),∫
Ωr

∇un,r · ∇φ +
∫

Ωr

Vun,r φ + λnun,r φ− β f (un,r)φ− |un,r|2
∗−2 un,r φ = o(1)∥φ∥ (6.7)

as n → ∞, by the Lagrange multipliers rule. Choosing φ = un,r, we deduce that {λn} is
bounded as well, and hence up to a subsequence λn → λr ∈ R. Moreover, passing to the limit
in (6.7) by weak convergence, we obtain

−∆ur + Vur + λrur = |ur|2
∗−2ur + β f (ur), x ∈ Ωr.

Recalling that vn,r = un,r − ur ⇀ 0 in H1
0(Ωr), we know

∥∇un,r∥2
2 = ∥∇ur∥2

2 + ∥∇vn,r∥2
2 + o(1).

By the Brézis–Lieb lemma [12], we have

∥un,r∥2∗
2∗ = ∥ur∥2∗

2∗ + ∥vn,r∥2∗
2∗ + o(1).

Moreover,
∥∇ur∥2

2 ≤ lim inf
n→∞

∥∇un,r∥2
2 ≤ T̃Θ

2
,

that is, ur ∈ Ṽr,Θ. Note that ∫
Ωr

Vu2
n,rdx →

∫
Ωr

Vu2
r dx as n→ ∞,

hence
∥vn,r∥2∗

2∗ = ∥∇vn,r∥2
2 → ℓ

as well. Therefore, ℓ ≥ Sℓ
2

2∗ , and we deduce that either ℓ = 0, or ℓ ≥ S
N
2 . Let us suppose at

first that ℓ ≥ SN/2. Since Ir(vn,r)→ 0, we have that

o(1) = Ir(vn,r)

=
1
2

∫
Ωr

|∇vn,r|2 dx +
1
2

∫
Ωr

Vv2
n,rdx− 1

2∗

∫
Ωr

|vn,r|2
∗

dx− β
∫

Ωr

F(vn,r)dx

=
1
2
∥∇vn,r∥2

2 + o(1) =
ℓ

N
+ o(1),

which is not possible. If instead ℓ = 0, we have that un,r → ur in H1
0 (Ωr), so Ir(ur) < 0.

Therefore u is an interior point of Ṽr,Θ because Ir(u) ≥ h̃1(T̃Θ) > 0 for any u ∈ ∂Ṽr,Θ by
(6.4). The Lagrange multiplier theorem implies that there exists λr ∈ R such that (λr, ur) is a
solution of (6.1). Moreover,

λrΘ =
∫

Ωr

|ur|2
∗

dx + β
∫

Ωr

f (ur)urdx− 2
2∗

∫
Ωr

|ur|2
∗
dx− 2β

∫
Ωr

F(ur)dx− 2Ir(ur)

=
2∗ − 2

2∗

∫
Ωr

|ur|2
∗

dx + β
∫

Ωr

[ f (ur)ur − 2F(ur)]dx− 2Ir(ur)

> −2Ir(ur) = −2ẽr,Θ. (6.8)
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It follows from the definition of ẽr,Θ that ẽr,Θ is nonincreasing with respect to r. Hence,
ẽr,Θ ≤ ẽrΘ,Θ < 0 for any r > rΘ and 0 < Θ < ΘV . In view of (6.8), we have

lim inf
r→∞

λr > 0.

Finally, the strong maximum principle implies ur > 0.

Proof of Theorem 1.9. The proof is a direct consequence of Lemma 6.1 and Lemma 3.6.

7 Proof of Theorem 1.10

In this subsection, we assume β ≤ 0 and the assumptions of Theorem 1.10 hold. Consider the
following equation 

−∆u + Vu + λu = |u|2∗−2u + β f (u), x ∈ Ωr,∫
Ωr

|u|2dx = Θ, u ∈ H1
0(Ωr), x ∈ Ωr.

(7.1)

For 1
2 ≤ s ≤ 1, we define the functional Ir,s : Sr,Θ → R by

Ir,s(u) =
1
2

∫
Ωr

|∇u|2dx +
1
2

∫
Ωr

Vu2dx− s
2∗

∫
Ωr

|u|2∗dx− β
∫

Ωr

F(u)dx. (7.2)

Note that if u ∈ Sr,Θ is a critical point of Ir,s, then there exists λ ∈ R such that (λ, u) is a
solution of the equation

−∆u + Vu + λu = s|u|2∗−2u + β f (u), x ∈ Ωr,∫
Ωr

|u|2dx = Θ, u ∈ H1
0(Ωr), x ∈ Ωr.

(7.3)

Lemma 7.1. For any Θ > 0, there exist rΘ > 0 and u0, u1 ∈ SrΘ,Θ such that

(i) Ir,s(u1) ≤ 0 for any r > rΘ and s ∈
[ 1

2 , 1
]
,

∥∥∇u0∥∥2
2 <

(
1− ∥V−∥ N

2
S−1

) N−2
2 S

N
2 <

∥∥∥∇u1
∥∥∥2

2

and

Ir,s
(
u0) < 1

N

(
1− ∥V−∥ N

2
S−1

) N
2 S

N
2 .

(ii) If u ∈ Sr,Θ satisfies

∥∇u∥2
2 =

(
1− ∥V−∥ N

2
S−1

) N−2
2 S

N
2 ,

then there holds

Ir,s(u) ≥
1
N

(
1− ∥V−∥ N

2
S−1

) N
2 S

N
2 .

(iii) Set
m̃r,s(Θ) = inf

γ∈Γ̃r,Θ

sup
t∈[0,1]

Ir,s(γ(t))

with
Γ̃r,Θ =

{
γ ∈ C ([0, 1], Sr,Θ) : γ(0) = u0, γ(1) = u1

}
.
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Then
1
N

(
1− ∥V−∥ N

2
S−1

) N
2 S

N
2 ≤ m̃r,s(Θ) ≤ h(hΘ),

where h(hΘ) = maxt∈R+ h(t), the function h : R+ → R being defined by

h(t) =
1
2

(
1 + ∥V∥ N

2
S−1

)
t2θΘ− αβCN,p1 Θ

p1
2 θ

N(p1−2)
4 t

N(p1−2)
2 − 1

2 · 2∗ t2∗Θ
2∗
2 · |Ω| 2−2∗

2 .

Here θ is the principal eigenvalue of −∆ with Dirichlet boundary conditions in Ω, and |Ω| is the
volume of Ω.

Proof. (i) By the Hölder inequality,∫
Ω
|v1(x)|2∗dx ≥ Θ

2∗
2 · |Ω| 2−2∗

2 . (7.4)

For x ∈ Ω 1
t

and t > 0, define vt(x) := t
N
2 v1(tx). Using (3.3), (7.4), (3.5) and 1

2 ≤ s ≤ 1, it holds

I 1
t ,s (vt) ≤

1
2

(
1 + ∥V∥ N

2
S−1

)
t2θΘ− αβCN,p1 Θ

p1
2 θ

N(p1−2)
4 t

N(p1−2)
2

− 1
2 · 2∗ t

N(2∗−2)
2 Θ

2∗
2 · |Ω| 2−2∗

2

=: h(t). (7.5)

Note that since 2 < p1 < 2 + 4
N < q = 2∗ and β ≤ 0 there exist 0 < hΘ < t0 such that

h (t0) = 0, h(t) < 0 for any t > t0, h(t) > 0 for any 0 < t < t0 and h (hΘ) = maxt∈R+ h(t). As
a consequence, there holds

Ir,s (vt0) = I 1
t0

,s (vt0) ≤ h (t0) = 0 (7.6)

for any r ≥ 1
t0

and s ∈
[ 1

2 , 1
]
. Moreover, there exists 0 < t1 < hΘ such that

h(t) <
1
N

(
1− ∥V−∥ N

2
S−1

) N
2 S

N
2 (7.7)

for t ∈ [0, t1]. On the other hand, it follows from the Sobolev inequality and the Hölder
inequality that

Ir,s(u) ≥
1
2

(
1− ∥V−∥ N

2
S−1

) ∫
Ωr

|∇u|2dx− 1

2∗ · S 2∗
2

(∫
Ωr

|∇u|2dx
) 2∗

2

. (7.8)

Define

g(t) :=
1
2

(
1− ∥V−∥ N

2
S−1

)
t− 1

2∗ · S 2∗
2

t
2∗
2

and

t̃ =
(

1− ∥V−∥ N
2

S−1
) N−2

2 S
N
2 ,

it is easy to see that g is increasing on (0, t̃) and decreasing on (t̃, ∞), and

g(t̃) =
1
N

(
1− ∥V−∥ N

2
S−1

) N
2 S

N
2 .
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For r ≥ r̃Θ := max
{ 1

t1
,
√

2θΘ
t̃

}
we have v 1

r̃Θ
∈ Sr,Θ and

∥∇v 1
r̃Θ
∥2

2 =

(
1

r̃Θ

)2

∥∇v1∥2
2 <

(
1− ∥V−∥ N

2
S−1

) N−2
2 S

N
2 . (7.9)

Moreover, there holds

Ir̃Θ,s

(
v 1

r̃Θ

)
≤ h

(
1

r̃Θ

)
≤ h (t1) . (7.10)

Setting u0 = v 1
r̃Θ

, u1 = vt0 and

rΘ = max
{

1
t0

, r̃Θ

}
. (7.11)

Since (7.6), (7.7), (7.8) and (7.9), then (i) holds.
(ii) By (7.8) and a direct calculation, (ii) holds.
(iii) Since Ir,s

(
u1) ≤ 0 for any γ ∈ Γr,Θ, we have

∥∇γ(0)∥2
2 < t̃ < ∥∇γ(1)∥2

2.

It then follows from (7.8) that

max
t∈[0,1]

Ir,s(γ(t)) ≥ g(t̃) =
1
N

(
1− ∥V−∥ N

2
S−1

) N
2 S

N
2

for any γ ∈ Γ̃r,Θ, hence the first inequality in (iii) holds. Now we define a path γ ∈ Γ̃r,Θ by

γ(τ)(x) =
(

τt0 + (1− τ)
1

r̃Θ

) N
2

v1

((
τt0 + (1− τ)

1
r̃Θ

)
x
)

for τ ∈ [0, 1] and x ∈ Ωr. Then by (7.5) we have m̃r,s(Θ) ≤ h(hΘ), where h(hΘ) =

maxt∈R+ h(t). Note that hΘ is independent of r and s.

Using Proposition 3.2 to Ir,s, it follows that

A(u) =
1
2

∫
Ωr

|∇u|2dx +
1
2

∫
Ωr

V(x)u2dx− β
∫

Ωr

F(u)dx and B(u) =
1
2∗

∫
Ωr

|u|2∗dx.

Hence, for almost every s ∈
[ 1

2 , 1
]
, there exists a bounded Palais–Smale sequence {un} satis-

fying
Ir,s (un)→ m̃r,s(Θ) and I ′r,s (un)

∣∣
Tun Sr,Θ

→ 0.

Next, we are devoted to proving compactness.

Lemma 7.2. If β ≤ 0 and the assumptions of Theorem 1.10 hold, then m̃r,s(Θ) < ζ
N S

N
2 , where

ζ = s−
2

2∗−2 .

Proof. Let Uε be defined by Uε(x) :=
(

ε
ε2+|x|2

) N−2
2 (up to a scalar factor, Uε is the bubble

centered in the origin, with concentration parameter ε > 0, defined in (1.3)). Let also φ ∈
C∞

c (Ωr) be a radial cut-off function with φ ≡ 1 in B1, φ ≡ 0 in Bc
2, and φ radially decreasing.

We define

uε(x) := φ(x)Uε(x), and vε(x) :=
√

Θ
uε(x)
∥uε∥2

.
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Notice that uε ∈ C∞
c (Ωr), and vε ∈ Sr,Θ. Let us recall the following useful estimates (see

[27, Lemma A.1]):

∥∇uε∥2
2 = K1 + O

(
εN−2

)
, (7.12)

∥uε∥2
2∗ =

{
K2 + O

(
εN) , if N ≥ 4,

K2 + O
(
ε2) , if N = 3,

(7.13)

∥uε∥2
2 =


ε2K3 + O

(
εN−2) , if N ≥ 5,

ωε2| log ε|+ O
(
ε2) , if N = 4,

ω
(∫ 2

0 φ(r)dr
)

ε + O
(
ε2) , if N = 3,

(7.14)

∥uε∥q
q = εN− N−2

2 q
(

K4 + O
(

ε(N−2)q−N
))

if N ≥ 4 and q ∈ (2, 2∗) , and if N = 3 and q ∈ (3, 6). (7.15)

as ε → 0. Since Uε is extremal for the Sobolev inequality, we have that K1
K2

= S. Therefore,
using 1

2 ≤ s ≤ 1, we have

Ir,s(tvε) ≤
t2

2

∫
Ωr

|∇vε|2dx +
t2

2

∫
Ωr

Vv2
ε dx− st2∗

2∗

∫
Ωr

|vε|2
∗
dx− αβtp1

∫
Ωr

|vε|p1 dx

=: h3(t).

Clearly, h3(t) > 0 for t > 0 small and h3(t) → −∞ as t → ∞, so h3(t) attains its maximum at
some tε > 0 with h′3(tε) = 0. Then, observing that the function

t 7→ t2

2

∫
Ωr

|∇vε|2dx +
t2

2

∫
Ωr

Vv2
ε dx− st2∗

2∗

∫
Ωr

|vε|2
∗
dx− αβtp1

∫
Ωr

|vε|p1 dx

is increasing on the interval of0,

[
−2∗αβ(p1 − 2)∥vε∥p1

p1

s(2∗ − 2)∥vε∥2∗
2∗

] 1
2∗−p1

 .

This fact combined with (7.12)-(7.15) implies that there exist δ1, δ2 > 0, independent of ε > 0,
such that

δ1 ≤ tε ≤ δ2.

Moreover, observing that the function

t 7→ t2

2

∫
Ωr

|∇vε|2dx− st2∗

2∗

∫
Ωr

|vε|2
∗
dx

is increasing on the interval of 0,
(
∥∇vε∥2

2

s∥vε∥2∗
2∗

) 1
2∗−2

 .
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Using (7.12)–(7.15) and the fact that K1
K2

= S, if N = 3, the same estimate holds eventually,
using ∥uε∥2

2∗ = K2 + O(ε2) instead of ∥uε∥2
2∗ = K2 + O(εN). Therefore, the maximum level is

h3(tε) ≤
t2
ε

2
∥∇vε∥2

2 +
t2
ε

2

∫
Ωr

Vv2
ε dx− st2∗

ε

2∗

∫
Ωr

|vε|2
∗
dx− αβtp1

ε

∫
Ωr

|vε|p1 dx

≤ 1

Ns
2

2∗−2

(
∥∇vε∥2

2

∥vε∥2
2∗

) 2∗
2∗−2

+

∫
Ωr

Vv2
ε dx

2

(
∥∇vε∥2

2

s∥vε∥2∗
2∗

) 2
2∗−2

− αβ∥vε∥p1
p1

(
∥∇vε∥2

2

s∥vε∥2∗
2∗

) p1
2∗−2

=
1

Ns
2

2∗−2

(
∥∇uε∥2

2

∥uε∥2
2∗

) N
2

+

∫
Ωr

Vv2
ε dx

2s
2

2∗−2

(
Θ

2−2∗
2 · ∥∇uε∥2

2

∥uε∥2∗
2∗
· ∥uε∥2∗

2

∥uε∥2
2

) 2
2∗−2

− αβ

s
p1

2∗−2

(
Θ

2−2∗
2 · ∥∇uε∥2

2

∥uε∥2∗
2∗
· ∥uε∥2∗

2

∥uε∥2
2

) p1
2∗−2

·Θ
p1
2
∥uε∥p1

p1

∥uε∥p1
2

≤ 1

Ns
2

2∗−2

[
K1 + O

(
εN−2)

K2 + O (εN)

] N
2

+
max
x∈Ωr

V(x)

2s
2

2∗−2
· ∥uε∥2

2 ·
∥∇uε∥

4
2∗−2
2

∥uε∥
2·2∗

2∗−2
2∗

− αβ

s
p1

2∗−2

· ∥uε∥p1
p1 ·
∥∇uε∥

2p1
2∗−2
2

∥uε∥
p1 ·2∗
2∗−2
2∗

=
1

Ns
2

2∗−2
S

N
2 + O

(
εN−2

)
+ C1∥uε∥2

2 + C2∥uε∥p1
p1

=
1

Ns
2

2∗−2
S

N
2

as ε → 0, where ζ = s−
2

2∗−2 and C1 ≥ 0, C2 ≥ 0 because of β ≤ 0. In the penultimate equal
sign, we used

1
N

[
K1 + O

(
εN−2)

K2 + O (εN)

] N
2

=
1
N

[
K1

K2
+ O

(
εN−2

)] N
2

=
S

N
2

N
+ O

(
εN−2

)
.

This completes the proof.

Lemma 7.3. For any Θ > 0, let r > rΘ, where rΘ is defined in Lemma 7.1. Then problem (7.3) has a
solution (λr,s, ur,s) for almost every s ∈

[ 1
2 , 1
]
. Moreover, ur,s ≥ 0 and Ir,s (ur,s) = m̃r,s(Θ).

Proof. Based on the previous analysis, we know that, for almost every s ∈
[ 1

2 , 1
]
, there exists a

bounded Palais–Smale sequence {un} satisfying

Ir,s (un)→ m̃r,s(Θ) and I ′r,s (un)
∣∣
Tun Sr,Θ

→ 0. (7.16)

Then

λn = − 1
Θ

(∫
Ωr

|∇un|2 dx +
∫

Ωr

V(x)u2
ndx− β

∫
Ωr

f (un)undx− s
∫

Ωr

|un|2
∗

dx
)

is bounded and
I ′r,s (un) + λnun → 0 in H−1 (Ωr) . (7.17)
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Moreover, since {un} is a bounded Palais–Smale sequence, there exist u0 ∈ H1
0 (Ωr) and λ ∈ R

such that, up to a subsequence,

λn → λ in R,

un ⇀ u0 in H1
0(Ωr),

un → u0 in Lt(Ωr) for all 2 ≤ t < 2∗, (7.18)

where u0 satisfies {
−∆u0 + Vu0 + λu0 = s |u0|2

∗−2 u0 + β f (u0) in Ωr,

u0 ∈ H1
0 (Ωr) ,

∫
Ωr
|u0|2 dx = Θ.

Using (7.17), we have

I ′r,s (un) u0 + λn

∫
Ωr

unu0dx → 0 as n→ ∞

and
I′r,s (un) un + λnΘ→ 0 as n→ ∞.

Note that

lim
n→∞

∫
Ωr

V(x)u2
ndx =

∫
Ωr

V(x)u2
0dx,

lim
n→∞

∫
Ωr

f (un)undx =
∫

Ωr

f (u0)u0dx,

lim
n→∞

∫
Ωr

f (un)u0dx =
∫

Ωr

f (u0)u0dx.

Now, we show that un → u0 in H1
0 (Ωr). Firstly, note that the weak limit u0 does not vanish

identically. Suppose by contradiction that u0 ≡ 0. Since {un} is bounded in H1(Ωr), up to a
subsequence we have that ∥∇un∥2

2 → ℓ ∈ R. Using ( f2), (7.17), (7.18), we have

⟨I ′r,s(un), un⟩ =
∫

Ωr

|∇un|2 dx +
∫

Ωr

Vu2
ndx− s

∫
Ωr

|un|2
∗

dx− β
∫

Ωr

f (un)undx

→ 0,

hence
s∥un∥2∗

2∗ = ∥∇un∥2
2 → ℓ

as well. Therefore, ℓ ≥ s−
2

2∗ Sℓ
2

2∗ , and we deduce that either ℓ = 0, or ℓ ≥ s−
2

2∗−2 S
N
2 . Let us

suppose at first that ℓ ≥ s−
2

2∗−2 S
N
2 . Since Ir,s(un)→ m̃r,s(Θ) < ζ

N S
N
2 , we have that

ζ

N
S

N
2 > m̃r,s(Θ)← Ir,s(un) + o(1)

=
1
2

∫
Ωr

|∇un|2 dx +
1
2

∫
Ωr

Vu2
ndx− s

2∗

∫
Ωr

|un|2
∗

dx− β
∫

Ωr

F(un)dx

=
ℓ

N
≥ s−

2
2∗−2

S
N
2

N
,

which is not possible. If instead ℓ = 0, we have ∥un∥2∗ → 0, ∥∇un∥2 → 0 and F(un) → 0.
But then Ir,s(un) → 0 ̸= m̃r,s(Θ), which gives again a contradiction. Thus, ur does not vanish
identically.
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Since {un,r} is a bounded minimization sequence for Ir(un,r)|Sr,Θ , there exists {λn} ⊂ R

such that for every φ ∈ H1(Ωr),∫
Ωr

∇un,r · ∇φ +
∫

Ωr

Vun,r φ + λnun,r φ− β f (un,r)φ− s |un,r|2
∗−2 un,r φ = o(1)∥φ∥ (7.19)

as n → ∞, by the Lagrange multipliers rule. Choosing φ = un,r, we deduce that {λn} is
bounded as well, and hence up to a subsequence λn → λr ∈ R. Moreover, passing to the limit
in (7.19) by weak convergence, we obtain

−∆ur + Vur + λrur = s|ur|2
∗−2ur + β f (ur), x ∈ Ωr.

Recalling that vn,r = un,r − ur ⇀ 0 in H1
0(Ωr), we know

∥∇un,r∥2
2 = ∥∇ur∥2

2 + ∥∇vn,r∥2
2 + o(1).

By the Brézis–Lieb lemma [12], we have

∥un,r∥2∗
2∗ = ∥ur∥2∗

2∗ + ∥vn,r∥2∗
2∗ + o(1).

Note that ∫
Ωr

Vv2
n,rdx → 0 as n→ ∞,

hence
s∥vn,r∥2∗

2∗ = ∥∇vn,r∥2
2 → ℓ

as well. Therefore, by the Sobolev inequality ℓ ≥ s−
2

2∗ Sℓ
2

2∗ , and we deduce that either ℓ = 0,
or ℓ ≥ s−

2
2∗−2 S

N
2 . Let us suppose at first that ℓ ≥ s−

2
2∗−2 S

N
2 . Since Ir,s(un) → m̃r,s(Θ) < ζ

N S
N
2 ,

we have that

ζ

N
S

N
2 > m̃r,s(Θ)← Ir,s(vn) + o(1)

=
1
2

∫
Ωr

|∇vn|2 dx +
1
2

∫
Ωr

Vv2
ndx− s

2∗

∫
Ωr

|vn|2
∗

dx− β
∫

Ωr

F(vn)dx

=
ℓ

N
≥ s−

2
2∗−2

S
N
2

N
,

which is not possible. If instead ℓ = 0, we have that un,r → ur in H1
0 (Ωr), so Ir(ur) > 0.

Similar to the proof of Lemma 3.3, we also obtain that ur,s ≥ 0.

In order to obtain a solution of (7.1), we also need to prove a uniform estimate for the
solutions of (7.3) established in Lemma 7.3. Similar to the proof of Lemma 3.4 and Lemma
3.5, we obtain the following lemmas.

Lemma 7.4. If (λ, u) ∈ R× Sr,Θ is a solution of (7.3) established in Lemma 7.3 for some r and s,
then ∫

Ωr

|∇u|2dx ≤ 4N
N(2∗ − 2)− 4

(
2∗ − 2

2
h(hΘ) + Θ

(
1

2N
∥Ṽ∥∞ +

2∗ − 2
4
∥V∥∞

))
,

where the constant h(hΘ) is defined in (iii) of Lemma 7.1 and is independent of r and s.

Lemma 7.5. For every Θ > 0, problem (7.3) has a solution (λr, ur) provided r > rΘ where rΘ is as in
Lemma 7.1. Moreover, ur ≥ 0 in Ωr.

Proof of Theorem 1.10. The proof is an immediate consequence of Lemmas 7.5 and 3.6.



42 J. Wang and Z. Y. Yin

8 Proof of Theorem 1.11

In this subsection, we assume β > 0 and the assumptions of Theorem 1.10 hold. Consider the
following equation 

−∆u + Vu + λu = |u|2∗−2u + β f (u), x ∈ Ωr,∫
Ωr

|u|2dx = Θ, u ∈ H1
0(Ωr), x ∈ Ωr.

(8.1)

For 1
2 ≤ s ≤ 1, we define the functional Jr,s : Sr,Θ → R by

Jr,s(u) =
1
2

∫
Ωr

|∇u|2dx +
1
2

∫
Ωr

Vu2dx− s
2∗

∫
Ωr

|u|2∗dx− sβ
∫

Ωr

F(u)dx. (8.2)

Note that if u ∈ Sr,Θ is a critical point of Jr,s, then there exists λ ∈ R such that (λ, u) is a
solution of the equation

−∆u + Vu + λu = s|u|2∗−2u + sβ f (u), x ∈ Ωr,∫
Ωr

|u|2dx = Θ, u ∈ H1
0(Ωr), x ∈ Ωr.

(8.3)

Lemma 8.1. For any Θ > 0, there exist r̂Θ > 0 and u0, u1 ∈ SrΘ,Θ such that

(i) For r > r̂Θ and s ∈
[ 1

2 , 1
]

we have Jr,s
(
u1) ≤ 0 and

Jr,s
(
u0) < Â−

2
2∗−2

(
1− ∥V−∥ N

2
S−1

) 2∗
2∗−2

2∗ − 2
2

(
1
2∗

) 2∗
2∗−2

 ,

where

Â = S−
2∗
2

[
4(2∗ − 2)

N(p1 − 2)(4− N(p1 − 2))
+

1
2∗

]
.

Moreover,

∥∥∇u0∥∥2
2 <


(

1− ∥V−∥ N
2

S−1
)

2∗ Â


2

2∗−2

,
∥∥∥∇u1

∥∥∥2

2
>


(

1− ∥V−∥ N
2

S−1
)

2∗ Â


2

2∗−2

.

(ii) If u ∈ Sr,Θ satisfies

∥∇u∥2
2 =


(

1− ∥V−∥ N
2

S−1
)

2∗ Â


2

2∗−2

,

then there holds

Jr,s(u) ≥ Â−
2

2∗−2

(
1− ∥V−∥ N

2
S−1

) 2∗
2∗−2

2∗ − 2
2

(
1
2∗

) 2∗
2∗−2

 .

(iii) Let
m̂r,s(Θ) = inf

γ∈Γ̂r,Θ

sup
t∈[0,1]

Jr,s(γ(t)),
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where
Γ̂r,Θ =

{
γ ∈ C ([0, 1], Sr,Θ) : γ(0) = u0, γ(1) = u1

}
.

Then

m̂r,s(Θ) ≥ Â−
2

2∗−2

(
1− ∥V−∥ N

2
S−1

) 2∗
2∗−2

2∗ − 2
2

(
1
2∗

) 2∗
2∗−2


and

m̂r,s(Θ) ≤ N(2∗ − 2)− 4
2

 θ
(

1 + ∥V∥ N
2

S−1
)

N(2∗ − 2)


N(2∗−2)

N(2∗−2)−4

(4 · 2∗)
4

N(2∗−2)−4 |Ω|
2(2∗−2)

N(2∗−2)−4

·Θ
N(2∗−2)−2·2∗

N(2∗−2)−4 ,

where θ is the principal eigenvalue of −∆ with Dirichlet boundary condition in Ω.

Proof. (i) By the Hölder inequality, we know∫
Ω
|v1(x)|2∗dx ≥ Θ

2∗
2 · |Ω| 2−2∗

2 . (8.4)

For x ∈ Ω 1
t

and t > 0, define vt(x) := t
N
2 v1(tx). Using (5.2), (8.4), (4.4) and 1

2 ≤ s ≤ 1, it holds

J 1
t ,s (vt) ≤

1
2

(
1 + ∥V∥ N

2
S−1

)
t2θΘ− β

2
α1t

N(p2−2)
2

∫
Ω
|v1|p2 dx− 1

2 · 2∗ t
N(2∗−2)

2 Θ
2∗
2 · |Ω| 2−2∗

2

≤ ĥ2(t), (8.5)

where

ĥ2(t) =
1
2

(
1 + ∥V∥ N

2
S−1

)
t2θΘ− 1

2 · 2∗ t
N(2∗−2)

2 Θ
2∗
2 · |Ω| 2−2∗

2 .

A simple computation shows that ĥ2(t0) = 0 for

t0 :=
[(

1 + ∥V∥ N
2

S−1
)

2∗θΘ
2−2∗

2 |Ω| 2
∗−2
2

] 2
N(2∗−2)−4

and ĥ2(t) < 0 for any t > t0, ĥ2(t) > 0 for any 0 < t < t0. Moreover, ĥ2(t) achieves its
maximum at

tΘ =

4 · 2∗
(

1 + ∥V∥ N
2

S−1
)

θ

N(2∗ − 2)
Θ

2−2∗
2 |Ω| 2

∗−2
2


2

N(2∗−2)−4

.

This implies
Jr,s(vt0) = J 1

t0
,s(vt0) ≤ ĥ2(t0) = 0 (8.6)

for any r ≥ 1
t0

and s ∈
[ 1

2 , 1
]
. There exists 0 < t1 < tΘ such that for any t ∈ [0, t1],

ĥ2(t) < A−
2

2∗−2

(
1− ∥V−∥ N

2
S−1

) 2∗
2∗−2

2∗ − 2
2

(
1
2∗

) 2∗
2∗−2

 . (8.7)
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On the other hand, it follows from (3.5) that

Jr,s(u) ≥
1
2

(
1− ∥V−∥ N

2
S−1

) ∫
Ωr

|∇u|2dx− 1

2∗ · S 2∗
2

(∫
Ωr

|∇u|2dx
) 2∗

2

− αβCN,p1 Θ
2p1−N(p1−2)

4

(∫
Ωr

|∇u|2dx
) N(p1−2)

4

.

Define

ĝ1(t) :=
1
2

(
1− ∥V−∥ N

2
S−1

)
t− 1

2∗ · S 2∗
2

t
2∗
2 − αβCN,p1 Θ

2p1−N(p1−2)
4 t

N(p1−2)
4

= t
N(p1−2)

4

[
1
2

(
1− ∥V−∥ N

2
S−1

)
t

4−N(p1−2)
4 − 1

2∗ · S 2∗
2

t
2·2∗−N(p1−2)

4

]
− αβCN,p1 Θ

2p1−N(p1−2)
4 t

N(p1−2)
4 .

In view of 2 < p < 2 + 2
N < q < 2∗ and the definition of Θ̃V , there exist 0 < l1 < lM < l2

such that ĝ1(t) < 0 for any 0 < t < l1 and t > l2, ĝ1(t) > 0 for l1 < t < l2 and ĝ1 (lM) =

maxt∈R+ ĝ1(t) > 0. Let

t2 =

(
αβCN,p1 S

2∗
2 N(p1 − 2)(4− N(p1 − 2))

4(2∗ − 2)

) 4
2·2∗−N(p1−2)

Θ
2p1−N(p1−2)
2·2∗−N(p1−2) .

Then by a direct calculation, we have g′′1 (t) ≤ 0 if and only if t ≥ t2. Hence

max
t∈R+

ĝ1(t) = max
t∈[t2,∞)

ĝ1(t).

Note that for any t ≥ t2,

g1(t) =
1
2

(
1− ∥V−∥ N

2
S−1

)
t− 1

2∗ · S 2∗
2

t
2∗
2 − αβCN,p1 Θ

2p1−N(p1−2)
4 t

N(p1−2)
4

=
1
2

(
1− ∥V−∥ N

2
S−1

)
t− αβCN,p1 Θ

2p1−N(p1−2)
4 · t

N(p1−2)
4 − 1

2∗ · S 2∗
2

t
2∗
2

=
1
2

(
1− ∥V−∥ N

2
S−1

)
t− 4(2∗ − 2)

S
2∗
2 N(p1 − 2)(4− N(p1 − 2))

· t
2·2∗−N(p1−2)

4
2 · t

N(p1−2)
4

− 1

2∗ · S 2∗
2

t
2∗
2

≥ 1
2

(
1− ∥V−∥ N

2
S−1

)
t− S−

2∗
2

[
4(2∗ − 2)

N(p1 − 2)(4− N(p1 − 2))
+

1
2∗

]
t

2∗
2

=: ĝ2(t). (8.8)

Now, we will determine the value of Θ̃V . In fact, ĝ1 (lM) = maxt∈R+ ĝ1(t) > 0 as long as
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ĝ2(t2) > 0, that is,

ĝ2(t2) =
1
2

(
1− ∥V−∥ N

2
S−1

)
t2 − S−

2∗
2

[
4(2∗ − 2)

N(p1 − 2)(4− N(p1 − 2))
+

1
2∗

]
t

2∗
2

2

=
1
2

(
1− ∥V−∥ N

2
S−1

)(αβCN,p1 S
2∗
2

Ap1

) 4
2·2∗−N(p1−2)

Θ
2p1−N(p1−2)
2·2∗−N(p1−2)

− S−
2∗
2

(
Ap1 +

1
2∗

)(
αβCN,p1 S

2∗
2

Ap1

) 2·2∗
2·2∗−N(p1−2)

Θ
2∗ [2p1−N(p1−2)]
2[2·2∗−N(p1−2)]

> 0,

where

Ap1 =
4(2∗ − 2)

N(p1 − 2)(4− N(p1 − 2))
.

Hence, we take

Θ̃V =

(
αβCN,p1 S

2∗
2

Ap1

)− 4
2p1−N(p1−2)

[
S

2∗
2

2 · 2∗
(

1− ∥V−∥ N
2

S−1
)
(2∗Ap1 + 1)

] 2[2·2∗−N(p1−2)]
(2∗−2)[2p1−N(p1−2)]

.

Let

Â = S−
2∗
2

[
4(2∗ − 2)

N(p1 − 2)(4− N(p1 − 2))
+

1
2∗

]
, tg =


(

1− ∥V−∥ N
2

S−1
)

2∗ Â


2

2∗−2

,

so that tg > t2 by the definition of Θ̃V , maxt∈[t2,∞) ĝ2(t) = ĝ2(tg) and

max
t∈R+

ĝ1(t) ≥ max
t∈[t2,∞)

ĝ2(t) = Â−
2

2∗−2

(
1− ∥V−∥ N

2
S−1

) 2∗
2∗−2

2∗ − 2
2

(
1
2∗

) 2∗
2∗−2

 .

Set r̄Θ = max
{ 1

t1
,
√

2θΘ
tg

}
, then v 1

r̄Θ
∈ Sr,Θ for any r > r̄Θ, and

∥∥∥∥∇v 1
r̄Θ

∥∥∥∥2

2
=

(
1

r̄Θ

)2

∥∇v1∥2
2 < tg =


(

1− ∥V−∥ N
2

S−1
)

2∗ Â


2

2∗−2

. (8.9)

Moreover,

Jr̄Θ,s

(
v 1

r̄Θ

)
≤ ĥ

(
1

r̄Θ

)
≤ ĥ (t1) . (8.10)

Let u0 = v 1
τ̄Θ

, u1 = vt0 and

r̃Θ = max
{

1
t0

, r̄Θ

}
.

Then the statement (i) holds by (8.6), (8.7), (8.9), (8.10).
(ii) holds by (8.8) and a direct calculation.
(iii) In view of Jr,s

(
u1) ≤ 0 for any γ ∈ Γr,Θ and the definition of t0, we have

∥∇γ(0)∥2
2 < tg < ∥∇γ(1)∥2

2.
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It then follows from (8.8) that

max
t∈[0,1]

Jr,s(γ(t)) ≥ g2
(
tg
)
= Â−

2
2∗−2

(
1− ∥V−∥ N

2
S−1

) 2∗
2∗−2

2∗ − 2
2

(
1
2∗

) 2∗
2∗−2


for any γ ∈ Γr,Θ, hence the first inequality in (iii) holds. We define a path γ : [0, 1]→ Sr,Θ by

γ(t) : Ωr → R, x 7→
(

τt0 + (1− τ)
1
r̃ Θ

) N
2

v1

((
τt0 + (1− τ)

1
r̃Θ

)
x
)

.

Then γ ∈ Γr,Θ, and the second inequality in (iii) follows from (8.5).

Using Proposition 3.2 to J̃r,s, it follows that

A(u) =
1
2

∫
Ωr

|∇u|2dx +
1
2

∫
Ωr

V(x)u2dx and B(u) =
1
2∗

∫
Ωr

|u|2∗dx + β
∫

Ωr

F(u)dx.

Hence, for almost every s ∈
[ 1

2 , 1
]
, there exists a bounded Palais–Smale sequence {un} satis-

fying
Jr,s (un)→ m̃r,s(Θ) and J ′r,s (un)

∣∣
Tun Sr,Θ

→ 0.

Similar to the proof of Lemmas 7.2 and 7.3, we have the following lemmas.

Lemma 8.2. If β > 0 and the assumptions of Theorem 1.11 hold, then m̃r,s(Θ) < ζ
N S

N
2 , where

ζ = s−
2

2∗−2 .

Lemma 8.3. Assume 0 < Θ < Θ̃V where Θ̃V is given in Theorem 1.11, let r > rΘ, where rΘ is defined
in Lemma 8.1. Then problem (8.3) has a solution (λr,s, ur,s) for almost every s ∈

[ 1
2 , 1
]
. Moreover,

ur,s ≥ 0 and Jr,s (ur,s) = m̃r,s(Θ).

In order to obtain a solution of (8.1), we also need to prove a uniform estimate for the
solutions of (8.3) established in Lemma 8.3.

Lemma 8.4. For fixed Θ > 0 the set of solutions u ∈ Sr,Θ of (8.3) is bounded uniformly in s and r.

Proof. Since u is a solution of (8.3), we have∫
Ωr

|∇u|2dx +
∫

Ωr

Vu2dx = s
∫

Ωr

|u|2∗dx + sβ
∫

Ωr

f (u)udx− λ
∫

Ωr

|u|2dx.

The Pohozaev identity implies

N − 2
2N

∫
Ωr

|∇u|2dx +
1

2N

∫
∂Ωr

|∇u|2(x · n)dσ +
1

2N

∫
Ωr

Ṽ(x)u2 +
1
2

∫
Ωr

Vu2dx

= −λ

2

∫
Ωr

|u|2dx +
s

2∗

∫
Ωr

|u|2∗dx + sβ
∫

Ωr

F(u)dx

where n denotes the outward unit normal vector on ∂Ωr. It then follows from β > 0 and ( f2)

that

1
N

∫
Ωr

|∇u|2dx− 1
2N

∫
∂Ωr

|∇u|2(x · n)dσ− 1
2N

∫
Ωr

(∇V · x)u2dx

≤ 2∗ − 2
2

(
1
2

∫
Ωr

|∇u|2dx +
1
2

∫
Ωr

Vu2dx− m̂r,s(Θ)

)
+ s

β(p2 − 2∗)
2

∫
Ωr

F(u)dx.
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Using Gagliardo–Nirenberg inequality, (3.5) and (iii) in Lemma 8.1, we have

2∗ − 2
2

m̂r,s(Θ) ≥ N(p2 − 2)− 4
4N

∫
Ωr

|∇u|2dx−Θ
(

1
2N
∥∇V · x∥∞ +

p2 − 2
4
∥V∥∞

)

+
sαβ(p2 − 2∗)

2
CN,p1 Θ

2p1−N(p1−2)
4

(∫
Ωr

|∇u|2dx
) N(p1−2)

4

.

Since 2 < p1 < 2 + 4
N , we can bound

∫
Ωr
|∇u|2dx uniformly in s and r.

Lemma 8.5. Assume 0 < Θ < Θ̃V , where Θ̃V is given in Theorem 1.11, and let r > r̃Θ, where r̃Θ is
defined in Lemma 8.1. Then equation (8.3) admits a solution (λr,Θ, ur,Θ) for every r > r̃Θ such that
ur,Θ > 0 in Ωr.

Proof. The proof of lemma is similar to the Lemma 7.5.

Proof of Theorem 1.11. The proof is an immediate consequence of Lemmas 8.5 and 3.6.

9 Mass critical case

9.1 Proof of Theorem 1.12

This subsection considers the case of p1 = 2 + 4
N , so we need to modify the proof of Theo-

rem 1.5.

Lemma 9.1. For 0 < Θ < Θ̃V where Θ̃V is defined in Theorem 1.12, there exist r̃Θ > 0 and
u0, u1 ∈ SrΘ,Θ such that

(i) For r > r̃Θ and s ∈
[ 1

2 , 1
]

we have Jr,s
(
u1) ≤ 0 and

Jr,s
(
u0) < (N(q− 2)− 4)

(
1− ∥V−∥ N

2
S−1 − 2αβCNΘ

2
N

) N(q−2)
N(q−2)−4

2[N(q− 2)]
N(q−2)

N(q−2)−4

 2q

CN,qΘ
2q−N(q−2)

4

 4
N(q−2)−4

.

Moreover,

∥∥∇u0∥∥2
2 <

[
2q

N(q− 2)CN,q

(
1− ∥V−∥ N

2
S−1 − 2αβCNΘ

2
N

)
Θ

q(N−2)−2N
4

] 4
N(q−2)−4

and ∥∥∥∇u1
∥∥∥2

2
>

[
2q

N(q− 2)CN,q

(
1− ∥V−∥ N

2
S−1 − 2αβCNΘ

2
N

)
Θ

q(N−2)−2N
4

] 4
N(q−2)−4

.

(ii) If u ∈ Sr,Θ satisfies

∥∇u∥2
2 =

[
2q

N(q− 2)CN,q

(
1− ∥V−∥ N

2
S−1 − 2αβCNΘ

2
N

)
Θ

q(N−2)−2N
4

] 4
N(q−2)−4

,

then there holds

Jr,s(u) ≥
(N(q− 2)− 4)

(
1− ∥V−∥ N

2
S−1 − 2αβCNΘ

2
N

) N(q−2)
N(q−2)−4

2[N(q− 2)]
N(q−2)

N(q−2)−4

 2q

CN,qΘ
2q−N(q−2)

4

 4
N(q−2)−4

.
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(iii) Let
mr,s(Θ) = inf

γ∈Γr,Θ
sup

t∈[0,1]
Jr,s(γ(t)),

where
Γr,Θ =

{
γ ∈ C ([0, 1], Sr,Θ) : γ(0) = u0, γ(1) = u1

}
.

Then

mr,s(Θ) ≥
(N(q− 2)− 4)

(
1− ∥V−∥ N

2
S−1 − 2αβCNΘ

2
N

) N(q−2)
N(q−2)−4

2[N(q− 2)]
N(q−2)

N(q−2)−4

 2q

CN,qΘ
2q−N(q−2)

4

 4
N(q−2)−4

and

mr,s(Θ) ≤ N(q− 2)− 4
2

 θ
(

1 + ∥V∥ N
2

S−1
)

N(q− 2)


N(q−2)

N(q−2)−4

(4q)
4

N(q−2)−4 |Ω|
2(q−2)

N(q−2)−4 Θ
N(q−2)−2q
N(q−2)−4 .

where θ is the principal eigenvalue of −∆ with Dirichlet boundary condition in Ω.

Proof. We only need to modify the proof of Lemma 5.1. There exists 0 < t1 < tΘ such that for
any t ∈ [0, t1],

h2(t) <
(N(q− 2)− 4)

(
1− ∥V−∥ N

2
S−1 − 2αβCNΘ

2
N

) N(q−2)
N(q−2)−4

2[N(q− 2)]
N(q−2)

N(q−2)−4

 2q

CN,qΘ
2q−N(q−2)

4

 4
N(q−2)−4

. (9.1)

On the other hand, it follows from (3.5), the Gagliardo–Nirenberg inequality and the Hölder
inequality that

Jr,s(u) =

[
1− ∥V−∥ N

2
S−1

2
− αβCNΘ

2
N

]
∥∇u∥2

2 −
CN,qΘ

2q−N(q−2)
4

q
∥∇u∥

N(q−2)
2

2 . (9.2)

Define

g1(t) :=

[
1− ∥V−∥ N

2
S−1

2
− αβCNΘ

2
N

]
t−

CN,qΘ
2q−N(q−2)

4

q
t

N(q−2)
4

and

tg =

[
2q

N(q− 2)CN,q

(
1− ∥V−∥ N

2
S−1 − 2αβCNΘ

2
N

)
Θ

q(N−2)−2N
4

] 4
N(q−2)−4

,

it is easy to see that g1 is increasing on (0, tg) and decreasing on (tg, ∞), and

g1(tg) =
(N(q− 2)− 4)

(
1− ∥V−∥ N

2
S−1 − 2αβCNΘ

2
N

) N(q−2)
N(q−2)−4

2[N(q− 2)]
N(q−2)

N(q−2)−4

 2q

CN,qΘ
2q−N(q−2)

4

 4
N(q−2)−4

.

Set r̄Θ = max
{ 1

t1
,
√

2θΘ
tg

}
, then v 1

r̄Θ
∈ Sr,Θ for any r > r̄Θ, and∥∥∥∥∇v 1

r̄Θ

∥∥∥∥2

2
=

(
1

r̄Θ

)2

∥∇v1∥2
2

< tg =

[
2q

N(q− 2)CN,q

(
1− ∥V−∥ N

2
S−1 − 2αβCNΘ

2
N

)
Θ

q(N−2)−2N
4

] 4
N(q−2)−4

. (9.3)
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Then the statement (i) holds by (5.5), (9.1), (5.9), (9.3).
(ii) holds by (9.2) and a direct calculation.
(iii) In view of Jr,s

(
u1) ≤ 0 for any γ ∈ Γr,Θ and the definition of t0, we have

∥∇γ(0)∥2
2 < tg < ∥∇γ(1)∥2

2.

It then follows from (9.2) that

max
t∈[0,1]

Jr,s(γ(t)) ≥ g1
(
tg
)

=
(N(q− 2)− 4)

(
1− ∥V−∥ N

2
S−1 − 2αβCNΘ

2
N

) N(q−2)
N(q−2)−4

2[N(q− 2)]
N(q−2)

N(q−2)−4

 2q

CN,qΘ
2q−N(q−2)

4

 4
N(q−2)−4

for any γ ∈ Γr,Θ, hence the first inequality in (iii) holds. We define a path γ : [0, 1]→ Sr,Θ by

γ(t) : Ωr → R, x 7→
(

τt0 + (1− τ)
1
r̃ Θ

) N
2

v1

((
τt0 + (1− τ)

1
r̃Θ

)
x
)

.

Then γ ∈ Γr,Θ, and the second inequality in (iii) follows from (5.4).

Lemma 9.2. For fixed Θ > 0 the set of solutions u ∈ Sr,Θ of (5.1) is bounded uniformly in s and r.

Proof. We only need to modify the proof of Lemma 5.3. Using the Gagliardo–Nirenberg in-
equality, (3.5) and (iii) in Lemma 5.1, we have

q− 2
2

mr,s(Θ) ≥
[

N(p2 − 2)− 4
4N

− sαβ(q− p2)

2
CNΘ

2
N

] ∫
Ωr

|∇u|2dx

−Θ
(

1
2N
∥∇V · x∥∞ +

p2 − 2
4
∥V∥∞

)
.

Since 0 < Θ < Θ̃V , we can bound
∫

Ωr
|∇u|2dx uniformly in s and r.

Proof of Theorem 1.12. The proof is an immediate consequence of Lemmas 5.4 and 3.6.

9.2 Proof of Theorem 1.13

Firstly, we modify the proof of Lemma 3.1. Using (3.3), (3.4), (3.5) and 1
2 ≤ s ≤ 1, it holds

I 1
t ,s (vt) ≤

1
2

(
1 + ∥V∥ N

2
S−1 − 2αβCNΘ

2
N

)
t2θΘ− 1

2q
t

N(q−2)
2 Θ

q
2 · |Ω|

2−q
2

=: h(t).

Note that since 2+ 4
N < q < 2∗ and β ≤ 0, there exist 0 < TΘ < t0 such that h(t0) = 0, h(t) < 0

for any t > t0, h(t) > 0 for any 0 < t < t0 and h(TΘ) = maxt∈R+ h(t).

Lemma 9.3. Let (λr,Θ, ur,Θ) be the solution of (1.1) from Lemma 3.5. If ∥Ṽ+∥ N
2
< 2S, then there

exists Θ̄ > 0 such that
lim inf

r→∞
λr,Θ > 0 for 0 < Θ < Θ̄.
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Proof. We only need to modify the proof of Lemma 3.7. It follows from (3.5), (3.27), (3.28),
(3.29), ( f2) and 2 + 4

N < q < 2∗ that(
1
q
− 1

2

)
λΘ

∫
RN

u2
Θdx ≤

[
(N − 2)q− 2N

2Nq
− β(q− p2)αCN

q
Θ

2
N

] ∫
RN
|∇uΘ|2 dx

+
∥Ṽ∥∞

2N
Θ +

(q− 2)∥V∥∞

2q
Θ

→ −∞ as Θ→ 0,

since 0 < Θ < Θ̂V .

Proof of Theorem 1.13. The proof is an immediate consequence of Lemmas 3.5, 3.6 and 9.3.

9.3 Proof of Theorem 1.14

Similarly, we only need to modify the proof of Theorem 1.4. Since β > 0, it follows from the
Gagliardo–Nirenberg inequality and the Hölder inequality that

Ir(u) =
1
2

∫
Ωr

|∇u|2dx +
1
2

∫
Ωr

V(x)u2dx− N
2N + 4

∫
Ωr

|u|2+ 4
N dx− β

∫
Ωr

F(u)dx

≥ 1
2

(
1− ∥V−∥ N

2
S−1 − NCNΘ

2
N

N + 2

) ∫
Ωr

|∇u|2dx

− αβCN,p1 Θ
2p1−N(p1−2)

4

(∫
Ωr

|∇u|2dx
) N(p1−2)

4

= h1(t),

where

h1(t) :=
1
2

(
1− ∥V−∥ N

2
S−1 − NCNΘ

2
N

N + 2

)
t2 − αβCN,p1 Θ

2p1−N(p1−2)
4 t

N(p1−2)
2 .

In view of 2 < p1 < 2 + 4
N , there exists TΘ > 0 such that h1(t) < 0 for 0 < t < TΘ and

h1(t) > 0 for t > TΘ.

Proof of Theorem 1.14. The proof is a direct consequence of Lemma 4.1 and Lemma 3.6.

10 Final comments

Some similar result (Theorems 1.3, 1.4, 1.5, but there are subtle changes in the assumptions)
can be proved for the following class of problem−∆u + V(x)u + λu = w(u) + β|u|p−2u, x ∈ Ω,∫

Ω
|u|2dx = Θ, u ∈ H1

0(Ω), x ∈ Ω,

where Ω ⊂ RN is either all of RN or a bounded smooth convex domain, N ≥ 3, 2 < p < 2+ 4
N ,

the mass Θ > 0 and the parameter β ∈ R are prescribed. Nonlinearity w satisfies:

(W1) w ∈ C1(R, R) and w is odd.

(W2) There exists some (p1, p2) ∈ R2
+ satisfying 2 + 4

N < p2 ≤ p1 < 2∗ such that

p2W(τ) ≤ w(τ)τ ≤ p1W(τ) with W(τ) =
∫ τ

0
w(t)dt.



Normalized solutions for Schrödinger equations with potential and general nonlinearities 51

Acknowledgements

The authors would like to thank the anonymous referee for his/her useful comments and sug-
gestions which help to improve the presentation of the paper greatly. Z. Y. Yin was supported
by National Natural Science Foundation of China (No. 12171493).

References

[1] T. Akahori, S. Ibrahim, H. Kikuchi, H. Nawa, Existence of a ground state and blow-up
problem for a nonlinear Schrödinger equation with critical growth, Differential Integral
Equations 25(2012), No. 3, 383–402. https://doi.org/10.57262/die/1356012740

[2] T. Akahori, S. Ibrahim, H. Kikuchi, H. Nawa, Existence of a ground state and scattering
for a nonlinear Schrödinger equation with critical growth, Sel. Math. New Ser. 19(2013),
No. 2, 545–609. https://doi.org/10.1007/s00029-012-0103-5

[3] T. Aubin, Problémes isopérimétriques et espaces de Sobolev (in French), J. Differential
Geometry 11(1976), No. 4, 573–598. https://doi.org/10.4310/jdg/1214433725

[4] T. Bartsch, S. Qi, W. Zou, Normalized solutions to Schödinger equations with poten-
tial and inhomogeneous nonlinearities on large convex domains, Math. Ann., published
online on 30 April 2024, 47 pp. https://doi.org/10.1007/s00208-024-02857-1

[5] T. Bartsch, N. Soave, A natural constraint approach to normalized solutions of nonlinear
Schrödinger equations and systems, J. Funct. Anal. 272(2017), No. 12, 4998–5037. https:
//doi.org/10.1016/j.jfa.2017.01.025

[6] T. Bartsch, N. Soave, Multiple normalized solutions for a competing system of
Schrödinger equations, Calc. Var. Partial Differential Equations 58(2019), 1–24. https:
//doi.org/10.1007/s00526-018-1476-x

[7] J. Bellazzini, L. Jeanjean, T. Luo, Existence and instability of standing waves with
prescribed norm for a class of Schrödinger–Poisson equations, Proc. Lond. Math. Soc.
107(2013), No. 2, 303–339. https://doi.org/10.1112/plms/pds072

[8] B. Bieganowski, J. Mederski, Normalized ground states of the nonlinear Schrödinger
equation with at least mass critical growth, J. Funct. Anal. 280(2021), No. 11, 108989.
https://doi.org/10.1016/j.jfa.2021.108989

[9] P. B. Blakie, W. X. Wang, Bose Einstein condensation in an optical lattice, Phys. Rev. A.
76(2007), No. 5, 053620. https://doi.org/10.1103/physreva.76.053620

[10] D. Bonheure, J. Casteras, T. Gou, L. Jeanjean, Normalized solutions to the mixed dis-
persion nonlinear Schrödinger equation in the mass critical and supercritical regime,
Trans. Amer. Math. Soc. 372(2019), No. 3, 2167–2212. https://doi.org/10.1090/tran/
7769

[11] J. Borthwick, X. Chang, L. Jeanjean, N. Soave, Bounded Palais–Smale sequences
with Morse type information for some constrained functionals, Trans. Amer. Math. Soc.
377(2024), No. 6, 4481–4517. https://doi.org/10.1090/tran/9145

https://doi.org/10.57262/die/1356012740
https://doi.org/10.1007/s00029-012-0103-5
https://doi.org/10.4310/jdg/1214433725
https://doi.org/10.1007/s00208-024-02857-1
https://doi.org/10.1016/j.jfa.2017.01.025
https://doi.org/10.1016/j.jfa.2017.01.025
https://doi.org/10.1007/s00526-018-1476-x
https://doi.org/10.1007/s00526-018-1476-x
https://doi.org/10.1112/plms/pds072
https://doi.org/10.1016/j.jfa.2021.108989
https://doi.org/10.1103/physreva.76.053620
https://doi.org/10.1090/tran/7769
https://doi.org/10.1090/tran/7769
https://doi.org/10.1090/tran/9145


52 J. Wang and Z. Y. Yin

[12] H. Brézis, E. A. Lieb, A relation between pointwise convergence of functions and con-
vergence of functionals, Proc. Am. Math. Soc. 88(1983), No. 3, 486–490. https://doi.org/
10.1090/s0002-9939-1983-0699419-3

[13] X. Chang, L. Jeanjean, N. Soave, Normalized solutions of L2-supercritical NLS equa-
tions on compact metric graphs, Ann. Inst. H. Poincaré C Anal. Non Linéaire 41(2024), No.
4, 933–959. https://doi.org/10.4171/aihpc/88

[14] Y. Ding, X. Zhong, Normalized solution to the Schrödinger equation with potential and
general nonlinear term: mass super-critical case, J. Differential Equations 334(2022), 194–
215. https://doi.org/10.1016/j.jde.2022.06.013

[15] S. Dovetta, Existence of infinitely many stationary solutions of the L2-subcritical and
critical NLSE on compact metric graphs, J. Differential Equations 264(2018), No. 7, 4806–
4821. https://doi.org/10.1016/j.jde.2017.12.025
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