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Abstract. In the present paper, we study the nonexistence of nontrivial weak solutions
to a class of fractional p-Laplacian equation in two cases which are sp > N and sp < N.
In each of these cases, by using fractional Laplacian theory and inequality techniques,
we obtain concrete range of parameter for which nontrivial weak solution of the prob-
lem does not exist. Our work complements the known nonexistence results in this
direction.
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1 Introduction

In this paper, we investigate the following fractional p-Laplacian equation of the type{
(−∆)s

pu + λV(x)|u|q−2u = m(x)|u|r−2u, in Ω,

u = 0, in RN \ Ω,
(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary, s ∈ (0, 1), p, q, r are positive
numbers satisfying 1 < p < r < q < ∞ or 1 < q < r < p < ∞, m, V ∈ L1(Ω) are positive
functions and λ is a positive parameter.

The fractional p-Laplacian operator is defined as

(−∆)s
pu(x) = 2 lim

ϵ↘0

∫
RN\Bϵ(x)

|u(x)− u(y)|p−2(u(x)− u(y))
|x − y|N+sp dy, x ∈ RN ,

where Bϵ(x) = {y ∈ RN : |x − y| < ϵ}.
In recent years, many papers have been devoted to the study of the fractional p-Laplacian

equations due to their interesting applications, such as game theory, image processing, op-
timization and so on (see [3–5]). In particular, the existence, nonexistence, multiplicity and
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some other properties of solutions to the following type of fractional p-Laplacian equation
where sp < N {

(−∆)s
pu + V(x)|u|p−2u = f (x, u), in Ω,

u = 0, in RN \ Ω,
(1.2)

have been widely studied by many scholars (see [1,2,6,8,9,12–16] and the references therein).
For instance, Goyal and Sreenadh [6] obtained some results on the existence and nonexistence
of solutions for the following equation with respect to the parameter λ{

(−∆)s
pu − λV(x)|u|p−2u = m(x)|u|r−2u, in Ω,

u = 0, in RN \ Ω,
(1.3)

where sp < N and 1 < r < p or p < r < p∗s = Np
N−sp .

Wu and Chen [15] studied the following equation

(−∆)s
pu + V(x)|u|p−2u = |u|r−2u + λ|u|q−2u, in RN , (1.4)

for the case sp < N and 1 < q < p < r. They deduced some existence results of nontrivial
solution for some range of λ.

However, as far as we know, in the case sp > N, there have been rarely any existence or
nonexistence results for problem (1.2). Inspired by the above mentioned papers, our purpose
is to establish some results on the nonexistence of nontrivial weak solution for the problem
(1.1) in both cases sp > N and sp < N under the assumptions 1 < p < r < q < ∞ or
1 < q < r < p < ∞. More precisely, we aim to obtain concrete range of parameter for which
nontrivial weak solution of the problem does not exist in the case sp > N and the case sp < N,
respectively.

The rest of our paper is organized as follows. In Section 2, we will introduce some neces-
sary lemmas and properties, which will be used in the sequel. In Section 3, we derive some-
what sharp nonexistence conditions of nontrivial solutions for (1.1) in both cases: sp > N and
sp < N.

2 Preliminaries

To state our results, we introduce some notations. Let s ∈ (0, 1) and 1 < p < ∞ be real
numbers. The fractional Sobolev space Ws,p(RN) is defined as follows:

Ws,p(RN) := {u ∈ Lp(RN) : [u]s,p < ∞}

equipped with the norm

∥u∥s,p :=
(
∥u∥p

Lp(RN)
+ [u]ps,p

)1/p
,

where

[u]s,p =
( ∫

R2N

|u(x)− u(y)|p
|x − y|N+ps dxdy

)1/p

is the Gagliardo seminorm of a measurable function u : RN → R.
Let Ω be a bounded domain in RN with smooth boundary ∂Ω. We shall work on the space

Ws,p
0 (Ω) :=

{
u ∈ Ws,p(RN) : u = 0 a.e. in RN \ Ω

}
,

which can be equivalently renormed by [u]s,p.
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Lemma 2.1 ([10]). Let Ω ⊂ RN be bounded and open, sp > N and s ∈ (0, 1). Then there is a
constant CM > 0 such that for all u ∈ Ws,p

0 (Ω),

|u(x)− u(y)| ≤ CM|x − y|β[u]s,p, x, y ∈ RN ,

where β = sp−N
p .

Lemma 2.2 ([4]). Let Ω ⊂ RN be bounded and open, s ∈ (0, 1), 1 < p < ∞ with sp < N. Then,
there exists a constant CH > 0 such that

∥u∥p
Lp∗s (RN)

≤ CH [u]
p
s,p, u ∈ Ws,p

0 (Ω),

where p∗s = Np
N−sp .

Lemma 2.3 ([4]). Let Ω ⊂ RN be an extension domain for Ws,p with no external cusps and let
p ∈ [1,+∞), s ∈ (0, 1) be such that sp > N. Then, there exists C > 0, depending on N, s, p and Ω,
such that

∥u∥C0,α(Ω) ≤ C
(
∥u∥p

Lp(Ω)
+
∫

Ω

∫
Ω

|u(x)− u(y)|p
|x − y|N+ps dxdy

) 1
p
,

for any u ∈ Lp(Ω), with α = (sp − N)/p.

Lemma 2.4 ([7]). Let s ∈ (0, 1) and 1 < p < ∞ be such that sp < N. Assume that Ω ⊂ RN

is a (bounded) uniform domain with a (locally) (s, p)-uniformly fat boundary. Then Ω admits an
(s, p)-Hardy inequality, that is, there is a constant CK > 0 such that∫

Ω

|u(x)|p
d(x, ∂Ω)sp dx ≤ CK[u]

p
s,p, u ∈ Ws,p

0 (Ω),

where d(x, ∂Ω) = inf{|x − y| : y ∈ ∂Ω}.

Lemma 2.5 ([11]). Let M > 0, L > 0, p > 0, q > 0 and r > 0 be given. If

(i) 1 < p < r < q;

or

(ii) 1 < q < r < p,

then for each x ≥ 0,

Mxr − Lxq ≤ M(q − r)
q − p

(
(r − p)M
(q − p)L

) r−p
q−r

xp

holds.

Definition 2.6. We say that u ∈ Ws,p
0 (Ω) is a weak solution of (1.1) if

∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))
|x − y|N+ps dxdy

+ λ
∫

Ω
V(x)|u(x)|q−2u(x)v(x)dx =

∫
Ω

m(x)|u(x)|r−2u(x)v(x)dx, (2.1)

for all v ∈ Ws,p
0 (Ω).
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3 Main results

In this section, we suppose that Ω ⊂ RN is a bounded domain satisfying the regularities
required by the fractional Sobolev inequalities given by Lemmas 2.1–2.4.

3.1 The case sp > N

Theorem 3.1. Suppose that sp > N and m
(m

V

) r−p
q−r ∈ L1(Ω). If

λ >
r − p
q − p

(
Cp

MRsp−N
Ω

q − r
q − p

) q−r
r−p
[∫

Ω
m(x)

(
m(x)
V(x)

) r−p
q−r

dx

] q−r
r−p

, (3.1)

then problem (1.1) has no nontrivial weak solution u ∈ Ws,p
0 (Ω), where CM is given in Lemma 2.1

and RΩ = max{d(x, ∂Ω) : x ∈ Ω}.

Proof. Suppose on the contrary that problem (1.1) has a nontrivial weak solution u ∈ Ws,p
0 (Ω).

Taking v = u in (2.1) and from Lemma 2.5, we have∫
R2N

|u(x)− u(y)|p
|x − y|N+ps dxdy

=
∫

Ω

[
m(x)|u(x)|r−2u(x)− λV(x)|u(x)|q−2u(x)

]
u(x)dx

≤
∫

Ω

[
m(x)|u(x)|r − λV(x)|u(x)|q

]
dx

≤
∫

Ω

q − r
q − p

(
r − p
q − p

) r−p
q−r

m(x)
(

m(x)
λV(x)

) r−p
q−r

|u(x)|pdx,

i.e.,

[u]ps,p ≤
∫

Ω

q − r
q − p

(
r − p
q − p

) r−p
q−r

m(x)
(

m(x)
λV(x)

) r−p
q−r

|u(x)|pdx. (3.2)

By sp > N and Lemma 2.3, we get u is continuous in RN , in particular in Ω. Then there is
some ξ ∈ Ω such that

|u(ξ)| = max
{
|u(x)| : x ∈ RN

}
> 0.

From Lemma 2.1, there is a constant CM such that

|u(x)− u(y)| ≤ CM|x − y|
sp−N

p [u]s,p, x, y ∈ RN .

Taking x = ξ in the above inequality, we obtain

|u(ξ)| ≤ CM|ξ − y|
sp−N

p [u]s,p, y ∈ ∂Ω,

i.e.,

|u(ξ)| ≤ CMR
sp−N

p
Ω [u]s,p. (3.3)

Combining (3.2) with (3.3), we obtain

|u(ξ)| ≤ CMR
sp−N

p
Ω

(∫
Ω

q − r
q − p

(
r − p
q − p

) r−p
q−r

m(x)
(

m(x)
λV(x)

) r−p
q−r

|u(x)|pdx

) 1
p

≤ CMR
sp−N

p
Ω

(∫
Ω

q − r
q − p

(
r − p
q − p

) r−p
q−r

m(x)
(

m(x)
λV(x)

) r−p
q−r

dx

) 1
p

|u(ξ)|,
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which yields

1 ≤ CMR
sp−N

p
Ω

(∫
Ω

q − r
q − p

(
r − p
q − p

) r−p
q−r

m(x)
(

m(x)
λV(x)

) r−p
q−r

dx

) 1
p

.

Thus

λ
p−r
q−r

q − r
q − p

(
r − p
q − p

) r−p
q−r ∫

Ω
m(x)

(
m(x)
V(x)

) r−p
q−r

dx ≥ 1

Cp
MRsp−N

Ω

,

which implies that

λ
p−r
q−r ≥ 1

Cp
MRsp−N

Ω
q−r
q−p

(
r−p
q−p

) r−p
q−r ∫

Ω m(x)
(

m(x)
V(x)

) r−p
q−r dx

.

Hence, from p−r
q−r < 0 we obtain

λ ≤ r − p
q − p

(
Cp

MRsp−N
Ω

q − r
q − p

) q−r
r−p
[ ∫

Ω
m(x)

(m(x)
V(x)

) r−p
q−r

dx
] q−r

r−p
, (3.4)

which contradicts to (3.1). This completes the proof.

3.2 The case sp < N

Theorem 3.2. Suppose that sp < N, m
(m

V

) r−p
q−r ∈ Lµ(Ω) and N

sp < µ < ∞. Assume that

λ >
r − p
q − p

(
C

1− N
µsp

K C
N

µsp
H R

sp− N
µ

Ω
q − r
q − p

) q−r
r−p
[∫

Ω
m(x)

(
m(x)
V(x)

) r−p
q−r

dx

] q−r
r−p

, (3.5)

then problem (1.1) has no nontrivial weak solution u ∈ Ws,p
0 (Ω), where CH and CK are given in

Lemmas 2.2 and 2.4, and RΩ = max{d(x, ∂Ω) : x ∈ Ω}.

Proof. Suppose on the contrary that problem (1.1) has a nontrivial weak solution u ∈ Ws,p
0 (Ω).

From the proof of Theorem 3.1, we have (3.2) holds. Let η = 1
µ−1

(
µ − N

sp

)
, θ = ηp + (1 − η)p∗s

where p∗s = Np
N−sp . By a straightforward computation, we have 0 < η < 1, θ = pν, where

1
µ + 1

ν = 1. On the other hand, we get

1
Rηsp

Ω

∫
Ω
|u(x)|θdx ≤

∫
Ω

|u(x)|θ
d(x, ∂Ω)ηsp dx, (3.6)
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and by Hölder’s inequality, Lemma 2.2, Lemma 2.4 and (3.2), we obtain∫
Ω

|u(x)|θ
d(x, ∂Ω)ηsp dx

=
∫

Ω

|u(x)|ηp|u(x)|(1−η)p∗s

d(x, ∂Ω)ηsp dx

≤
[∫

Ω

|u(x)|p
d(x, ∂Ω)sp dx

]η [∫
Ω
|u(x)|p∗s dx

]1−η

≤ Cη
K[u]

pη
s,pC

(1−η)p∗s
p

H [u](1−η)p∗s
s,p

= C[u]pη+(1−η)p∗s
s,p

= C[u]
p pη+(1−η)p∗s

p
s,p

= C[u]
p θ

p
s,p

≤ C

(∫
Ω

q − r
q − p

(
r − p
q − p

) r−p
q−r

m(x)
(

m(x)
λV(x)

) r−p
q−r

|u(x)|pdx

) θ
p

= C

(∫
Ω

q − r
q − p

(
r − p
q − p

) r−p
q−r

m(x)
(

m(x)
λV(x)

) r−p
q−r

|u(x)|pdx

)ν

≤ C

∫
Ω

[
q − r
q − p

(
r − p
q − p

) r−p
q−r

m(x)
(

m(x)
λV(x)

) r−p
q−r
]µ

dx

 ν
µ ∫

Ω
|u(x)|θdx, (3.7)

where C = Cη
KC

(1−η)p∗s
p

H . Thus, by (11) and (12), we have

1
Rηsp

Ω
≤ C

∫
Ω

[
q − r
q − p

(
r − p
q − p

) r−p
q−r

m(x)
(

m(x)
λV(x)

) r−p
q−r
]µ

dx

 ν
µ

.

Accordingly, ∫
Ω

[
q − r
q − p

(
r − p
q − p

) r−p
q−r

m(x)
(

m(x)
λV(x)

) r−p
q−r
]µ

dx ≥ 1

C
µ
ν Rµsp−N

Ω

. (3.8)

Therefore,

λ
µ

p−r
q−r

[
q − r
q − p

(
r − p
q − p

) r−p
q−r
]µ [∫

Ω
m(x)

(
m(x)
V(x)

) r−p
q−r
]µ

≥ 1

C
µ
ν Rµsp−N

Ω

. (3.9)

Hence, from p−r
q−r < 0 we obtain

λ ≤ r − p
q − p

(
C

1
ν R

sp− N
µ

Ω
q − r
q − p

) q−r
r−p
[∫

Ω
m(x)

(
m(x)
V(x)

) r−p
q−r

dx

] q−r
r−p

. (3.10)

Combining the definition of C and the inequality (3.10), we have

λ ≤ r − p
q − p

(
C

1− N
µsp

K C
N

µsp
H R

sp− N
µ

Ω
q − r
q − p

) q−r
r−p
[∫

Ω
m(x)

(
m(x)
V(x)

) r−p
q−r

dx

] q−r
r−p

,

which contradicts to (3.5). This completes the proof.
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