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Abstract. This note is a reaction on a recently published sufficient condition for oscilla-
tion of all solutions of a neutral delay differential equation. It is shown by a counterex-
ample that the result is not correct and the problem is explained in details. Several,
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lation of all their solutions are proved. Applications are given for illustration.
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1 Introduction

Oscillation theory for first order linear neutral differential equations with delay,

[x(t) + P(t) x(t − τ)]′ + Q(t) x(t − σ) = 0, t ≥ t0,

has attracted researchers’ interest for decades (see, e.g., [1–3] and references therein).
Recently, a sufficient condition was proved in [5] for oscillation of all solutions of the

neutral delay differential equation

[x(t)− x(τ(t))]′ + Q(t) x(σ(t)) = 0, t ≥ t0 (1.1)

for some t0 ∈ R, where Q ∈ C([t0, ∞), R+), R+ = [0, ∞), and τ, σ ∈ Tt0 with

Tξ =

{
f ∈ C([ξ, ∞), R)

∣∣∣∣ f is strictly increasing;
f (t) < t ∀t ≥ ξ; limt→∞ f (t) = ∞

}
. (1.2)
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However, as we shall show in this paper, the proof is not correct and the statement does not
hold. It is worth to mention that the limit property of functions from Tξ was not explicitly
assumed in [5], but it was applied in the proof.

In this paper, we prove a similar statement by a cautious use of a mathematical induction.
We give a short remark explaining the problem of the original proof from [5]. Next, we
generalize the result for the case of a convex combination of multiple discrete delays. We
also consider neutral differential equations with distributed and mixed delays, and we prove
analogous statements. More precisely, in addition to equation (1.1), the following equations
are investigated in this paper:[

x(t)−
n

∑
i=1

λi x(τi(t))

]′
+

m

∑
j=1

Qj(t) x(σj(t)) = 0, t ≥ t0, (1.3)

x(t)−

∫ τ(t)
τ(t) λ(s)x(s) ds∫ τ(t)

τ(t) λ(s) ds

′

+ Q(t)
∫ σ(t)

σ(t)
R(s)x(s) ds = 0, t ≥ t0, (1.4)

and[
x(t)−

(
n1

∑
i=1

λi(t)x(τi(t)) +
n2

∑
i=1

∫ τi(t)

τi(t)
ϑi(s)x(s) ds

)]′
+

m1

∑
j=1

Qj(t)x(σj(t)) +
m2

∑
j=1

Sj(t)
∫ σj(t)

σj(t)
Rj(s)x(s) ds = 0, t ≥ t0 (1.5)

with appropriate parameters (see Theorems 3.7, 3.9, and 3.11 below).
The paper is organized as follows. In the next section, we conclude preliminary results

and introduce an auxiliary function. Section 3 is devoted to the main results of this paper
– sufficient conditions for oscillation of all solutions of various classes of neutral differential
equations with delays. In the final section, applications to equations with particular types of
delays, and concrete examples are given for illustration.

Throughout the paper, we denote by N (N0) the set of all positive (nonnegative) integers.

2 Preliminaries

In this section, we introduce some notation and prove auxiliary results.
Let us fix ξ ∈ R and consider τ ∈ Tξ . Analogously to the iterations of function τ: τk =

τ ◦ τk−1, k ∈ N, τ0 = id, we denote τ−k = τ−1 ◦ τ−(k−1), k ∈ N the iterations of the inverse
function τ−1 : [τ(ξ), ∞) → [ξ, ∞). Then the following result holds.

Lemma 2.1. Let ξ ∈ R and τ ∈ Tξ . For any ζ ∈ [τ(ξ), ∞), the sequence {τ−k(ζ)}∞
k=1 is strictly

increasing to ∞.

Proof. Let ζ ∈ [τ(ξ), ∞) be arbitrary and fixed. Then, τ(ζ) < ζ implies ζ < τ−1(ζ), which
yields τ−1(ζ) < τ−2(ζ), etc. So, by induction, one can see that {τ−k(ζ)}∞

k=1 is a strictly
increasing sequence. Now, suppose by contrary that limk→∞ τ−k(ζ) = C < ∞. Then,

C = lim
k→∞

τ−k(ζ) = lim
k→∞

τ−1(τ−(k−1)(ζ)) = τ−1
(

lim
k→∞

τ−(k−1)(ζ)

)
= τ−1(C)

is a contradiction, and the proof is complete.
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For any ζ ∈ [τ(ξ), ∞), we define a function Nτ
ζ : [ζ, ∞) → N such that for any t ∈ [ζ, ∞),

Nτ
ζ (t) satisfies

τ−(Nτ
ζ (t)−1)(ζ) ≤ t < τ−Nτ

ζ (t)(ζ). (2.1)

Due to Lemma 2.1, function Nτ
ζ is well defined. Note that

Nτ
ζ ([τ

−k(ζ), τ−(k+1)(ζ))) = k + 1 (2.2)

for each k ∈ N0. Then, it is easy to see that Nτ
ζ in nondecreasing on [ζ, ∞) and unbounded

from above. Another important property of Nτ
ζ is proved in the next lemma.

Lemma 2.2. Let ξ ∈ R, τ ∈ Tξ , α1 ∈ [ξ, ∞), α2 = τ−k(α1) for some k ∈ N0. Then

Nτ
α1
(t) = Nτ

α2
(t) + k, t ≥ α2.

Proof. For any t ≥ α2,

τ−(Nτ
α2
(t)+k−1)(α1) = τ−(Nτ

α2
(t)+k−1)(τk(α2))

= τ−(Nτ
α2
(t)−1)(α2) ≤ t < τ−Nτ

α2
(t)(α2)

= τ−Nτ
α2
(t)(τ−k(α1)) = τ−(Nτ

α2
(t)+k)(α1).

But we know that for any t ≥ α2 (even for any t ≥ α1), there is a unique κ ∈ N satisfying
τ−(κ−1)(α1) ≤ t < τ−κ(α1), and it is given by κ = Nτ

α1
(t). Therefore, Nτ

α1
(t) = Nτ

α2
(t) + k.

We will investigate solutions of equation (1.1) in the sense of the following definitions.

Definition 2.3. Let t0 ∈ R and Q ∈ C([t0, ∞), R+), τ, σ ∈ Tt0 , φ ∈ C([min{τ(t0), σ(t0)}, t0], R)

be given functions. We say that

x ∈ C([min{τ(t0), σ(t0)}, ∞), R)

is a solution of equation (1.1) along with the initial condition

x(t) = φ(t), t ∈ [min{τ(t0), σ(t0)}, t0] (2.3)

if x(t)− x(τ(t)) is continuously differentiable for all t ∈ [t0, ∞) and x satisfies (1.1), (2.3).

In the rest of the paper, we often omit initial condition (2.3). So, x is a solution of (1.1) if
there exists a suitable function φ such that x solves initial value problem (1.1), (2.3).

Definition 2.4. Let t0 ∈ R and Q ∈ C([t0, ∞), R+), τ, σ ∈ Tt0 be given functions. Solution x
of (1.1) is called eventually positive (eventually negative) if there is T > t0 such that x(t) > 0
(x(t) < 0) for all t ≥ T. In this case, x is called nonoscillatory. Otherwise, we say that x
oscillates or that it is oscillatory.

In other neutral differential equations studied in the paper, their solutions are understood
in an analogous sense.

Finally, in this section, we present an auxiliary lemma.

Lemma 2.5. Let A ≥ B ≥ 0 and α > 1. Then

(A − B)
1
α ≥ A

1
α − B

1
α .
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Proof. If A = 0, the statement is obvious. Now, let A ̸= 0 and consider the function f (x) =

(1 − x)
1
α − (1 − x

1
α ) for x ∈ [0, 1]. Then f (0) = 0 = f (1). The derivative,

f ′(x) =
1
α

(
x

1−α
α − (1 − x)

1−α
α

)
vanishes if and only if x = 1

2 . Since

f
(

1
2

)
=

2 − 2
1
α

2
1
α

> 0,

we get that f (x) ≥ 0 for all x ∈ [0, 1]. In particular, f ( B
A ) ≥ 0 which proves the statement.

3 Main results

Here, we recall the result from [5] and provide a counterexample to show that it does not
hold. Next, by correcting the wrong proof from [5], we prove a new sufficient condition for
oscillation of all solutions of equation (1.1). Then, we give a generalization to multiple discrete
delays. In Subsection 3.2, an analogous problem is studied for neutral differential equations
with distributed and mixed delays.

3.1 Discrete delays

In [5], the next result was stated (we use the quotation marks to warn readers that the result
is not correct):

“Theorem” 3.1. Let t0 > 0 and Q ∈ C([t0, ∞), R+), τ, σ ∈ Tt0 be given functions. If∫ ∞

t0

Q(s) ds = ∞ (3.1)

or ∫ ∞

t0

s Q(s) ds = ∞, (3.2)

then every solution of equation (1.1) oscillates.

It will be shown in the proof of Theorem 3.3 below (and it was correctly proved in [5]) that
inequality (3.1) is indeed a sufficient condition for oscillation of all solutions of (1.1). In the
next example, we illustrate that if (3.1) does not hold, inequality (3.2) does not guarantee the
oscillation of all solutions of (1.1).

Example 3.2. Let us consider the following equation[
x(t)− x

(
t
2

)]′
+

1
t2 x

(
t

2 − t ln(2 − e
1
t )

)
= 0, t ≥ t0 (3.3)

for some t0 > 1
ln 2 .

Since 0 < 2 − e
1
t0 ≤ 2 − e

1
t < 1, we have ln(2 − e

1
t ) < 0 ∀t ≥ t0. So,

σ(t) =
t

2 − t ln(2 − e
1
t )

< t, t ≥ t0.
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Furthermore, from

σ′(t) =
4 − e

1
t(

2 − e
1
t

) (
2 − t ln(2 − e

1
t )
)2 ,

one can see that σ′(t) > 0 for all t ≥ t0. It is easy to verify that σ(t) t→∞−−→ ∞. Thus, σ ∈ Tt0 .
Clearly, τ ∈ Tt0 for τ(t) = t

2 . Moreover,∫ ∞

t0

ds
s2 =

1
t0

< ∞,
∫ ∞

t0

ds
s

= ∞,

i.e., condition (3.1) is not satisfied, but (3.2) holds. Hence, by “Theorem” 3.1, every solution
of equation (3.3) oscillates. However, a positive function e−

1
t solves this equation. Indeed, for

x(t) = e−
1
t , the left-hand side of (3.3) reads as

e−
1
t

t2 − 2 e−
2
t

t2 +
1
t2 e−

2−t ln(2−e
1
t )

t =
1
t2

[
e−

1
t −2 e−

2
t + e−

2
t (2 − e

1
t )
]
= 0.

Next, we present our result for equation (1.1).

Theorem 3.3. Let t0 ∈ R and Q ∈ C([t0, ∞), R+), τ, σ ∈ Tt0 be given functions. If condition (3.1)
is satisfied or ∫ ∞

σ−1(t0)
(Nτ

t0
(σ(s)))

1
p Q(s) ds = ∞ (3.4)p

for some p > 1, where Nτ
t0
(t) is given by (2.1), then every solution of equation (1.1) oscillates.

Note that in the label of condition (3.4)p, we use the parameter p > 1 as the lower index.

Proof. One can easily see that condition (3.1) as well as condition (3.4)p implies that Q does
not vanish for all t sufficiently large, i.e.,

∀t ≥ t0 ∃T ≥ t : Q(T) > 0.

Without any loss of generality, we suppose in contrary that x is an eventually positive solution
of (1.1). Since limt→∞ τ(t) = limt→∞ σ(t) = ∞, there is t1 ≥ t0 such that x(t), x(τ(t)) and
x(σ(t)) are positive for all t ≥ t1. For z(t) = x(t) − x(τ(t)), equation (1.1) gives z′(t) ≤ 0
∀t ≥ t1. Moreover, from the nonvanishing property of Q, we know that for any t ≥ t1 there is
T ≥ t such that z′(T) < 0. Hence, z(t) can not vanish for all sufficiently large t, but it is either
eventually negative or eventually positive.

If z is eventually negative, then, since it is nonincreasing, there exist t2 ≥ t1 and µ > 0
such that z(t) ≤ −µ for all t ≥ t2. Equivalently, we have

x(t) ≤ x(τ(t))− µ, t ≥ t2.

In particular,
x(τ−k(t2)) ≤ x(τ−(k−1)(t2))− µ ≤ · · · ≤ x(t2)− kµ

for each k ∈ N. A contradiction with the eventual positivity of x follows, since the right side
tends to −∞ as k → ∞.

Hence, z is eventually positive, i.e., there is t2 ≥ t1 such that z(t) > 0 ∀t ≥ t2. This means
that

x(t) > x(τ(t)) > 0, t ≥ t2. (3.5)
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Therefore,
x(t) ≥ min

s∈[τ(t2),t2]
x(s) =: ω > 0, t ≥ t2. (3.6)

From equation (1.1), we obtain

0 = z′(t) + Q(t)x(σ(t)) ≥ z′(t) + ωQ(t)

for all t ≥ t3 for some t3 ≥ σ−1(t2). This gives

z(t) ≤ z(t3)− ω
∫ t

t3

Q(s) ds, t ≥ t3.

So, if condition (3.1) is satisfied, we get limt→∞ z(t) = −∞ which is a contradiction, and x is
oscillatory.

Now, assume that ∫ ∞

t0

Q(s) ds < ∞ (3.7)

and that condition (3.4)p is satisfied for some p > 1. Let us take t4 ≥ τ−1(t2) such that
t4 = τ−κ(t0) for some κ ∈ N.

From
x(t) = z(t) + x(τ(t)), t ≥ t4, (3.8)

we get
x(t) = z(t) + z(τ(t)) + · · ·+ z(τ(N−1)(t)) + x(τN(t))

for any t ∈ [τ−(N−1)(t4), τ−N(t4)), N ∈ N. Since z is nonincreasing and τ ∈ Tt0 , this identity
implies

x(t) ≥ Nz(t) + x(τN(t)), t ∈ [τ−(N−1)(t4), τ−N(t4)), N ∈ N

or, equivalently,
x(t) ≥ Nτ

t4
(t)z(t) + x(τNτ

t4
(t)(t)), t ≥ t4

(see (2.2)). Note that τ
Nτ

t4
(t)(t) ∈ [τ(t4), t4) ⊂ [t2, ∞) for any t ≥ t4. Hence, by (3.6),

x(t) ≥ Nτ
t4
(t)z(t) + ω, t ≥ t4.

Next, using the Young inequality,
Ap

p
+

Bq

q
≥ AB

for A, B > 0 and q = p
p−1 , we derive

x(t) ≥

((
pNτ

t4
(t)z(t)

) 1
p
)p

p
+

(
(qω)

1
q
)q

q
≥
(

pNτ
t4
(t)z(t)

) 1
p (qω)

1
q

for all t ≥ t4. Let us denote ω1 := p
1
p (qω)

1
q > 0 and take t5 = σ−1(t4). Then, (1.1) implies

z′(t) = −Q(t)x(σ(t)) ≤ −ω1Q(t)
(

Nτ
t4
(σ(t))z(σ(t))

) 1
p

≤ −ω1Q(t)
(

Nτ
t4
(σ(t))z(t)

) 1
p , t ≥ t5



Oscillation of neutral differential equations 7

since z is nonincreasing. Dividing by z
1
p (t) and integrating over [t5, t] yields∫ t

t5

z′(s) ds

z
1
p (s)

= qz
1
q (t)− qz

1
q (t5) ≤ −ω1

∫ t

t5

(
Nτ

t4
(σ(s))

) 1
p Q(s) ds

for all t ≥ t5. Now, it only remains to prove that∫ ∞

t5

(
Nτ

t4
(σ(s))

) 1
p Q(s) ds = ∞. (3.9)

Consequently, we get a contradiction with the eventual positivity of z, implying that x is
oscillatory.

Using Lemmas 2.2, 2.5, we derive(
Nτ

t4
(t)
) 1

p =
(

Nτ
t0
(t)− κ

) 1
p ≥

(
Nτ

t0
(t)
) 1

p − κ
1
p

for all t ≥ t4. Therefore, assumptions (3.4)p, (3.7) imply for t ≥ t5,∫ t

t5

(
Nτ

t4
(σ(s))

) 1
p Q(s) ds ≥

∫ t

t5

(
Nτ

t0
(σ(s))

) 1
p Q(s) ds − κ

1
p

∫ t

t5

Q(s) ds

=
∫ t

σ−1(t0)

(
Nτ

t0
(σ(s))

) 1
p Q(s) ds − κ

1
p

∫ t

t0

Q(s) ds + C t→∞−−→ ∞

with an appropriate constant C ∈ R.

Remark 3.4. Condition (3.1) was proved in [5], but in the proof of Theorem 3.3, we emphasize
were the missing assumption was needed. Namely, to get the existence of t1.

Remark 3.5. The original proof of “Theorem” 3.1 from [5] contains the following issues:

1. Constant τ = inft≥t3(t − τ(t)) was introduced and used as positive. However, the case
τ(t) ↗ t as t → ∞ was not considered.

2. For fixed t, the value x(τN(t)(t)) was used, where N(t) =
⌊ t−t3

τ

⌋2
, τ is defined in the

previous point of this remark, and ⌊·⌋ is the greatest integer function (or the floor func-
tion). This can be a problem if N(t) is so large that τN(t)(t) < τ(t2), because then one
can not use the estimation

x(τN(t)−1(t)) > x(τN(t)(t)).

Similarly, we use estimation (3.5), but, in our case, Nτ
t4
(t) is bounded for any fixed t ≥ t4

(as it does not depend on the infimum).

3. The proof from [5] does not work even if τ is far from zero (e.g., constant delay). The
problem is in the power 2 in the definition of N(t) (see the previous point). Because
then one can not iterate expansion (3.8) N(t)-times, due to τN(t)(t) < τ(t4).

Remark 3.6. Since Nτ
t0
(t) ∈ N and Q(t) ≥ 0 for all t ≥ t0, inequality k

1
p1 ≤ k

1
p2 for each k ∈ N

and all 1 ≤ p2 ≤ p1 gives that, (3.4)p1 implies (3.4)p2 for any 1 < p2 ≤ p1. Similarly, (3.1)
implies (3.4)p for all p > 1.

Now, we generalize Theorem 3.3 to the case of multiple delays.
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Theorem 3.7. Let t0 ∈ R, n, m ∈ N, λi > 0 for i = 1, 2, . . . , n be such that ∑n
i=1 λi = 1, and

Qj ∈ C([t0, ∞), R+), τi, σj ∈ Tt0 for i = 1, 2, . . . , n, j = 1, 2, . . . , m be given functions. If there exists
j0 ∈ {1, 2, . . . , m} such that ∫ ∞

t0

Qj0(s) ds = ∞ (3.10)

or ∫ ∞

σ−1
j0

(t0)
(Nτ

t0
(σj0(s)))

1
p Qj0(s) ds = ∞ (3.11)p

for some p > 1, where τ = mini=1,2,...,n τi and Nτ
t0
(t) is given by (2.1), then every solution of equation

(1.3) oscillates.

Proof. In this proof, we skip some details that are the same as in the proof of Theorem 3.3.
As in the proof of Theorem 3.3, each one of conditions (3.10), (3.11)p implies that

∀t ≥ t0 ∃T ≥ t : Qj0(T) > 0.

Suppose that x is an eventually positive solution of (1.3). Then, there is t1 ≥ t0 such that x(t),
x(τi(t)), x(σj(t)), i = 1, 2, . . . , n, j = 1, 2, . . . , m are positive for all t ≥ t1. From equation (1.3),
we get z′(t) ≤ 0 ∀t ≥ t1 for z(t) = x(t) − ∑n

i=1 λix(τi(t)). Again, z can be only eventually
negative or eventually positive.

If z is eventually negative, then there exist t2 ≥ t1 and µ > 0 such that z(t) ≤ −µ for all
t ≥ t2, i.e.,

x(t) ≤ −µ +
n

∑
i=1

λix(τi(t)) ≤ −µ + max
i=1,2,...,n

x(τi(t))

≤ −µ + max
s∈I(t)

x(s)
(3.12)

for all t ≥ t2, where I(t) = [τ(t), τ(t)], τ = maxi=1,2,...,n τi. Note that τ, τ ∈ Tt0 . Denote

Iℓ :=
[
τ−(ℓ−1)(t2), τ−ℓ(t2)

)
, ℓ ∈ N0,

Ik
ℓ := Iℓ ∩

[
τ−(k−1)(τ−(ℓ−1)(t2)), τ−k(τ−(ℓ−1)(t2))

)
, ℓ ∈ N, k = 1, 2, . . . , K(ℓ),

(3.13)

where K(ℓ) is the largest k ∈ N for which Ik
ℓ ̸= ∅. Notice that by (2.2), t ∈ Iℓ for ℓ ∈ N0 if and

only if Nτ
t2
(t) = ℓ. Now, if t ∈ I1

ℓ for ℓ ∈ N, then τ(t) ∈ τ(Iℓ) = Iℓ−1 and

τ(t) ∈ τ
([

τ−(ℓ−1)(t2), τ−1(τ−(ℓ−1)(t2))
))

=
[
τ(τ−(ℓ−1)(t2)), τ−(ℓ−1)(t2)

)
⊂ Iℓ−1.

Similarly, if t ∈ Ik
ℓ for ℓ ∈ N, k ∈ {2, 3, . . . , K(ℓ)}, then τ(t) ∈ τ(Iℓ) = Iℓ−1 and

τ(t) ∈ τ
([

τ−(k−1)(τ−(ℓ−1)(t2)), τ−k(τ−(ℓ−1)(t2))
))

=
[
τ−(k−2)(τ−(ℓ−1)(t2)), τ−(k−1)(τ−(ℓ−1)(t2))

)
⊂ Ik−1

ℓ .

Using the above inclusions, we are able to work more precisely with I(t) for particular values
of t.

Now, we use the mathematical induction with respect to the intervals I1
1 , I2

1 , . . . , IK(1)
1 ,

I1
2 ,. . . to prove an estimation of x(t) for all t ≥ t2. Let us denote Ω := sups∈I0

x(s) =
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maxs∈I0
x(s) and Ck

ℓ := conv{Iℓ−1, Ik
ℓ}, the convex hull of the corresponding sets for ℓ ∈ N,

k ∈ {1, 2, . . . , K(ℓ)}. For I(Ik
ℓ ) =

⋃
t∈Ik

ℓ
[τ(t), τ(t)], we get I(I1

ℓ ) ⊂ Iℓ−1 for each ℓ ∈ N. So, if

t ∈ I1
1 , then by (3.12),

x(t) ≤ −µ + max
s∈I(I1

1 )

x(s) = −µ + max
s∈I0

x(s) = −µ + Ω = −Nτ
t2
(t)µ + Ω.

Furthermore, I(Ik
ℓ ) ⊂ conv{Iℓ−1, Ik−1

ℓ } = Ck−1
ℓ for l ∈ N, k ∈ {2, 3, . . . , K(ℓ)}. Let us suppose

that ℓ ∈ N, k ∈ {1, 2, . . . , K(ℓ)} are fixed and

x(t) ≤ −Nτ
t2
(t)µ + Ω

for all t∈conv{I0, Ik
ℓ} (due to the continuity of x, this estimation is valid for all t∈conv{I0, Ik

ℓ}).
Now, if k < K(ℓ), for t ∈ Ik+1

ℓ we have I(t) ⊂ I(Ik+1
ℓ ) ⊂ Ck

ℓ . Hence, by (3.12),

x(t) ≤ −µ + max
s∈Ck

ℓ

x(s) ≤ −µ + max
s∈Ck

ℓ

(−Nτ
t2
(s)µ + Ω)

= −µ − (ℓ− 1)µ + Ω = −ℓµ + Ω = −Nτ
t2
(t)µ + Ω.

On the other side, if k = K(ℓ), for t ∈ I1
ℓ+1 we obtain

x(t) ≤ −µ + max
s∈Iℓ

x(s) ≤ −µ + max
s∈Iℓ

(−Nτ
t2
(s)µ + Ω)

= −µ − ℓµ + Ω = −(ℓ+ 1)µ + Ω = −Nτ
t2
(t)µ + Ω.

So, we have proved that
x(t) ≤ −Nτ

t2
(t)µ + Ω, t ≥ t2.

Using Nτ
t2
(t) t→∞−−→ ∞, for t → ∞ we obtain a contradiction with x being eventually positive.

Therefore, z is eventually positive, i.e., there is t2 ≥ t1 such that

x(t) >
n

∑
i=1

λix(τi(t)) ≥ min
i=1,2,...,n

x(τi(t)) ≥ min
s∈I(t)

x(s) ≥ min
s∈[τ(t),t]

x(s)

for all t ≥ t2. In this part of the proof, we adapt the notation from the previous part with this
new value of t2. So, we have

x(t) ≥ min
s∈I0

x(s) =: ω > 0, t ≥ t2. (3.14)

Consequently, from equation (1.3), we get

0 = z′(t) +
m

∑
j=1

Qj(t)x(σj(t)) ≥ z′(t) + ω
m

∑
j=1

Qj(t)

for all t ≥ t3 for some t3 ≥ σ−1(t2), σ = minj=1,2,...,m σj ∈ Tt0 . Integrating over [t3, t] gives

z(t) ≤ z(t3)− ω
m

∑
j=1

∫ t

t3

Qj(s) ds ≤ z(t3)− ω
∫ t

t3

Qj0(s) ds, t ≥ t3.

Assuming condition (3.10), this estimation results in a contradiction with eventual positivity
of z for t → ∞, which implies that x is oscillatory.
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Now, assume that ∫ ∞

t0

Qj(s) ds < ∞

for each j = 1, 2, . . . , m, and that condition (3.11)p is satisfied for some p > 1. Then

x(t) = z(t) +
n

∑
i=1

λix(τi(t)) ≥ z(t) + min
i=1,2,...,n

x(τi(t)) ≥ z(t) + min
s∈I(t)

x(s)

for all t ≥ t4, where t4 ≥ τ−1(t2) is such that t4 = τ−κ(t0) for some κ ∈ N. Let us fix arbitrary
T ≥ t4. Then, due to z′(t) ≤ 0 for all t ≥ t4,

x(t) ≥ z(T) + min
s∈I(t)

x(s), t ∈ [t4, T].

Using induction as for (3.12), one can now show that

x(t) ≥ Nτ
t4
(t)z(T) + ω, t ∈ [t4, T].

In particular, this estimation is valid for t = T. Since T ≥ t4 was arbitrary, we have

x(t) ≥ Nτ
t4
(t)z(t) + ω, t ≥ t4.

Applying Young inequality with p > 1 such that (3.11)p holds yields

x(t) ≥
(

pNτ
t4
(t)z(t)

) 1
p
(qω)

1
q

for all t ≥ t4. Denoting ω1 := p
1
p (qω)

1
q > 0, we have

z′(t) = −
m

∑
j=1

Qj(t)x(σj(t)) ≤ −ω1

m

∑
j=1

Qj(t)
(

Nτ
t4
(σj(t))z(σj(t))

) 1
p

≤ −ω1

m

∑
j=1

Qj(t)
(

Nτ
t4
(σj(t))z(t)

) 1
p

, t ≥ t5,

where t5 = σ−1(t4). Dividing by z
1
p (t) and integrating over [t5, t] yields

qz
1
q (t)− qz

1
q (t5) ≤ −ω1

∫ t

t5

(
Nτ

t4
(σj0(s))

) 1
p Qj0(s) ds, t ≥ t5.

Now, the proof is finished as the proof of Theorem 3.3.

Remark 3.8. Note that conditions (3.10) and (3.11)p are equivalent to

m

∑
j=1

∫ ∞

t0

Qj(s) ds = ∞

and
m

∑
j=1

∫ ∞

σ−1
j (t0)

(Nτ
t0
(σj(s)))

1
p Qj(s) ds = ∞,

respectively.
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3.2 Distributed delays

Here, we consider neutral differential equations with distributed and mixed delays.

Theorem 3.9. Let t0 ∈ R, τ, τ, σ, σ ∈ Tt0 satisfy τ(t) < τ(t) and σ(t) ≤ σ(t) for all t ≥ t0,
λ ∈ C([τ(t0), ∞), (0, ∞)), Q ∈ C([t0, ∞), R+), R ∈ C([σ(t0), ∞), R+). If∫ ∞

t0

Q(s)
∫ σ(s)

σ(s)
R(r) dr ds = ∞ (3.15)

or ∫ ∞

σ−1(t0)
Q(s)

∫ σ(s)

σ(s)
(Nτ

t0
(r))

1
p R(r) dr ds = ∞ (3.16)p

for some p > 1, where Nτ
t0
(t) is given by (2.1), then every solution of equation (1.4) oscillates.

Proof. Again, the proof is similar to the proofs of Theorems 3.3, 3.7, so we only provide some
key points. For brevity, we also denote

Λ(t) =
(∫ τ(t)

τ(t)
λ(s) ds

)−1

, t ≥ t0.

As before, each one of conditions (3.15), (3.16)p implies that

∀t ≥ t0 ∃T ≥ t : Q(T)
∫ σ(T)

σ(T)
R(s) ds > 0.

We suppose that x is an eventually positive solution of (1.4). Then there exists t1 ≥ t0 such that
x(t), x(τ(t)), x(σ(t)) are positive for all t ≥ t1. Hence, by equation (1.4), z′(t) ≤ 0 ∀t ≥ t1 for
z(t) = x(t)− Λ(t)

∫ τ(t)
τ(t) λ(s)x(s) ds. We know that z is either eventually negative or eventually

positive.
If z is eventually negative, there are t2 ≥ t1 and µ > 0 such that

x(t) ≤ −µ + Λ(t)
∫ τ(t)

τ(t)
λ(s)x(s) ds ≤ −µ + max

s∈I(t)
x(s) (3.17)

for all t ≥ t2, where I(t) = [τ(t), τ(t)]. Analogously to inequality (3.12), one can show by
induction that estimation (3.17) implies

x(t) ≤ −Nτ
t2
(t)µ + Ω, t ≥ t2,

where Ω = maxs∈I0
x(s) using the notation from the proof of Theorem 3.7. Using Nτ

t2
(t) t→∞−−→

∞, a contradiction is obtained for t → ∞ with x being eventually positive.
Therefore, z is eventually positive. So, there is t2 ≥ t1 such that

x(t) > Λ(t)
∫ τ(t)

τ(t)
λ(s)x(s) ds ≥ min

s∈I(t)
x(s)

for all t ≥ t2. Adapting the notation (3.13) for Iℓ, Ik
ℓ , estimation (3.14) follows. Next, from

equation (1.4), we get

0 = z′(t) + Q(t)
∫ σ(t)

σ(t)
R(s)x(s) ds ≥ z′(t) + ωQ(t)

∫ σ(t)

σ(t)
R(s) ds
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for all t ≥ t3 for some t3 ≥ σ−1(t2). Integration over [t3, t] results in

z(t) ≤ z(t3)− ω
∫ t

t3

Q(s)
∫ σ(s)

σ(s)
R(r) dr ds, t ≥ t3.

Assuming condition (3.15), we get a contradiction with eventual positivity of z, since the right
side of the latter inequality tends to −∞ as t → ∞.

Now, assume that ∫ ∞

t0

Q(s)
∫ σ(s)

σ(s)
R(r) dr ds < ∞ (3.18)

and that condition (3.16)p is satisfied for some p > 1. Then

x(t) = z(t) + Λ(t)
∫ τ(t)

τ(t)
λ(s)x(s) ds ≥ z(t) + min

s∈I(t)
x(s)

for all t ≥ t4, where t4 ≥ τ−1(t2) is such that t4 = τ−κ(t0) for some κ ∈ N. As in the proof of
Theorem 3.7, it can be shown that

x(t) ≥ Nτ
t4
(t)z(t) + ω, t ≥ t4,

and Young inequality implies

x(t) ≥
(

pNτ
t4
(t)z(t)

) 1
p
(qω)

1
q

for all t ≥ t4. Denoting ω1 := p
1
p (qω)

1
q > 0, from equation (1.4) we derive

z′(t) = −Q(t)
∫ σ(t)

σ(t)
R(s)x(s) ds ≤ −ω1Q(t)

∫ σ(t)

σ(t)
R(s)

(
Nτ

t4
(s)z(s)

) 1
p ds

≤ −ω1Q(t)
∫ σ(t)

σ(t)
R(s)

(
Nτ

t4
(s)
) 1

p ds z(t)
1
p , t ≥ t5,

where t5 = σ−1(t4). Dividing by z
1
p (t) and integrating over [t5, t] gives

qz
1
q (t)− qz

1
q (t5) ≤ −ω1

∫ t

t5

Q(s)
∫ σ(s)

σ(s)

(
Nτ

t4
(r)
) 1

p R(r) dr ds, t ≥ t5.

Now, it only remains to show that∫ ∞

t5

Q(s)
∫ σ(s)

σ(s)

(
Nτ

t4
(r)
) 1

p R(r) dr ds = ∞

to obtain a contradiction with eventual positivity of z, implying that x is oscillatory. Using
Lemmas 2.2, 2.5 (see the proof of Theorem 3.3), we obtain∫ t

t5

Q(s)
∫ σ(s)

σ(s)

(
Nτ

t4
(r)
) 1

p R(r) dr ds

≥
∫ t

t5

Q(s)
∫ σ(s)

σ(s)

(
Nτ

t0
(r)
) 1

p R(r) dr ds − κ
1
p

∫ t

t5

Q(s)
∫ σ(s)

σ(s)
R(r) dr ds

=
∫ t

σ−1(t0)
Q(s)

∫ σ(s)

σ(s)

(
Nτ

t0
(r)
) 1

p R(r) dr ds − κ
1
p

∫ t

t0

Q(s)
∫ σ(s)

σ(s)
R(r) dr ds + C

for an appropriate constant C ∈ R. Note that, by conditions (3.16)p and (3.18), the right side
tends to ∞ as t → ∞. This completes the proof.
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Remark 3.10. Condition λ ∈ C([τ(t0), ∞), (0, ∞)) in Theorem 3.9 can be weakened to λ ∈
C([τ(t0), ∞), R+) satisfying

∫ τ(t)
τ(t) λ(s) ds > 0 for all t ≥ t0.

Finally, we present a result for neutral differential equations with mixed delays and time-
dependent coefficients.

Theorem 3.11. Let t0 ∈ R, n1,2, m1,2 ∈ N0 be such that n1 + n2 ≥ 1, m1 + m2 ≥ 1. Moreover, let
the following assumptions be fulfilled:

1. λi ∈ C([t0, ∞), R+) and τi ∈ Tt0 for each i = 1, 2, . . . , n1,

2. ϑi ∈ C([τi(t0), ∞), R+) and τi, τi ∈ Tt0 are such that τi(t) ≤ τi(t) for all t ≥ t0 and for each
i = 1, 2, . . . , n2,

3. Qj ∈ C([t0, ∞), R+) and σj ∈ Tt0 for each j = 1, 2, . . . , m1,

4. Sj ∈ C([t0, ∞), R+), Rj ∈ C([σj(t0), ∞), R+), and σj, σj ∈ Tt0 are such that σj(t) ≤ σj(t) for
all t ≥ t0 and each j = 1, 2, . . . , m2,

5. for all t ≥ t0,
n1

∑
i=1

λi(t) +
n2

∑
i=1

∫ τi(t)

τi(t)
ϑi(s) ds = 1.

If
m1

∑
j=1

∫ ∞

t0

Qj(s) ds +
m2

∑
j=1

∫ ∞

t0

Sj(s)
∫ σj(s)

σj(s)
Rj(r) dr ds = ∞ (3.19)

or
m1

∑
j=1

∫ ∞

σ−1
j (t0)

(Nτ
t0
(σj(s)))

1
p Qj(s) ds

+
m2

∑
j=1

∫ ∞

σ−1
j (t0)

Sj(s)
∫ σj(s)

σj(s)
(Nτ

t0
(r))

1
p Rj(r) dr ds = ∞

(3.20)p

for some p > 1, where τ = min{mini=1,2,...,n1 τi, mini=1,2,...,n2 τi} and Nτ
t0
(t) is given by (2.1), then

every solution of equation (1.5) oscillates.

Proof. Each one of conditions (3.19), (3.20)p implies that

∀t ≥ t0 ∃T ≥ t : Qj(T) > 0 for some j ∈ {1, 2, . . . , m1}

or Sj(T)
∫ σj(T)

σj(T)
Rj(s) ds > 0 for some j ∈ {1, 2, . . . , m2}.

(3.21)

Let us denote

τ := max
{

max
i=1,2,...,n1

τi, max
i=1,2,...,n2

τi

}
, σ := min

{
min

j=1,2,...,m1
σj, min

j=1,2,...,m2
σj

}
.

Note that τ, τ, σ ∈ Tt0 . Let us assume without any loss of generality that x is an eventually
positive solution of (1.5). Take t1 ≥ t0 such that x(t), x(τ(t)) and x(σ(t)) are positive for all
t ≥ t1. Then, by (1.5), z′(t) ≤ 0 ∀t ≥ t1 for

z(t) = x(t)−
(

n1

∑
i=1

λi(t)x(τi(t)) +
n2

∑
i=1

∫ τi(t)

τi(t)
ϑi(s)x(s) ds

)
. (3.22)
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Due to (3.21), z is either eventually negative or eventually positive.
If z is eventually negative, there are t2 ≥ t1 and µ > 0 such that

x(t) ≤ −µ +
n1

∑
i=1

λi(t)x(τi(t)) +
n2

∑
i=1

∫ τi(t)

τi(t)
ϑi(s)x(s) ds

≤ −µ +

(
n1

∑
i=1

λi(t) +
n2

∑
i=1

∫ τi(t)

τi(t)
ϑi(s) ds

)
max
s∈I(t)

x(s) = −µ + max
s∈I(t)

x(s)

for all t ≥ t2, where I(t) = [τ(t), τ(t)]. As for (3.12), one can use mathematical induction to
show that

x(t) ≤ −Nτ
t2
(t)µ + Ω, t ≥ t2,

where Ω = maxs∈I0
x(s) using the notation from the proof of Theorem 3.7. Consequently,

Nτ
t2
(t) t→∞−−→ ∞ yields a contradiction for t → ∞ with x being eventually positive.
Hence, z is eventually positive. Take t2 ≥ t1 such that

x(t) >
n1

∑
i=1

λi(t)x(τi(t)) +
n2

∑
i=1

∫ τi(t)

τi(t)
ϑi(s)x(s) ds

≥
(

n1

∑
i=1

λi(t) +
n2

∑
i=1

∫ τi(t)

τi(t)
ϑi(s) ds

)
min
s∈I(t)

x(s)

= min
s∈I(t)

x(s) ≥ min
s∈[τ(t),t)

x(s) ≥ min
s∈I0

x(s) =: ω

for all t ≥ t2, where we used the notation from the proof of Theorem 3.7, again. As a conse-
quence, equation (1.5) implies

0 ≥ z′(t) + ω

(
m1

∑
j=1

Qj(t) +
m2

∑
j=1

Sj(t)
∫ σj(t)

σj(t)
Rj(s) ds

)

for all t ≥ t3 for some t3 ≥ σ−1(t2). Integrating the latter inequality over [t3, t] gives

z(t) ≤ z(t3)− ω

(
m1

∑
j=1

∫ t

t3

Qj(s) ds +
m2

∑
j=1

∫ t

t3

Sj(s)
∫ σj(s)

σj(s)
Rj(r) dr ds

)

for all t ≥ t3. This results in a contradiction with the eventual positivity of z for t → ∞ if
(3.19) holds. So, x is oscillatory.

Now suppose that

m1

∑
j=1

∫ ∞

t0

Qj(s) ds +
m2

∑
j=1

∫ ∞

t0

Sj(s)
∫ σj(s)

σj(s)
Rj(r) dr ds < ∞ (3.23)

and that condition (3.20)p is fulfilled for some p > 1. Then, by (3.22) and assumption (5), we
get

x(t) ≥ z(t) + min
s∈I(t)

x(s), t ≥ t4,

where t4 ≥ τ−1(t2) is such that t4 = τ−κ(t0) for some κ ∈ N. By induction as in the proof of
Theorem 3.7, we derive

x(t) ≥ Nτ
t4
(t)z(t) + ω, t ≥ t4.
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Denoting ω1 := p
1
p (qω)

1
q > 0, Young’s inequality yields

x(t) ≥ ω1

(
Nτ

t4
(t)z(t)

) 1
p

, t ≥ t4.

Then, equation (1.5) gives

z′(t) ≤ −ω1

(
m1

∑
j=1

Qj(t)
(

Nτ
t4
(σj(t))z(σj(t))

) 1
p
+

m2

∑
j=1

Sj(t)
∫ σj(t)

σj(t)
Rj(s)

(
Nτ

t4
(s)z(s)

) 1
p ds

)

≤ −ω1z(t)
1
p

(
m1

∑
j=1

Qj(t)(Nτ
t4
(σj(t)))

1
p +

m2

∑
j=1

Sj(t)
∫ σj(t)

σj(t)
Rj(s)

(
Nτ

t4
(s)
) 1

p ds

)

for all t ≥ t5 = σ−1(t4). Dividing by z
1
p (t) and integrating over [t5, t] results in

qz
1
q (t)− qz

1
q (t5)

≤ −ω1

(
m1

∑
j=1

∫ t

t5

(Nτ
t4
(σj(s)))

1
p Qj(s) ds +

m2

∑
j=1

∫ t

t5

Sj(s)
∫ σj(s)

σj(s)
(Nτ

t4
(r))

1
p Rj(r) dr ds

)
, t ≥ t5.

If the right side tends to −∞ as t → ∞, we get a contradiction with the eventual positivity of
z, which implies that x is oscillatory. To see this, we use Lemmas 2.2, 2.5 to estimate

m1

∑
j=1

∫ t

t5

(Nτ
t4
(σj(s)))

1
p Qj(s) ds +

m2

∑
j=1

∫ t

t5

Sj(s)
∫ σj(s)

σj(s)
(Nτ

t4
(r))

1
p Rj(r) dr ds

≥
m1

∑
j=1

(∫ t

t5

(Nτ
t0
(σj(s)))

1
p Qj(s) ds − κ

1
p

∫ t

t5

Qj(s) ds
)

+
m2

∑
j=1

(∫ t

t5

Sj(s)
∫ σj(s)

σj(s)
(Nτ

t0
(r))

1
p Rj(r) dr ds − κ

1
p

∫ t

t5

Sj(s)
∫ σj(s)

σj(s)
Rj(r) dr ds

)

=
m1

∑
j=1

(∫ t

σ−1
j (t0)

(Nτ
t0
(σj(s)))

1
p Qj(s) ds − κ

1
p

∫ t

t0

Qj(s) ds

)

+
m2

∑
j=1

(∫ t

σ−1
j (t0)

Sj(s)
∫ σj(s)

σj(s)
(Nτ

t0
(r))

1
p Rj(r) dr ds − κ

1
p

∫ t

t0

Sj(s)
∫ σj(s)

σj(s)
Rj(r) dr ds

)
+ C

for an appropriate constant C ∈ R. Condition (3.20)p and inequality (3.23) imply that the
right-hand side tends to ∞ as t → ∞. This completes the proof.

4 Applications

In this section, we apply the results of Section 3 to concrete neutral differential equations.

4.1 Discrete delays

First, let us consider the neutral differential equation with one constant and one variable delay,

[x(t)− x(t − α)]′ + Q(t)x(σ(t)) = 0, t ≥ t0 (4.1)
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for some t0 ∈ R, α > 0, σ ∈ Tt0 , and Q ∈ C([t0, ∞), R+). Then τk(t) = t − kα for k ∈ Z. Now,
inequality (2.1) has the form

ζ + (Nτ
ζ (t)− 1)α ≤ t < ζ + Nτ

ζ (t)α.

Therefrom, we derive
t − ζ

α
< Nτ

ζ (t) ≤
t − ζ

α
+ 1

that gives

Nτ
ζ (t) =

⌊
t − ζ

α

⌋
+ 1.

Since we are interested in the convergence of the integral on the left side of (3.4)p in a neigh-
borhood of ∞, it is enough to assume that s ≥ t̃0, where t̃0 ≥ σ−1(t0) is such that σ(t̃0) > 0.
Then, dividing the inequality

σ(s)− t0

α
< Nτ

t0
(σ(s)) ≤ σ(s)− t0

α
+ 1

by σ(s)/α and taking the limit s → ∞, we obtain

lim
s→∞

α

σ(s)
Nτ

t0
(σ(s)) = 1.

Therefore, condition (3.4)p holds if and only if∫ ∞

t̃0

(σ(s))
1
p Q(s) ds = ∞. (4.2)p

Using Theorem 3.3, one can easily prove the following result.

Proposition 4.1. Let t0 ∈ R, α > 0, σ ∈ Tt0 , Q ∈ C([t0, ∞), R+), and t̃0 ≥ σ−1(t0) be such that
σ(t̃0) > 0. Every solution of equation (4.1) oscillates if condition (3.1) or (4.2)p for some p > 1 is
satisfied.

In a particular case of equation (4.1) when σ(t) = t − β, β > 0, this statement can be
simplified. From the inequality

s − β − t0

α
< Nτ

t0
(σ(s)) ≤ s − β − t0

α
+ 1

for s ≥ t̃0, where t̃0 ≥ t0 + β is positive, we get

lim
s→∞

α

s
Nτ

t0
(σ(s)) = 1.

Hence, condition (3.4)p is equivalent to∫ ∞

t̃0

s
1
p Q(s) ds = ∞. (4.3)p

Proposition 4.2. Let t0 ∈ R, α, β > 0, Q ∈ C([t0, ∞), R+), and t̃0 ≥ t0 + β be positive. Every
solution of the equation

[x(t)− x(t − α)]′ + Q(t)x(t − β) = 0, t ≥ t0 (4.4)

oscillates if condition (3.1) or (4.3)p for some p > 1 is satisfied.
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Remark 4.3. Note that condition (3.1) or (4.3)p for some p > 1 implies∫ ∞

t0

sQ(s) ds = ∞

which, by [6], means that equation (4.4) does not have a bounded positive solution.

Remark 4.4. For Q(t) = t−α, 1 < α, equation (4.4) reads as

[x(t)− x(t − α)]′ + t−αx(t − β) = 0, t ≥ t0.

This is known [6] to have a bounded positive solution if α > 2, since∫ ∞

t0

s1−α ds < ∞.

To see that for 1 < α < 2 every solution is oscillatory, one can verify that∫ ∞

t0

Q(s) exp
{

1
τ

∫ s

t0

rQ(r) dr
}

ds = ∞

with Q(t) = t−α from [4], or take p = 1
α−1 > 1 in (4.3)p to get∫ ∞

t̃0

s
1
p Q(s) ds =

∫ ∞

t̃0

s
1
p−α ds =

∫ ∞

t̃0

s−1 ds = ∞.

The case α = 2 still remains to be unanswered, despite of the fact that in [5, Corollary] the
equation is stated to be oscillatory. At least for the variable delays, we proved that the equation
has a positive solution (see Example 3.2).

4.2 Distributed delays

Example 4.5. Let us consider the following equation[
x(t)− 2

π

∫ t− π
2

t−π
x(s) ds

]′
+

2
π(sin 2σ − sin σ)

∫ t−σ

t−2σ
x(s) ds = 0, t ≥ t0 (4.5)

for some t0 ∈ R, where σ = 1
3

(
π − 2 arctan 2

π+2

) .
= 0.79988 > 0.

This equation is of the form (1.4) with λ(t) ≡ 1, R(t) ≡ 1, Q(t) ≡ 2
π(sin 2σ−sin σ)

.
= 2.25506 >

0, τ(t) = t − π, τ(t) = t − π
2 , σ(t) = t − 2σ, and σ(t) = t − σ. It is easy to see that condition

(3.15) is satisfied. Thus, by Theorem 3.9, every solution of equation (4.5) oscillates. One of
such solutions is x(t) = sin t. Indeed, for this function, the left-hand side of (4.5) is equal to[

sin(t) +
2
π
(cos t + sin t)

]′
+

2(cos(t − 2σ)− cos(t − σ))

π(sin 2σ − sin σ)

=

(
1 +

2
π

)
cos(t)− 2

π
sin t +

2 cos t
π

cos 2σ − cos σ

sin 2σ − sin σ
+

2
π

sin t. (4.6)

Noting that

cos 2σ − cos σ

sin 2σ − sin σ
= − tan

3
2

σ = − tan
(

π

2
− arctan

2
π + 2

)
= − cot

(
arctan

2
π + 2

)
= −π + 2

2
= −1 − π

2

makes the right side of (4.6) vanish.
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