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Abstract. We consider the class X of 3-dimensional piecewise smooth vector fields
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1 Introduction

Differential equations and dynamical systems can be used to model natural phenomena and
we can obtain information about it from their solutions. An interesting tool used to under-
stand the behavior of the solutions of a dynamical system is the existence of first integrals
because, when they exist, the trajectories of the corresponding vector field remain restricted
to the level surfaces of these functions. We say that a n-dimensional differential system is
completely integrable when it has n − 1 independent first integrals and the orbits of it are
obtained just intersecting the level sets of the first integrals. Moreover, if it has less than n − 1
first integrals, it is said to be partially integrable. The 2n-dimensional Hamiltonian systems
are particular cases of partially integrable systems, for which we commonly study their be-
havior restricted to their invariant level sets. The study of Hamiltonian systems has many
applications and it is very important in mechanics, for example, as we can see in [28].

Observe that, if the system restricted to an invariant level set of the first integral has a
hyperbolic closed trajectory, then the original system has a 1-parameter family of hyperbolic

BCorresponding author. Email: claudio.buzzi@unesp.br

https://doi.org/10.14232/ejqtde.2024.1.43
https://www.math.u-szeged.hu/ejqtde/


2 C. Buzzi, A. Rodero, and J. Torregrosa

periodic orbits. As we will work with 3-dimensional piecewise smooth vector fields having
a first integral that keeps invariant all the spheres centered at origin, in fact we deal with
1-parameter radial families. For more details about how to consider 3-dimensional smooth
vector fields (resp. 3-dimensional piecewise smooth vector fields) with invariant spheres as
1-parameter radial family see for instance Section 5 of [4] (resp. [5]). In [6] it was proved that
the behavior of a homogeneous vector field restricted to an invariant sphere of radius ρ = 1
is topologically equivalent to the behavior of the same system restricted to any other level.
So, when a homogeneous vector field restricted to an invariant sphere has a limit cycle (resp.
a center), the 3-dimensional vector field has an isolated (resp. non-isolated) invariant cone
fulfilled of closed trajectories. On the other hand, the behavior of non-homogeneous vector
fields could be totally different in distinct levels of invariant spheres (see again [6]). In this
case, each hyperbolic closed trajectory restricted to an invariant sphere of radius ρ generates
a 1-parameter radial family of closed trajectories of the 3-dimensional vector field near the
sphere of radius ρ. So, it has locally a topological invariant cylinder near the sphere of radius
ρ fulfilled of closed trajectories. In general, it is very difficult to classify the invariant surfaces
generated by these 1-parameter families, as they can have very different behavior depending
on the vector field. Understanding it certainly depends on the knowledge on the behavior of
the vector fields restricted to each invariant sphere.

As these invariant surfaces are generated by closed trajectories of the restricted vector field,
this problem is strictly related to the Hilbert’s 16th problem, presented by D. Hilbert in 1900, at
the International Congress of Mathematicians, in Paris. The second part of the Hilbert’s 16th
problem asks for an estimation of the maximal number of limit cycles that a planar polynomial
vector field can have, being one of the most important open problems in Qualitative Theory of
Ordinary Differential Equations and Dynamical Systems. For more details we refer the reader
to [20].

In the last years, many classes of piecewise smooth dynamical systems have also been
studied and a rigorous formulation of their qualitative properties was given by Filippov, in
[15]. This theory is very important in many areas of science, see for instance [12]. Note
that, the Hilbert’s 16th problem has been extended to piecewise polynomial vector fields in a
natural way (see for example [16, 24]). In part of this paper we will analyze the existence of
(crossing) invariant cones for piecewise linear and quadratic vector fields. This dynamics also
appears in 3-dimensional piecewise linear systems as in [7–9].

In this work, we consider 3-dimensional piecewise differential vector fields with a separa-
tion set given by Σ = {(x, y, z) ∈ R3 : z = 0}, that is

Y(x, y, z) =

{
X+(x, y, z), z ≥ 0,

X−(x, y, z), z ≤ 0.
(1.1)

As Y can be multi-valued in Σ, we will follow the Filippov’s convention on the escaping and
sliding regions, see again [15].

In the piecewise smooth case, as in the smooth one, the integrability of the vector fields
X± is an important tool used to understand the behavior of the trajectories of Y = (X+, X−),
in the classification of phase portraits, and also to answer questions related to the existence
of crossing limit cycles (i.e. isolated crossing periodic orbits). See Section 2.2 and also [27]
for more details. Furthermore, when both X± have the same first integral the dimension of
the phase space where the trajectories of the piecewise smooth vector field Y = (X+, X−) are
defined is reduced by one. This property has motivated us to study 3-dimensional piecewise
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smooth vector fields partially integrable (that is, having both X± the same first integral H :
R3 → R) restricted to invariant level sets of H, as we explain on the following.

Let X be the class of smooth vector fields X : R3 → R3 that admits H(x, y, z) = x2 + y2 + z2

as a first integral. This class was previously studied in [6]. Note that all the spheres centered
at the origin with radius ρ, S2

ρ = {(x, y, z) ∈ R3 : x2 + y2 + z2 = ρ2}, are invariant by the
flow of X ∈ X. We denote by Xn (resp. XH

n ) the class of polynomials (resp. homogeneous
polynomials) vector fields of degree n in X. In this work, we consider the class of piecewise
differential vector fields given by (1.1) such that X± ∈ X. We denote this class by X and by
Xn (resp. X H

n ) when X± ∈ Xn (resp. X± ∈ XH
n ). Hence, if Y ∈ X , then any sphere centered

at the origin is invariant by the flow of the piecewise differential system Y. Observe that we
can consider invariant ellipsoids instead of invariant spheres. Although all the results can be
easily generalized to this case, we have preferred not to do it here, to avoid repetitions. In
the sequel, we describe the results that we have obtained for piecewise linear and quadratic
(homogeneous and nonhomogeneous) differential systems in X . We remark that, in general,
the 3-dimensional homogeneous vector fields will not be when we consider them projected to
a 2-dimensional space.

Before introducing our main results, we recall some properties about homogeneous vector
fields X ∈ XH proved in [6]. X ∈ X1 is homogeneous and it writes in the form

X(x; a1, a2, a3) = (−a1y − a2z, a1x − a3z, a2x + a3y), (1.2)

where, x = (x, y, z). Moreover, (1.2) has (generically) only a line of equilibrium points pass-
ing through the origin. Further, when we consider the restriction of (1.2) to the invariant
spheres S2

ρ, we conclude that (1.2) has only two equilibrium points on each sphere which are
centers and antipodals of each other (see Lemma 3.1, for more details). It means that the
3-dimensional smooth vector field (1.2) has a continuous of invariant cones fulfilled of non-
isolated closed trajectories. In Proposition 4.3 we show that a quadratic homogeneous vector
field X ∈ XH

2 can present an isolated invariant cone, fulfilled of closed trajectories, showing an
important difference between linear and quadratic homogeneous vector fields in the class X.

Using (1.2) we can see that each 3-dimensional piecewise linear system Y = (X+, X−)∈ X1

is of the form

Y(x, y, z) =

{
X+(x; a+1 , a+2 , a+3 ), z ≥ 0,

X−(x; a−1 , a−2 , a−3 ), z ≤ 0,
(1.3)

with
X±(x; a±1 , a±2 , a±3 ) = (−a±1 y − a±2 z, a±1 x − a±3 z, a±2 x + a±3 y). (1.4)

As explained in Section 2.3, we use the stereographic projection to study the local behav-
ior of Y ∈ X restricted to the invariant spheres. Moreover, the projection of a linear (resp.
quadratic) vector field defined on an invariant sphere is a quadratic (resp. cubic) planar vec-
tor field. We observe that they lose the property of homogeneity once projected. Usually, the
behavior of piecewise smooth vector fields is richer than the behavior of the smooth ones. This
property made us to look for isolated invariant cones in X1. However, the next result proves
that they do not exist.

Theorem 1.1. No piecewise differential system Y ∈ X1, given by (1.3), admits an isolated invariant
cone.

We prove it in Section 3, where we also show the possible phase portraits of (1.3), restricted
to the invariant sphere S2

ρ, with respect to the admissibility of its equilibria (see Figures 3.3
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and 3.4). We point out that the existence of crossing invariant cones for piecewise linear vector
fields which are continuous in the separation set Σ was studied in [8,9]. But the results cannot
be applied to our study because the continuity condition is not satisfied.

Inspired by the homogeneity property of the linear vector fields in X , we study some fam-
ilies in X H

2 in Section 4, where we prove that they can present isolated and non-isolated cross-
ing invariant cones, showing an important difference between piecewise linear and quadratic
homogeneous vector fields in X . We prove it considering the restriction of a piecewise smooth
vector field Y ∈ X H

2 to the sphere of radius ρ = 1 and showing that they can present cen-
ters for some specific values of the coefficients and crossing limit cycles for others. Another
difference can be observed when we compare the piecewise quadratic homogeneous vector
fields defined on S2

1 and on R2. To see it, we recall briefly the concept of reversible vector
field defined in open regions of Rm. Let φ : Rm → Rm be a Cr-involution. It means that
φ ◦ φ(x) = x, where x ∈ Rm. Let Fix(φ) = {x; φ(x) = x}. We say that a differential vector field
X, defined in Rm, is φ-reversible if Dφ ◦ X = −X ◦ φ, where Dφ denotes the Jacobian matrix
of φ. We say that X is reversible with respect to a line (resp. a point) when Fix(φ) is a line
(resp. a point). We refer [23], for an interesting survey about reversible differential systems.
We recall that any quadratic homogeneous vector field defined in R2 is reversible with respect
to the origin and, because of that, it does not have an equilibrium point of center type (see
[2]). Thus, we cannot consider the center-focus problem for piecewise quadratic homogeneous
vector fields on the plane. Note that the concept of reversibility can also be considered for
piecewise smooth vector fields. For more details see Section 2.2.

Finally, we have also analyzed the local behavior of a piecewise quadratic vector field X2,
proving the following result.

Theorem 1.2. There exist at least ten 1-parameter radial families of invariant crossing closed trajecto-
ries in the quadratic family X2, near the radius ρ = 1.

For proving Theorem 1.2, see Section 5, we consider the restriction of a piecewise smooth
vector field Y ∈ X2 to the invariant sphere of radius ρ = 1 and we show that it has 10 hyper-
bolic crossing limit cycles on the sphere S2

1. Since these crossing limit cycles are hyperbolic
on S2

1, they are normally hyperbolic with respect to the radial direction. This implies that
Y ∈ X2 has at least ten 1-parameter radial families of crossing periodic orbits which cross the
sphere of radius ρ in isolated closed trajectories, with 1− ε < ρ < 1+ ε for ε sufficiently small.
So, the 3-dimensional vector field Y ∈ X2 has invariant surfaces, foliated by crossing closed
trajectories, which are locally topologically equivalent to cylinders. The global structure of
each invariant surface is due to the birth or death of limit cycles. For example, this surface
is topologically equivalent to a sphere when we have exactly two Hopf points in S2

ρ∗ and S2
ρ∗ ,

being ρ∗ < 1 < ρ∗.
This paper is structured as follows. Section 2 is devoted to recalling the tools used to prove

our main results. In Section 3 we study piecewise linear vector fields with invariant spheres
and we also prove Theorem 1.1. In Section 4 we give some families of centers for piecewise
continuous quadratic homogeneous vector fields, in the sphere S2

1. Finally, in Section 5 we
prove Theorem 1.2.

2 Preliminary results

This section is dedicated to recall some concepts and bifurcation techniques for piecewise
smooth vector fields, that we use in the proofs of the results of this paper. Firstly, we recall the
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integrability concept and the Filippov’s convention for piecewise smooth vector fields. After
that, we consider a smooth vector field X : R3 → R3 having H(x, y, z) = x2 + y2 + z2 as a
first integral and define a piecewise smooth vector field with the same property. Considering
that the center-focus problem and local cyclicity will be studied projecting each 3-dimensional
piecewise smooth vector field defined on the invariant sphere into a planar one, we also
recall some definitions and the computation algorithm of the center conditions (or Lyapunov
constants) for planar piecewise smooth vector fields.

2.1 Integrability

Let P : Rm → Rm such that P(x) = (P1(x), . . . , Pm(x)), where x = (x1, . . . , xm) ∈ Rm and Pi,
i = 1, . . . , m, are polynomials in the variables xi with real coefficients. Let n be the maximum
between the degrees of Pi, i = 1, . . . , m and consider an m-dimensional differential system

ẋ = P(x). (2.1)

Let U ⊂ Rm be an open subset. If there exists a non-constant analytic function H : U → R

such that

⟨P(x),∇H(x)⟩ =
m

∑
i=1

Pi(x)
∂H
∂xi

(x) = 0, for x ∈ U,

then (2.1) is partially integrable on U and H is a first integral of (2.1) on U. Moreover, if P has
m − 1 independent first integrals then P is called a completely integrable system. In [14], it was
proved that any m-dimensional linear system has m − 1 independent first integrals and then
this is an example of a class of completely integrable systems.

It is worth to say that when a system P is completely integrable its trajectories are deter-
mined by the intersection of the level sets of its first integrals, see [13] for more details about it.
Moreover, each X ∈ X has at least one first integral and, in Section 3 we will see that the key
point for the proof of Theorem 1.1 is the existence of a second first integral for X± ∈ X1 and
to have a good knowledge of how the levels of these first integrals interact with the separation
curve of piecewise system (1.3).

2.2 Filippov vector fields

In this subsection we recall the definition of a piecewise smooth vector field under the Fil-
ippov’s convention (see [15] for more details). We restrict our attention to piecewise smooth
vector fields defined in Rm, the same definitions can be extended easily to m-dimensional
manifolds.

Let x = (x1, . . . , xm) ∈ Rm and consider f : Rm → R a Cr-class function such that 0 ∈ R

is a regular value of f . Therefore, Σ = f−1(0) = {x ∈ Rm : f (x) = 0} is an embedded
codimension one submanifold of Rm. Consider Σ+ = f−1([0,+∞)) = {x ∈ Rm : f (x) ≥ 0},
Σ− = f−1((−∞, 0]) = {x ∈ Rm : f (x) ≤ 0} and the piecewise smooth vector field with
separation set Σ defined by

Y(x) =

{
X+(x), x ∈ Σ+,

X−(x), x ∈ Σ−,
(2.2)

where X± are smooth vector fields defined on Σ±. The equilibrium points of X+ and X−

located in Σ+ and Σ−, respectively, are called admissible (or visible) equilibrium points or
simply equilibrium points of (2.2). On the other hand, the equilibrium points of X+ and X−
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located in Σ− and Σ+, respectively, are called non-admissible (or invisible) equilibrium points
of (2.2).

The Lie derivative of f with respect to the vector field X± at the point p ∈ Σ is defined by
X± f (p) = X±(p) · ∇ f (p), where the dot stands for the scalar or usual product on Rm. The
successive Lie derivatives are given by (X±)n f (p) = X±(p) · ∇(X±)n−1 f (p), n ≥ 2. When
X+ f (p) = X− f (p), for all p ∈ Σ, we say that (2.2) is a refractive system (on Σ). For more
details about refractive systems we refer the reader to [3, 5].

On the following, we recall the definitions of tangency points and tangency sets of (2.2).
We say that p ∈ Σ is a fold point of Y if X+ f (p) = 0, (X+)2 f (p) ̸= 0 and X− f (p) ̸= 0 (or
X− f (p) = 0, (X−)2 f (p) ̸= 0 and X+ f (p) ̸= 0). Hence, p is a fold-fold point when X+ f (p) = 0,
X− f (p) = 0, (X+)2 f (p) ̸= 0, and (X−)2 f (p) ̸= 0. We also define the tangency set of X± with
Σ by SX± = {p ∈ Σ : X± f (p) = 0} and the tangency set of Y by SY = SX+ ∪ SX− .

As usual, we consider the crossing region Σc = {p ∈ Σ : (X+ f (p))(X− f (p)) > 0}, the
sliding region Σs = {p ∈ Σ : X+ f (p) < 0, X− f (p) > 0} and the escaping region Σe = {p ∈
Σ : X+ f (p) > 0, X− f (p) < 0}. So Σ is the disjoint union Σc ∪ Σs ∪ Σe ∪ SY and following the
Filippov’s convention we define the Filippov vector field FY(p) on Σs ∪ Σe by

FY(p) =
1

X− f (p)− X+ f (p)
(
X− f (p)X+(p)− X+ f (p)X−(p)

)
.

We also recall that a crossing trajectory is an orbit that have isolated crossing points of
intersection with the separation set Σ. Moreover, a crossing limit cycle is an isolated crossing
periodic orbit.

Finally, we say that (2.2) is time φ-reversible if Fix(φ) ⊂ Σc and Dφ ◦ Y = −Y ◦ φ, where
φ is an Cr-involution defined in Rm. As in the smooth case, each piecewise reversible vector
field presents a certain symmetry. For more details, see [21].

2.3 Orthogonal change of coordinates and stereographic projection

We say that a change of coordinates is orthogonal when the matrix of it is orthogonal, in other
words, if M is this matrix it must satisfy Mt = M−1. This kind of change of coordinates keeps
all the spheres invariant and using it we can assume that the equilibrium point of a smooth
vector field, that always exists on each invariant sphere S2

ρ, can be located at any (x0, y0, z0)

that we choose. Note that, when we consider piecewise smooth vector fields on invariant
spheres, this kind of change of coordinates (on the whole sphere) allows us to assume that
some equilibrium point of the Filippov vector field or some fold point can be located at any
(x0, y0, 0) ∈ Σ.

To study local behaviors, we use the stereographic projection with respect to the point
(0,−ρ, 0). It allows us to consider planar vector fields instead of 3-dimensional ones restricted
to spheres. In the following, we define the piecewise projected vector field. Consider the
stereographic projection, p : S2

ρ \ {(0,−ρ, 0)} → R2, on the plane {(x, y, z) ∈ R3 : y = ρ} given
by p(x, y, z) = 2ρ(x, z)/(y + ρ). We define the projected vector field associated to X ∈ X by

PX(u) = dpp−1(u) ◦ X ◦ p−1(u),

where X = X|
S2

ρ

, u = (u, v) and p(x) = u. Note that, this stereographic projection sends the

separation set Σ = {(x, y, z) ∈ R3 : z = 0} of a piecewise smooth vector field Y ∈ X to
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{(u, v) ∈ R2 : v = 0}. Thus, the projection PY : R2 → R2 of (1.1) is written as

PY(u) =

{
PX+(u), v ≥ 0,

PX−(u), v ≤ 0,
(2.3)

where X± = X±
|
S2

ρ

, u = (u, v). Besides, p preserves closed curves and contact between curves

contained on its domain of definition, so p ∈ S2
ρ is said to be a monodromic equilibrium point

of (1.1) if q = p(p) is a monodromic equilibrium point of (2.3).

2.4 Lyapunov constants and local cyclicity for planar piecewise systems

In this section, we will recall the stability algorithm (see [16, 17] and references therein) for
planar piecewise smooth vector fields of the form

Y(x, y) =

{
X+(x, y), y ≥ 0,

X−(x, y), y ≤ 0,
(2.4)

having both X± an equilibrium point of nondegenerate center-focus type at the origin. That is,

X±(x, y) =
(

α±x − β±y +
n

∑
k=2

P±
k (x, y), β±x + α±y +

n

∑
k=2

Q±
k (x, y)

)
,

with P±
k and Q±

k homogeneous polynomials of degree k in the variables x and y. We have
assumed that both linear parts are in Jordan’s normal form. Furthermore, we follow the
Filippov’s convention to define the trajectories of Y on the separation set Σ = {(x, y) ∈ R2 :
y = 0} and we assume β± ̸= 0 as the non degeneracy condition for each X±. Using polar
coordinates, (x, y) = (r cos θ, r sin θ), we write system (2.4) as{

ṙ =R+(r, θ), θ ∈ [0, π],

ṙ =R−(r, θ), θ ∈ [π, 2π],

where the dot represents the derivative with respect to θ.
Consider r±(θ, r0) the solution of ṙ = R±(r, θ) with initial condition r±(0, r0) = r0 and

r0 > 0 sufficiently small. The expansion in Taylor’s series of the solution r±(θ, r0) can be
written as

r±(θ, r0) = r0 +
∞

∑
k=1

r±k (θ)r
k
0,

with r±k (0) = 0, for all k ≥ 1, and with r+ defined for θ ∈ [0, π] and r− defined for θ ∈ [π, 2π].
The Poincaré half-return maps are defined by

Π+(r0) = r+(π, r0),

Π̃−(r0) = r−(−π, r0),

where Π̃− denotes the inverse of Π− since both r± are defined with initial condition θ = 0
and r0 > 0 sufficiently small. The displacement function, which is analytic, is given by
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∆(r0) = Π̃−(r0)− Π+(r0) =
∞

∑
k=1

Lkrk
0,

for r0 small enough. When α+α− ̸= 0 the origin is a hyperbolic equilibrium point. Otherwise
L1 = 0 and, for k ≥ 2, we can define the k-th Lyapunov constant by Lk ̸= 0, when L1 = · · · =
Lk−1 = 0. In this case, if there exists k ≥ 2 so that Lk ̸= 0, then the origin of system (2.4) is
a weak focus of order k. Otherwise the origin is a center. For more details see for instance
[16,17]. Usually, to simplify computations we take α+ = α− = 0. Note that on the smooth case
the first non-vanishing Lyapunov constant has always odd subscript while in the piecewise
class this property does not hold. Recall that, for analytical vector fields, the classical Hopf
bifurcation occurs when one limit cycle of small amplitude bifurcates from a weak focus of
first order (with the above notation it occurs when L1 = L2 = 0 and L3 ̸= 0), while the
limit cycles arise from a higher-order weak focus in the degenerate Hopf bifurcation (see [1]
for more details). Moreover, for piecewise smooth vector fields, in [11] it is shown that one
more limit cycle appears moving the equilibrium points on Σ. Because a sliding or escaping
segment is created adding adequately some perturbative parameters which implies that the
displacement function of a piecewise-smooth vector field could be of the form

∆(r0) = Π̃−(r0)− Π+(r0) = L0 +
∞

∑
k=1

Lkrk
0,

with r0 sufficiently small. So, by the derivative division algorithm, it is possible to obtain one
limit cycle more when L0 ̸= 0. This is known as a pseudo-Hopf type bifurcation. Because
in [22], this limit cycle bifurcation was called pseudo-Hopf near a fold-fold point and proved
previously in [15]. For more details see [10,19]. We notice that a weak focus of order k, gener-
ically, unfolds exactly k limit cycles. Note that when we deal with continuous or refractive
perturbations we do have not pseudo-Hopf type bifurcations because, in these cases, we never
have sliding or escaping segments on Σ.

As we deal with polynomial perturbations of a piecewise center, we can use the Implicit
Function Theorem to obtain hyperbolic crossing limit cycles of small amplitude in a neighbor-
hood of the origin of (2.4). In this case, like in the analytical one, when we perturb a center
under the condition α± = 0, the expressions of Lk are polynomials that vanish when the per-
turbative parameters do. Therefore, we can compute the Taylor series of L2, . . . , Ll with respect
to the perturbative parameters. We denote by L[1]

i , i = 2, . . . , l their linear parts. Consequently,

if the matrix [L[1]
2 , . . . , L[1]

l ], with respect to the perturbative parameters, has rank l − 1, as we
have previously explained, adding the traces and the sliding or escaping segments we can get
l small amplitude hyperbolic crossing limit cycles in a neighborhood of the origin. For more
details see [17] and references therein.

We can also study bifurcations of small amplitude limit cycles for piecewise smooth vector
fields using the Melnikov’s method. It is also used to study global bifurcations that occur
near one-parameter families of periodic orbits. In particular, the first Melnikov Function and
the first-order of the Lyapunov constants are related and we know that if, after perturbing a
center, the rank of the matrix defined by the coefficients of [L[1]

2 , . . . , L[1]
m ], with respect to the

parameters, is l − 1, where m > l, then there exist l hyperbolic crossing limit cycles bifurcating
from this center, when we also use the trace and the sliding parameters. For more details,
see [18].
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3 Piecewise linear vector fields on invariant spheres

In this section, we study piecewise linear vector fields defined on invariant spheres. We prove
Theorem 1.1 and we provide all phase portraits of piecewise smooth vector fields Y ∈ X when
we restrict on a invariant sphere. From the complete analysis of the phase portraits we can
have a more complete result, Proposition 3.3, that also shows the nonexistence of other type
of limit cycles on the invariant spheres, different from the crossing ones. In fact, Theorem 1.1
can be also thought as a corollary of it. Of course, the nonexistence of limit cycles on spheres,
by the homogeneity, proves immediately the nonexistence of any kind of isolated invariant
cones.

At first we summarize some results about smooth vector fields presented in [6] that we
use in what follows.

Lemma 3.1. Let X ∈ X1. The following statements are true.

(a) If p ∈ S2
ρ = {(x, y, z) ∈ R3 : x2 + y2 + z2 = ρ2} is an equilibrium point of system (1.2), then p

is a center.

(b) Any X ∈ X1 is completely integrable with the second first integral

H̃(x, y, z) = a3x − a2y + a1z. (3.1)

(c) X ∈ X1 has only two equilibrium points of center type on each sphere S2
ρ which are antipodal of

each other.

(d) The equilibrium points of (1.2) are (0, 0, ρ) if, and only if, a2 = a3 = 0. In this case, the second
first integral of (1.2), given by (3.1), is of the form H̃(x, y, z) = a1z.

(e) Suppose that a3 ̸= 0. Then the equilibrium points of (1.2) are of the form

{(x, y, z) ∈ R3 : y = −(a2/a3)x, z = (a1/a3)x}.

(f) Suppose that a2 ̸= 0. Then the equilibrium points of (1.2) are of the form

{(x, y, z) ∈ R3 : x = −(a3/a2)y, z = −(a1/a2)y}.

(g) System (1.2) is invariant by the change of coordinates (x, y, z, t) 7→ (−x,−y,−z, t).

(h) The phase portrait of any X ∈ X1 on S2
ρ, with ρ > 0, is topologically equivalent to the one on S2

1.

So, (1.2) has (generically) only a line of equilibrium points passing through the origin. As
we observed in the introduction, by Lemma 3.1, we conclude that the 3-dimensional smooth
vector field (1.2) has a continuous of invariant cones fulfilled of non-isolated closed trajectories.
One of these cones is illustrated in Figure 3.1.

Now we consider the 3-dimensional piecewise smooth vector fields Y = (X+, X−) ∈ X1

given by (1.3), with separation set Σ = {(x, y, z) ∈ R3 : z = 0}. Observe that, when we restrict
our study to an invariant sphere S2

ρ we deal with a piecewise smooth vector field defined on
S2

ρ with separation set {(x, y, z) ∈ S2
ρ : z = 0}. Sure that there will be no doubt, to simplify the

notation we will continue calling the separation set and the vector fields Y and X± restricted
to the sphere S2

ρ by Σ, Y, and X±.
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x

z

y

Figure 3.1: Invariant cone of the linear vector field X(x, y, z) = (z, 0,−x) ∈ X1.

Firstly, we use Lemma 3.1 to analyze the possible positions of the equilibrium points
of (1.4) with respect to the separation set Σ. By Lemma 3.1(d), the equilibria of the linear
systems X±, defined by (1.4), are (0, 0, ρ) if, and only if, a±2 = a±3 = 0. Note that the item
(d) of Lemma 3.1 also implies that Σ is invariant by the flow of X± and that (0, 0,±ρ) are the
unique equilibria of X± on each sphere when a±2 = a±3 = 0. So, on the following we assume
that (a±2 )

2 + (a±3 )
2 ̸= 0. We do all the calculations assuming that a±3 ̸= 0, the case a±2 ̸= 0 is

analogous. Under this condition, Lemma 3.1(e) implies that the equilibria of X± are of the
form {(x, y, z) ∈ R3 : y = −(a±2 /a±3 )x, z = (a±1 /a±3 )x}. Hence, the equilibria of X± are on
the separation set Σ if, and only if, a±1 = 0. Moreover, by Lemma 3.1(c), both X± have two
equilibrium points of center type on each sphere. So, if a±1 ̸= 0 we conclude that the vector
field X± has one admissible and one non-admissible equilibrium point.

Following [27], we use the first integrals H(x, y, z) = x2 + y2 + z2 and H̃±(x, y, z), given
by (3.1), of the linear vector fields (1.4) to calculate a difference map, on Σ, defined below.
With this map we can analyze and describe the behavior of the levels curves of (3.1) on S2

ρ

and how these levels interact with the separation set Σ. It allows us to know the behavior of
the trajectories of (1.4) on each sphere S2

ρ, and, in particular, see if any system (1.3) admits
crossing limit cycles on S2

ρ.

Lemma 3.2. No piecewise differential system Y ∈ X1, given by (1.3), admits crossing limit cycles
restricting the dynamics on each fixed sphere S2

ρ, with ρ > 0.

Proof. As we saw before, a±2 = a±3 = 0 implies that Σ is invariant by the flow of (1.4). Therefore,
in this case we cannot define a difference map using (3.1). Then, on the following, we assume
that (a±2 )

2 + (a±3 )
2 ̸= 0. We do all the calculations assuming that a±3 ̸= 0. The case a±2 ̸= 0 is

analogous.
Let p = (x0, y0, 0) ∈ Σ ∩ S2

ρ. Then, there exist k± such that H̃±(p) = k±. The half-return
maps π±(p) = q± = (x±1 , y±1 , 0) satisfy

H(q±) = ρ2,

H̃+(q+) = a+3 x+1 − a+2 y+1 = k+,

H̃−(q−) = a−3 x−1 − a−2 y−1 = k−.

Solving the systems of equations

{H(q+) = ρ2, H̃+(q+) = k+}, {H(q−) = ρ2, H̃−(q−) = k−}
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we obtain the solutions

q± =

(
−
((a±2 )

2 − (a±3 )
2)x0 + 2a±2 a±3 y0

(a±2 )2 + (a±3 )2
,
((a±2 )

2 − (a±3 )
2)y0 − 2a±2 a±3 x0

(a±2 )2 + (a±3 )2
, 0
)

.

So, the difference map, d(p) = π+(p)− π−(p) : Σ → R, is such that

d(p) =
(
2(a−2 a+3 − a−3 a+2 )((a−2 a+3 + a+2 a−3 )x0 − (a−2 a+2 − a−3 a+3 )y0),

− 2(a−2 a+3 − a−3 a+2 )((a−2 a+2 − a−3 a+3 )x0 + (a−2 a+3 + a+2 a−3 )y0), 0
)
.

Consequently, it is identically zero if, and only if, a+2 a−3 = a−2 a+3 . Hence, either all the crossing
trajectories of (1.3), on S2

ρ, are closed or none of them are, which concludes the proof.

Proof of Theorem 1.1. It is a direct consequence of the fact that system (1.3) does not admit
isolated crossing periodic orbits, by Lemmas 3.1(a) and 3.2.

The remainder of this section is devoted to describing the behavior of any piecewise
smooth vector field (1.3) restricted to the sphere of radius ρ, that is S2

ρ. We show also that
no piecewise differential system Y ∈ X1, given by (1.3), admits sliding limit cycles on each
fixed sphere S2

ρ, with ρ > 0. Moreover, we provide the possible phase portraits of Y ∈ X1 and,
consequently, we will prove the following result.

Proposition 3.3. A piecewise differential system Y ∈ X1, given by (1.3), does admit neither a crossing
nor any other type of limit cycle on each fixed invariant sphere S2

ρ, with ρ > 0.

We start studying the behavior of the tangency lines of (1.4) assuming that a3 ̸= 0, under
the condition (a±2 )

2 + (a±3 )
2 ̸= 0.

Lemma 3.4. The tangency lines of (1.4) are given by

SX± =
{
(x, y, z) ∈ R3 : y = −(a±2 /a±3 )x, z = 0

}
.

Moreover, these tangency lines intersect the sphere S2
ρ at the points{

x = −ρa±3 /
√
(a±2 )2 + (a±3 )2, y = ρa±2 /

√
(a±2 )2 + (a±3 )2

}
and their antipodals. Then, (1.3) has two fold points on S2

ρ, for all ρ ∈ R, ρ ̸= 0. Besides, one
of these tangency points is visible and the other one is invisible unless that a±1 = 0. Finally, when
SX+ = SX− we have two fold-fold points of Y = (X+, X−) on each sphere and it occurs if, and only if,
a+2 a−3 = a−2 a+3 .

Proof. Let f : R3 → R given by f (x, y, z) = z. So, Σ = {(x, y, z) ∈ R3; z = 0} = f−1(0). Thus,
X± f = X± · ∇ f = a±2 x + a±3 y and the first part of the result follows. With straightforward
computations we prove the other statements.

It is important to note that the symmetry of the problem guarantees that if one equilibrium
point of X+ or X− remains on Σ, then so does the other. Moreover, if an equilibrium point
of X+ coincides with a tangency or an equilibrium point of X− the other one also coincides.
Besides, the change of coordinates (x, y, z) 7→ (x, y,−z) allows us to change the behavior of
the southern and northern hemispheres and then we can fix the behavior in one of them in
the next analysis.
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As we saw in Section 2, we can define the projected vector field associated to (1.3), on the
sphere S2

ρ, using (2.3). It is of the form

PY(u, v) =

{
PX+(u, v), v ≥ 0,

PX−(u, v), v ≤ 0,

where,
PX±(u, v) =

(
− 4ρ2a±1 − 4ρa±2 v − a±1 u2 + 2a±3 uv + a±1 v2,

4ρ2a±3 + 4ρa±2 u − a±3 u2 − 2a±1 uv + a±3 v2).

The projected Filippov vector field is 1-dimensional and it is well defined at the points
(u, 0) for which (PX+ f )(PX− f )(u) = (4ρ2a+3 + 4ρa+2 u − a+3 u2)(4ρ2a−3 + 4ρa−2 u − a−3 u2) < 0. In
this case, we have

FY(u) =
(4ρ2 + u2)

(
(a−1 a+3 − a+1 a−3 )u

2 + 4(a+1 a−2 − a−1 a+2 )uρ + 4(a+1 a−3 − a−1 a+3 )ρ
2)

(a−3 − a+3 )u2 + 4ρ(a+2 − a−2 )u + 4ρ2(a+3 − a−3 )
. (3.2)

Now, we summarize the key points of the proof of Proposition 3.3, providing after the
necessary technical lemmas.

Using the two first integrals of X± we prove, in Lemma 3.5, that there exist only 10 possible
behaviors for the levels curves of (1.3) on each sphere S2

ρ, concerning the admissibility of
equilibrium points of Y ∈ X1, which are the ones in Figure 3.2. After that, we study the
behavior of the Filippov vector field, FY, given by (3.2). Note that, (3.2) is not defined when Σ
is a trajectory of X+ or X− on S2

ρ. In Lemma 3.7, we conclude that if the equilibrium points
of both X± stay on Σ (a+1 = a−1 = 0) or if there exists λ ∈ R such that X+ = λX−, then
the Filippov vector field (3.2) is identically zero. In Lemma 3.9, we prove that (3.2) has two
symmetric equilibrium points r1 and r2 if, and only if, a+1 a−3 − a−1 a+3 ̸= 0, a+1 a−1 < 0 and
a+2 a−3 − a−2 a+3 ̸= 0. In this case, the equilibrium points r1 and r2 have the same (1-dimensional)
stability and they are stable (resp. unstable) if (a+2 a−3 − a−2 a+3 )(a+1 − a−1 ) > 0 (resp. < 0).
In addition, (3.2) can have isolated equilibrium points only when the sliding and escaping
segments are delimited by two tangency points of the same type otherwise both vector fields
X+ and X− point towards the same direction on Σ. Moreover, (3.2) does not have isolated
equilibrium points when Y ∈ X1 has fold-fold points or the equilibrium points of X+ or X−

stay on Σ.
Now, changing the time orientation of the piecewise smooth vector field (1.3), if it is nec-

essary, we can fix an orientation for the vector field X− in Σ− = {(x, y, z) ∈ S2
ρ : z ≤ 0} and

choose between two different ones for X+ in Σ+ = {(x, y, z) ∈ S2
ρ : z ≥ 0}. Doing this, in

Figure 3.2 we draw the possible phase portraits for system (1.3) on the sphere S2
ρ, with respect

to the admissibility of equilibrium points of Y ∈ X1, which are the ones in Figures 3.3 and
3.4. Note that, in Figures 3.3 and 3.4 we do not distinguish the cases in which it is possible to
have connections (see Remark 3.6), because it will not be necessary to conclude the proof of
Proposition 3.3.

Joining the information about the positions of the equilibrium points on each sphere S2
ρ

with the property of the difference map detailed on Lemma 3.2, we can classify the possible
behavior of the invariant curves of piecewise smooth vector fields (1.3) on S2

ρ, with respect to
the admissibility of its equilibrium points.

Lemma 3.5. With respect to the admissibility of equilibrium points, the behavior of the level curves of
(1.3) on each fixed sphere S2

ρ, ρ > 0, are shown in Figure 3.2.
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(a) (b) (c) (d) (e)

( f ) (g) (h) (i) (j)

Figure 3.2: Invariant curves of Y ∈ X1. The blue, red, green and black dots
indicate, respectively, tangency points; equilibrium points of X± on Σ; the coin-
cidence of equilibrium and tangency points on Σ; the admissible center points
of X±.

Proof. Let Y = (X+, X−) ∈ X1. Denote by p±i and q±i , with i = 1, 2 the equilibrium and the
tangency points of X±, respectively. On the following we assume that p±1 = (x0, y0, z0) is such
that z0 ≥ 0 and p±2 = (x0, y0, z0) is such that z0 ≤ 0. We show the possible behaviors of the
level curves of Y ∈ X1 on S2

ρ in Figure 3.2. We divide the analysis into three cases depending
on the position of the equilibrium points of X− on S2

ρ.
Firstly, if p−1 = (0, 0, ρ) and p−2 = −p−1 the trajectories of X− on S2

ρ are parallel to Σ. The
same property holds when p+1 = (0, 0, ρ) and p+2 = −p+1 . If p+i = (x0, y0, z0), i = 1, 2, are
such that z0 ̸= ±ρ and z0 ̸= 0, then we have one admissible and one non-admissible center for
X+ on S2

ρ and therefore, two tangency points, q+i ∈ Σ, i = 1, 2, one visible and one invisible.
Finally, if p+i = (x0, y0, 0), i = 1, 2, both equilibrium points of X+ are on Σ. We draw the
invariant curves of these cases in Figure 3.2 (a)− (c).

Now we consider the case where p−i = (x0, y0, z0), i = 1, 2, with z0 ̸= 0 and z0 ̸= ρ.
Then, we have one admissible and one non-admissible center for X− on S2

ρ and therefore,
two tangency points, q−i ∈ Σ, i = 1, 2, one visible and one invisible, respectively. Here, as
we have already considered the case where the trajectories of X− are parallel to Σ, using the
change of coordinates (x, y, z) 7→ (x, y,−z) explained before, we only need to consider the
following two behaviors of X+ on S2

ρ. If p+i = (x0, y0, z0), i = 1, 2, are such that z0 ̸= ρ and
z0 ̸= 0, we have one admissible and one non-admissible center for X+ and therefore, two
tangency points q+i ∈ Σ, i = 1, 2, one visible and one invisible, respectively. Hence, we have
three new global behaviors depending on the relative position of q±i , i = 1, 2 that occur when
q+1 = q−1 and q+2 = q−2 , when they do not coincide and when q+1 = q−2 and q+2 = q−1 . Finally,
if p+i = (x0, y0, 0), i = 1, 2, the two equilibrium points of X+ are on Σ and we have two new
global behaviors depending on the positions of these equilibrium points, that is p+i = q−i or
p+i ̸= q−i , i = 1, 2. We show the invariant curves of these cases in Figure 3.2 (d)− (h).

We finish the analysis considering the case where the two centers of X− on S2
ρ are on Σ, it

means that p−i = (x0, y0, 0), i = 1, 2. Using the change of coordinates (x, y, z) 7→ (x, y,−z), we
can restrict to the case in which the two equilibrium points of X+, p+i for i = 1, 2, are also on
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 3.3: Possible phase portraits of Y ∈ X1. The gray, blue, pink and black
segments indicate, respectively, that the Filippov’s convention does not apply;
the escaping, sliding, and the crossing regions. Moreover, the blue, red, green
and black dots indicate, respectively, tangency points; equilibrium points of X±

on Σ; the coincidence of equilibrium and tangency points on Σ; the admissible
center points of X± or the critical points of the Fillipov vector field FY.
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(u) (v) (w) (x)

(y) (z)

Figure 3.4: Possible phase portraits of Y ∈ X1. The blue, pink and black seg-
ments indicate, respectively, the escaping, sliding, and the crossing regions.
Moreover, the blue, red and black dots indicate, respectively, tangency points;
equilibrium points of X± on Σ; the admissible center points of X±.

Σ. Here we have two new global behaviors depending on the positions of these equilibrium
points: p+i = p−i or p+i ̸= p−i . We draw the invariant curves of these cases in Figure 3.2
(i)–(j).

Remark 3.6. Note that the tangency points of X± are antipodal of each other. Therefore,
the tangency lines SX± of X± are contained in the plane {(x, y, z) ∈ R3 : z = 0} and pass
through the origin. Observe that when these tangency lines are perpendicular Y ∈ X1 admits a
tangential connection. It occurs because the trajectories of X± are restricted to the level curves
of (3.1), on S2

ρ. Thus, depending on the relative position of the tangency lines, the behavior
illustrated in the cases (e), (h), and (j) of Figure 3.2 are not unique. But for our purpose we do
not need to distinguish the cases in which there are or not separatrix connections.

As in the above analysis, we only have considered the level curves of X± we have not taken
into account the behavior of the Filippov vector field. On the following lemmas we describe
the behavior of it using the projected Filippov vector field (3.2) associated to (1.3) restricted to
the sphere S2

ρ, because it is 1-dimensional.

Lemma 3.7. The Filippov vector field (3.2) is well defined when (PX+ f )(PX− f ) < 0. In this case, it
is identically zero if, and only if, a−1 a+3 − a+1 a−3 = 0 and a−1 a+2 − a+1 a−2 = 0.

Proof. It follows since (3.2) is a rational function and its numerator is identically zero if, and
only if, (a−1 a+3 − a+1 a−3 )u

2 + 4ρ(a+1 a−2 − a−1 a+2 )u + 4ρ2(a+1 a−3 − a−1 a+3 ) ≡ 0.

Remark 3.8. The geometric implication of Lemma 3.7 is the following. Firstly, we note that
a+2 = a−2 = 0 and a+3 = a−3 = 0 imply that a−1 a+3 − a+1 a−3 = 0 and a−1 a+2 − a+1 a−2 = 0. But, in
this case, (PX+ f )(PX− f ) is identically zero and then (3.2) is not defined for these values of the
coefficients. In addition, a+1 = a−1 = 0 implies that a−1 a+3 − a+1 a−3 = 0 and a−1 a+2 − a+1 a−2 = 0
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and then (3.2) vanishes identically when the equilibrium points of both X+ and X− are on
Σ. Finally, when (a+1 )

2 + (a−1 )
2 ̸= 0, the conditions a−1 a+3 − a+1 a−3 = 0 and a−1 a+2 − a+1 a−2 = 0

imply that a−2 a+3 − a−3 a+2 = 0 and then X+ and X− are multiple of each other, which means
that the equilibrium points and tangency lines of X+ and X− coincide. So, we have that (3.2)
is identically zero if, and only if, the equilibrium points of both X± are on Σ or if X+ and X−

are multiple of each other.

Note that when a+1 a−3 − a−1 a+3 ̸= 0, the projected Filippov vector field (3.2) can have at most
two real roots, for i = 1, 2, given by

ri =
2ρ

(
(a+1 a−2 − a−1 a+2 )− (−1)i

√
(a+1 a−2 − a−1 a+2 )2 + (a+1 a−3 − a−1 a+3 )2

)
a+1 a−3 − a−1 a+3

(3.3)

if (PX+ f )(PX− f )(ri) < 0. In addition, (PX+ f )(PX− f )(ri) > 0 means that X+ and X− are
parallel at a crossing point and then (3.2) is not defined at this point. On the other hand,
when a+1 a−3 − a−1 a+3 = 0 the projected Filippov vector field has a unique possible real root at
the origin. The symmetry of the problem ensures that the other root is situated at infinity.
We can avoid this and suppose that (0, 0) is not an equilibrium point of (3.2) making the
same orthogonal change of coordinates in X+ and X− that put (0, ρ, 0) in (x0, y0, z0) with
y0 ̸= ρ, as it was done previously. So, without loss of generality, we only analyze the case
a+1 a−3 − a−1 a+3 ̸= 0 and study the stability of the equilibrium points of the Filippov vector field,
when it is well defined.

Lemma 3.9. The Filippov vector field (3.2) is well defined when (PX+ f )(PX− f ) < 0. In this case,
it has two symmetric equilibrium points r1 and r2 defined in (3.3) if, and only if, a+1 a−3 − a−1 a+3 ̸= 0,
a+1 a−1 < 0 and a+2 a−3 − a−2 a+3 ̸= 0. The equilibrium points r1 and r2 have the same (1-dimensional)
stability. Moreover, they are stable (resp. unstable) if (a+2 a−3 − a−2 a+3 )(a+1 − a−1 ) > 0 (resp. < 0).

Proof. As we saw before, when a+1 a−3 − a−1 a+3 ̸= 0, the Filippov vector field can have at most
two real roots r1 and r2 given in (3.3). Note that, for i = 1, 2, we have

(PX+ f )(PX− f )(ri) =
64ρ4a+1 a−1 (a+2 a−3 − a−2 a+3 )

2

(a+1 a−3 − a−1 a+3 )4(√
(a+1 a−2 − a−1 a+2 )2 + (a+1 a−3 − a−1 a+3 )2 − (−1)i(a+1 a−2 − a−1 a+2 )

)2

.

As we are assuming a+1 a−3 − a−1 a+3 ̸= 0, then√
(a+1 a−2 − a−1 a+2 )2 + (a+1 a−3 − a−1 a+3 )2 ± (a+1 a−2 − a−1 a+2 )

are always different from zero. Consequently, the projected vector field (3.2) is defined at r1

and r2 if, and only if, a+1 a−1 < 0 and a+2 a−3 − a−2 a+3 ̸= 0. It means that, when the equilibrium
points of both X+ and X− are on Σ and when the tangential points of X+ and X− coincide,
the projected Filippov vector field does not have isolated equilibrium points.

When a+2 a−3 − a−2 a+3 ̸= 0 and a+1 a−1 < 0 we study the stability of these equilibrium points.
As 4ρ2 + u2 is a positive factor of (3.2), we can study the stability of the equilibrium points
of FY(u)/(4ρ2 + u2). In this case, the derivative with respect to u is nonvanishing for all u,
because it is

−
4ρ(4ρ2 + u2)(a+2 a−3 − a−2 a+3 )(a+1 − a−1 )

((a−3 − a+3 )u2 + 4ρ(a+2 − a−2 )u + 4ρ2(a+3 − a−3 ))2
.



3-dimensional vector fields with invariant spheres 17

Thus, r1 and r2 have the same stability which depends on the sign of

(a+2 a−3 − a−2 a+3 )(a+1 − a−1 ).

Remark 3.10. As we saw above, (3.2) is not defined when Σ is a trajectory of X+ or X−.
Moreover (3.2) does not have isolated equilibrium points neither when it has fold-fold points
nor when the equilibrium points of X+ or X− stay on Σ. Besides this, the Filippov vector field
(3.2) can have equilibrium points only when the sliding and escaping segments are delimited
by two tangency points of the same type, otherwise both vector fields X+ and X− point on
the same direction.

Now, changing the time orientation of the piecewise smooth vector field (1.3), if it is nec-
essary, we can fix a time orientation for the vector field X− and choose two different ones
for X+ on S2

ρ. Hence, when we add a time orientation in Figure 3.2 we obtain the possible
behaviors for system (1.3), that are depicted in Figures 3.3 and 3.4. Note that Figures 3.3
and 3.4 do not take into account connections of (1.3). These elements do not influence in the
existence of limit cycles. Moreover, the nonexistence of limit cycles in S2

ρ is not related to the
existence of connections. This is due to the arrangement of tangency points, admissible and
non-admissible equilibrium points, and, as (1.3) is completely integrable, the difference map
does not have isolated zeros.

With this analysis we conclude that system (1.3) has neither limit cycles nor crossing limit
cycles on the spheres S2

ρ, with ρ > 0. So, the proof of Proposition 3.3 follows.

4 Centers and limit cycles for piecewise continuous quadratic
homogeneous vector fields

In this section, inspired by the homogeneity property of linear vector fields with invariant
spheres, we study the center-focus problem for piecewise quadratic homogeneous vector fields
in X H

2 . Because of the difficulty of the problem, we restrict our attention to the class of
continuous homogeneous vector fields and give some families of centers in Proposition 4.3.
Even with this restriction, in Proposition 4.5 we exhibit a system in X H

2 with a weak focus of
third-order at the point (0, 1, 0) from which 2 small amplitude crossing limit cycles bifurcate
on S2

1 with a continuous perturbation in X H
2 . Note that with a continuous perturbation, we

cannot produce a sliding segment and then it is natural that we do not reach the maximum
upper bound for the number of small amplitude limit cycles that can bifurcate from a generic
weak focus of third-order. Moreover, in this section we only consider the perturbation in X H

2
and, in the next section we deal with a general quadratic perturbation in X2.

On the following, we recall some assumptions given in [6], for a quadratic homogeneous
vector field X ∈ XH

2 . Firstly, doing an orthogonal change of coordinates we can assume,
without loss of generality, that (0, ρ, 0) ∈ S2

ρ is an equilibrium point of X ∈ XH
2 . With this

assumption, we can write X in the form

ẋ = −a4xy − a5xz − (a6 + a7)yz − a8z2,

ẏ = a4x2 + a6xz − a9z2,

ż = a5x2 + a7xy + a8xz + a9yz.

(4.1)

Observe that the equilibrium point (0, ρ, 0) of (4.1) is located at the origin after projection and
let J be the Jacobian matrix associated to the projected vector field PX at the origin. Therefore,
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(0, ρ, 0) is of nondegenerate center-focus type if, and only if, the trace of J is zero and its
determinant is positive. A straightforward computation shows that it occurs if, and only if,
a4 − a9 = 0 and a6a7 + a2

7 − a2
9 > 0. We also assume a7 ̸= 0, otherwise a6a7 + a2

7 − a2
9 = −a2

9 ≤ 0.
Hence, with these assumptions (0, ρ, 0) is a weak focus of (4.1). Doing w2 = a6a7 + a2

7 − a2
9,

and ϱ = (w2 + a4a9)/a7 the projected system PX is of the form:

u̇ = −4a4u−4ϱv−4a5uv−4a8v2−a4u3−(ϱ − 2a7)u2v+(a4 + 2a9)uv2 + ϱv3,

v̇ = 4a7u+4a9v+4a5u2+4a8uv−a7u3−(2a4 + a9)u2v−(2ϱ − a7)uv2+a9v3.
(4.2)

Now, the trace and the determinant of J are −4(a4 − a9) and 16w2, respectively. The next
theorem was proved in [6] and gives the conditions to have a center of (4.1) at the point
(0, 1, 0), on the sphere S2

1.

Theorem 4.1 ([6]). The equilibrium point (0, 1, 0) of system (4.1) is a nondegenerate center if, and
only if, a7 ̸= 0, a4 = a9, and a4a5a8a9 + a5a6a7a8 + a2

5a7a9 + a5a8a2
9 − a7a2

8a9 = 0.

Next we will show an important difference between polynomial homogeneous vector fields
defined on the sphere S2

1 and on the plane. Also in our special case that the dynamics is
restricted on a invariant sphere. Firstly, we recall that a planar quadratic homogeneous vector
field does not have limit cycles. The following example shows a quadratic homogeneous
vector field X ∈ XH

2 which has at least one limit cycle on the sphere S2
1. It occurs because the

projected vector field (4.2) is a planar cubic non-homogeneous vector field. Fore more results
about quadratic homogeneous vector fields defined on invariant spheres we refer the reader
to [25, 26]. As in the previous section, this limit cycle forces the existence of an invariant cone
fulfilled of periodic orbits for (4.1).

Proposition 4.2. The quadratic homogeneous vector field (4.1) has at least one limit cycle bifurcating
from (0, 1, 0) on the sphere S2

1.

Proof. Consider the quadratic homogeneous vector field (4.1) and its projection (4.2) with the
parameters values (a4, a5, a7, a8, a9, w) = (1 + ε, 1, 1, 0, 1, 1). Note that with these values, (4.2)
writes as the following cubic vector field

u̇ = (−4 + ε)u − 4(2 + ε)v − 4uv − (1 + ε)u3 + εu2v + (3 + ε)uv2 + (2 + ε)v3,

v̇ = 4u + 4v + 4u2 − u3 − (3 + ε)u2v − (3 + ε)uv2 + v3.
(4.3)

As we observed before, the origin is an equilibrium point of (4.3). Let J be the Jacobian matrix
associated to (4.3) at the origin. As the trace of J is ε and its determinant is 16 + 12ε, then the
origin is a weak focus for ε = 0. Note that we can use the algorithm explained in Section 2.4
to calculate the Lyapunov constants of analytical vector fields assuming that PX+ and PX− are
both defined by (4.3), because it is a generalization of the algorithm presented in Chapter IX
of [1]. So, when ε = 0, we calculate the first Lyapunov constant of (4.3) being L3 = 4 ̸= 0.
Thus, by the classical Hopf bifurcation, there exist values of ε for which (4.3) has one limit
cycle bifurcating from the origin.

On the following we will focus our attention on the center-focus problem that appears
naturally for the piecewise smooth system

Y(x, y, z) =

{
X+(x, y, z), z ≥ 0,

X−(x, y, z), z ≤ 0,
(4.4)
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where we obtain X± doing ai = a±i in (4.1) and assuming that p = (0, 1, 0) ∈ Σ = {(x, y, z) ∈
R3 : z = 0} is of center type for both X+ and X− on S2

ρ. Here, as we commented above,
because of the number of free parameters, we also assume that the system (4.4) is continuous
but not differentiable on the separation set Σ. Note that, system (4.4), and the projected
associated systems PY = (PX+ ,PX−), where PX± are obtained doing ai = a±i in (4.2), are
continuous on its separation set if, and only if, a−4 = a+4 , a−5 = a+5 , and a−7 = a+7 . Consequently,
on the following, we are assuming these conditions.

As we are interested in exhibiting some families of centers for this family of piecewise
smooth vector fields we use the method explained in Section 2.4, to calculate the Lyapunov
constants for the projected system PY. To do that, we need to consider PX± in its Jordan
canonical form.

Note that the change of coordinates {u = v, v = (cu + dv)/w}, where c = 4a7 and d = 4a9

puts the linear part of (4.2) in its Jordan canonical form

u̇ = v +
a9 (a5a9 − a7a8)

wa72 u2 − (2a5a9 − a7a8)

a72 uv +
a5w
a72 v2 +

wa9

2a7
2 u3

+
(a7

2 + a9
2 − 2w2)

4a7
2 u2v − w2

4a7
2 v3,

v̇ = −u +
(a5a9 − a7a8)(a7

2 + a9
2)

a72w2 u2 − (a5a7
2 + 2a5a9

2 − a7a8a9)

wa72 uv

+
a5a9

a72 v2 +
(a7

2 + a9
2)

4a7
2 u3 +

(2a7
2 + 2a9

2 − w2)

4a7
2 uv2 − wa9

2a7
2 v3.

(4.5)

Moreover, the change of coordinates {u = v, v = (cu + dv)/w±} puts PX± in the canonical
form and the separation set Σ = {(u, v) ∈ R2 : v = 0} becomes Σ̃ = {(u, v); u = 0, v =

cu/w±}. Consequently, after this change of coordinates, we deal with the piecewise smooth
system

PY(u, v) =

{
PX+(u, v), u ≥ 0,

PX−(u, v), u ≤ 0,
(4.6)

where PX± are obtained doing ai = a±i in (4.5) and then, in polar coordinates, it is written as{
ṙ =R+(r, θ), θ ∈ [−π/2, π/2],

ṙ =R−(r, θ), θ ∈ [−π/2,−3π/2].

Therefore, we use the technique shown in Section 2.4 after a rotation of angle π/2, to calculate
the Lyapunov constants of (4.6). Note that after the change of coordinates {u = v, v = (cu +

dv)/w±} the separation set of (4.6), Σ̃ = {(u, v); u = 0, v = cu/w±}, is parameterized in two
different ways when w+ ̸= w− and then the continuity condition must be considered before
doing it and we also take it into account when we compute the Lyapunov constants.

On the following, we give some families of centers for the piecewise smooth vector field
(4.4). Some of these centers appear in a family of reversible vector fields with respect to a line
(see the definition in Section 2.2).

Proposition 4.3. The piecewise continuous vector field (4.4) has a center at the equilibrium point
(0, 1, 0), on S2

1, if a±7 ̸= 0, a±4 = a±9 and one of the following conditions is satisfied:

(a) a−8 = −a+8 , a−9 = 0, and w+ = w−;

(b) a−7 = ±w, a−9 = 0, and w+ = w−;
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(c) a+8 = a−8 , (a−5 )
2a−7 a−9 − a−5 (a−7 )

2a−8 + a−5 a−8 (a−9 )
2 + a−5 a−8 w2 − a−7 (a−8 )

2a−9 = 0, and w+ = w−;

(d) a−5 = 0 and a−9 = 0.

Proof. In case (a), the piecewise projected continuous vector field PY = (PX+ ,PX−) is re-
versible with respect to the separation set. The case (b) follows because in polar coordinates
we have dr/dt = 0 for both PX± , which implies that the difference map defined in Σ, in a
neighborhood of the origin, is zero. In case (c), the vector field PY is smooth and it satis-
fies the condition given on Theorem 4.1. Finally, case (d) follows because both vector fields
PX± are reversible with respect to the u-axis and then the difference map defined in Σ, in a
neighborhood of the origin, is zero which concludes the proof.

If w+ = w− the change of coordinates that puts the system (4.2) on form (4.5) is the same
for X+ and X− and then the parametrization of Σ̃ coincides before this change of coordi-
nates. In this case, the only possible center families for (4.4) are that given on items (a)-(d) of
Proposition 4.3.

Proposition 4.4. The piecewise continuous vector field (4.4) with w+ = w− has a center at the
equilibrium point (0, 1, 0), on S2

1, if, and only if, a±7 ̸= 0, a±4 = a±9 and one of the conditions (a), (b),
(c), or (d) of Proposition 4.3 is satisfied.

Proof. To simplify the notation of this proof, we eliminate the superscript ± when the cor-
responding coefficients of X+ and X− are equal. Hence, we consider w+ = w− = w,
a+4 = a−4 = a4, a+5 = a−5 = a5, a+7 = a−7 = a7, and a+9 = a−9 = a9. According to the proof
of Proposition 4.3, all the families detailed in the statement have a center at the origin. Conse-
quently, we only need to check that these are the only ones when w+ = w− = w. To do that,
we compute four Lyapunov constants using the method explained in Section 2.4 for system
(4.6), with the statement assumptions, and we obtain

L2 =
2

3wa7
a9(a+8 − a−8 ),

L3 =
π

8w3a3
7

(
2a2

5a7a9(a2
7 + a2

9 + w2)− a5(a4
7a+8 − 2a+8 a4

9 − 4a+8 a2
9w2

− (a+8 + a−8 )w
4)− 2a7a9(a2

7(a+8 )
2 + (a−8 )

2a2
9 + (a+8 )

2w2)
)
,

L4 =
4

45a4
7w5

a5((a+8 )
2 − (a−8 )

2)(a2
7 − w2)(4a4

7 + 3a2
7w2 + 2w4),

L5 =
π

12w3a3
7
(a2

5 + (a+8 )
2 − w2)

(
2a2

5a7a9 − a5a2
7a+8 − a5a2

7a−8

+ 2a5a+8 a2
9 + a5a+8 w2 + a5a−8 w2 − 2a7(a+8 )

2a9
)
.

When we solve the system of equations SL = {L2 = · · · = L5 = 0} we obtain the real solutions
given on statements (a)-(d) of Proposition 4.3 and four more complex solutions given by{

a5 = ±
√
−(a−8 )2 + w2, a7 = ± i

√
a2

9 + w2, a+8 = a−8
}

and {a7 = ± i a9, a+8 = a−8 , w = 0}. As
we are interested in real families with w ̸= 0 we conclude the proof.

Proposition 4.5. Consider system (4.4) with a−5 = 1, a−7 = 1, a+8 = 3, a−8 = 1, a−9 = 0, and w+ =

w− = 2. Then, the equilibrium point p = (0, 1, 0) is a weak focus of third-order and there exist 2 small
amplitude limit cycles, on S2

1, bifurcating from p with a continuous perturbation in X H
2 .
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Proof. Using the expressions of Li, i = 2, . . . , 5 given in the above proposition we conclude
that, for these values of parameters, we have L2 = 0 and L3 = 15π/16 ̸= 0. Hence, adding
the trace parameter and using the derivation-division algorithm (see more details in [29]) we
obtain 2 small amplitude crossing limit cycles bifurcating from the equilibrium point (0, 1, 0)
on S2

1.

We emphasize that, when we deal with a continuous perturbation, we do not have the
sliding parameter to get the maximum upper bound for the number of small amplitude cross-
ing limit cycles bifurcating from a center or a weak focus, as we have explained in Section 2.4.
Because of that, the maximum number of limit cycles that we can obtain bifurcating from the
weak focus of third-order, in the last result, is 2.

5 Local cyclicity for quadratic vector fields in X2 with piecewise
smooth perturbation in X

In this section, we study the local cyclicity of centers and weak focus families of quadratic
smooth vector fields with piecewise quadratic perturbations in X2. The continuous or re-
fractive perturbation cases are also analyzed. We show the results that we have obtained in
Propositions 5.1 and 5.2. The proof of Theorem 1.2 follows directly from Proposition 5.2(c).

On the following, we summarize some assumptions and results given in [6] for a quadratic
vector field X ∈ X2 which will be useful in the sequence. Firstly, the behavior of system X can
be totally different in two different levels of invariant spheres. Hence, we restrict our analysis
to the unit sphere S2

1 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}. In this case any X ∈ X2 can be
written in its canonical form

ẋ = −a1y − a2z − a4xy − a5xz − a10y2 − (a6 + a7)yz − a8z2,

ẏ = a1x − a3z + a4x2 + a10xy + a6xz − a11yz − a9z2,

ż = a2x + a3y + a5x2 + a7xy + a8xz + a11y2 + a9yz.

(5.1)

Note that (0, 1, 0) is an equilibrium point of (5.1) if, and only if, a1 + a10 = 0, a3 + a11 = 0.
Consequently, to have the origin as an equilibrium point of the projected vector field PX

associated to (5.1), we assume these conditions on the following. Next we will impose the
conditions that ensure that (0, 1, 0) is an equilibrium point of nondegenerate center-focus type
on the sphere S2

1. We will do that analyzing the trace and the determinant of the Jacobian
matrix J associated to the projected vector field PX at the equilibrium point (0, 0). Recall that
PX has an equilibrium point of nondegenerate center-focus type at origin if, and only if, the
trace of J is zero and its determinant is positive. It occurs when a4 = a9 and a2a6 + a6a7 +

2a2a7 + a2
2 + a2

7 − a2
9 > 0. As explained in [6], due to the high number of free parameters,

we will restrict our analysis adding two extra conditions: a9 = 0 and a2 + a7 = 1. With
these assumptions, the projected vector field PX has a weak focus at the origin if, and only
if, a4 = 0 and a6 + 1 > 0. Moreover, with these restrictions the projected vector field has a
center-focus point at the origin with a Jacobian matrix in Jordan normal form. Doing a4 = 0
and w2 = a6 + 1, with w ̸= 0, the following system is obtained from (5.1)

ẋ = −a1y − (1 − a7)z − a5xz + a1y2 + (1 − a7 − w2)yz − a8z2,

ẏ = a1x + a11z − a1xy + (w2 − 1)xz − a11yz,

ż = (1 − a7)x − a11y + a5x2 + a7xy + a8xz + a11y2.

(5.2)
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After a time reparameterization and the change of coordinates u → wu, the corresponding
projected system obtained from (5.2) is

u̇ = −v − a1

2
u2 − a5

w
uv − a1 + 2a8

2w2 v2 +
2a7 − w2

4
u2v

+
w2 + 2a7 − 2

4w2 v3 − a1w2

8
u4 − a11w

4
u3v − a11

4w
uv3 +

a1

8w2 v4,

v̇ = u +
(2a5 − a11)w

2
u2 + a8uv − a11

2w
v2 − (2a7 − 1)w2

4
u3

−2w2 + 2a7 − 3
4

uv2 +
w3a11

8
u4 − w2a1

4
u3v − a1

4
uv3 − a11

8w
v4.

(5.3)

In items (a) and (b) of Proposition 5.2, we show that with a continuous (resp. refractive)
perturbation in X2 we obtain 5 (resp. 6) crossing limit cycles bifurcating from a center family
of (5.2). Moreover, when we consider a piecewise quadratic general perturbation in X2 we
obtain 10 limit cycles, as we will see in item (c) of Proposition 5.2, which proves Theorem 1.2.
We also exhibit a piecewise quadratic perturbation of a weak focus in Proposition 5.1 for a
fixed value of w.

In the following, we will describe the type of piecewise smooth perturbation of X ∈ X2 that
we will consider and which are the conditions that will make this perturbation continuous or
refractive.

Let X = X(x, a) ∈ X2 given by (5.2) where x = (x, y, z) and a = (a1, a5, a7, a8, a11, w).
Denoting a + ε± = (a1 + ε±1 , . . . , w + ε±6 ) we consider the piecewise smooth perturbation of X
defined by

Y(x, ε) =

{
X(x; a + ε+), z ≥ 0,

X(x; a + ε−), z ≤ 0,
(5.4)

and the projected vector field associated, defined by (2.3), which is of the form

PY(u, ε) =

{
PX(u; a + ε+), v ≥ 0,

PX(u; a + ε−), v ≤ 0,
(5.5)

where u = (u, v) and PX(u, 0) is given by (5.3).
So, when ε = 0 we have the unperturbed analytical systems (5.2) and (5.3). Following

the same idea of the last section, we will say that the perturbation of the vector field Y is
continuous (resp. refractive) if (5.4) is continuous (resp. refractive) in the separation set. With
a straightforward computation we see that (5.4) is continuous (resp. refractive) if, and only if,
ε+i = ε−i , for i = 1, 2, 3, 4 (resp. ε+i = ε−i , for i = 2, 3, 4).

Note that the origin is on the boundary of two crossing segments of the perturbative
system (5.5) as well as of the unperturbed one. This is because we assumed that the origin
is an equilibrium point of the center type for the unperturbed system and the perturbative
parameters do not change the linear part of it. If we assume a3 = −a11 + ε7 instead of
a3 = −a11 we can create a sliding segment in a neighborhood of the origin, because in this
case, the projected system is of the form(

− a4

w
u − v +O2(u, v),

ε7

w
+ u +O2(u, v)

)
.

Thus, we also use the perturbative parameter ε7 when we deal with a piecewise perturba-
tion instead of piecewise continuous or piecewise refractive ones, to obtain one more crossing
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limit cycle of small amplitude creating from a sliding or escaping segment, as it was explained
in Section 2.

Now we are able to prove the last results. It is important to note that we confine the dy-
namics to an invariant sphere of fixed radius, which remains unchanged with the considered
perturbations because the notion of 2-dimensional limit cycle make no sense if the perturba-
tions do not keep the 2-dimensional spheres invariant.

Proposition 5.1. Consider the system

ẋ = 2αy +
9

20
z − xz − 2αy2 − 89

20
yz − αz2,

ẏ = −2αx + 2z + 2αxy + 3xz − 2yz,

ż = − 9
20

x − 2y + x2 +
29
20

xy + αxz + 2y2.

(5.6)

Then, for α = ±
√

857/488 there exists a piecewise quadratic perturbation in X such that at least 9
hyperbolic crossing limit cycles of small amplitude bifurcate from the equilibrium point (0, 1, 0) on S2

1.

Proof. Let α = ±
√

857/488. Note that system (5.6) is obtained doing a1 = −2α, a4 = 0, a5 =
1, a7 = 29/20, a8 = α, a11 = 2, and w = 2 in (5.2). It was proved in [6] that the equilibrium
point p = (0, 1, 0) of (5.6) is a weak focus of fourth-order and that there exist 4 small amplitude
limit cycles, on S2

1, bifurcating from p considering an analytical perturbation of (5.6) inside
family (5.2). Now we consider a piecewise smooth perturbation (a±1 , a±5 , a±7 , a±8 , a±11, w±) =
(−2α + ε±1 , 1 + ε±2 , 29/20 + ε±3 , α + ε±4 , 2 + ε±5 , 2 + ε±6 ) in the piecewise projected system (5.3).
As we saw before, we consider the separation set {(u, v) ∈ R2 : v = 0} of the projected system
and then we consider the perturbative parameter ε+ = (ε+1 , . . . , ε+6 ) for v > 0, ε− = (ε−1 , . . . , ε−6 )
for v < 0, and joining all ε = (ε+1 , . . . , ε+6 , ε−1 , . . . , ε−6 ). Let Li(ε) be the corresponding Lyapunov
constants. Using the method explained in Section 2.4 we compute the Taylor series of these
Lyapunov constants up to first-order with respect to ε, L[1]

i (ε), and we write Li(ε) = L[1]
i (ε) +

O2(ε), where

L[1]
2 (ε) = − 2ε−2 + 2ε−5 − ε−6 + 2ε+2 − 2ε+5 + ε+6 ,

L[1]
3 (ε) = 15616ε−2 − 15616ε−5 + 7808ε−6 − 15616ε+2 + 15616ε+5 − 7808ε+6

+ 13π
√

104554
(
−2ε−2 + ε−5 − 2ε+2 + ε+5

)
+ π

(
427ε−1 + 854ε−4 + 427ε+1 + 854ε+4

)
,

L[1]
4 (ε) = − 5916624ε−2 + 1112640ε−3 + 5433936ε−5 − 2314584ε−6 + 5916624ε+2 − 1112640ε+3

− 5433936ε+5 + 2314584ε+6 +
√

104554
(
−80ε−1 − 160ε−4 + 80ε+1 + 160ε+4

+π
(
9750ε−2 − 4875ε−5 + 9750ε+2 − 4875ε+5

))
+ π

(
−160125ε−1 − 320250ε−4

−160125ε+1 − 320250ε+4
)

,

(5.7)

we omit the expressions of L[1]
i (ε), 5 ≤ i ≤ 9, because of their size.

We get L[1]
2 (0) = · · · = L[1]

8 (0) = 0 and L[1]
9 (0) ̸= 0. Hence, as the matrix formed with the

coefficients of (L[1]
2 , . . . , L[1]

8 ) with respect to ε has rank 7, we obtain eight hyperbolic crossing
limit cycles of small amplitude bifurcating from the origin adding the trace parameter and
using the Implicit Function Theorem and then the derivation-division algorithm (see again
[29]). Finally, adding the sliding parameter we obtain the ninth hyperbolic crossing limit cycle
of small amplitude.
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Proposition 5.2. Consider the system

ẋ = −4
5

y − 13
8

z − 5
2

xz +
4
5

y2 − 59
8

yz − z2,

ẏ =
4
5

x + 2z − 4
5

xy + 8xz − 2yz,

ż =
13
8

x − 2y +
5
2

x2 − 5
8

xy + xz + 2y2.

(5.8)

(a) There exists a continuous quadratic perturbation of (5.8) in X such that at least 5 hyperbolic
crossing limit cycles of small amplitude bifurcate from the equilibrium point (0, 1, 0) on S2

1.

(b) There exists a refractive quadratic perturbation of (5.8) in X such that at least 6 hyperbolic crossing
limit cycles of small amplitude bifurcate from the equilibrium point (0, 1, 0) on S2

1.

(c) There exists a piecewise quadratic perturbation of (5.8) in X such that at least 10 hyperbolic
crossing limit cycles of small amplitude bifurcate from the equilibrium point (0, 1, 0) on S2

1.

Proof. It was proved in [6] that system (5.2), with w ̸= 1, has a center at the origin when its
coefficients satisfy the conditions,

a1 =
w2 − 1
w2 + 1

a8, a4 = 0, a5 =
w2 + 1
w2 − 1

a11, and a7 =
1

w2 + 1
− 1

(w2 + 1)
a2

8 −
w2 + 1

(w2 − 1)2 a2
11,

exhibiting an inverse integral factor for the system. Moreover, there exists an analytical per-
turbation inside family (5.2) such that at least 3 small amplitude limit cycles bifurcate from the
equilibrium point (0, 1, 0) on S2

1. Thus, as system (5.8) is obtained doing a1 = 4/5, a4 = 0, a5 =
5/2, a7 = −5/8, a8 = 1, a11 = 2, and w = 3 in (5.2) it has a center at (0, 1, 0). So, we take the
parameter values (a1, a5, a7, a8, a11, w) satisfying it and we consider the piecewise smooth per-
turbation (a1, a5, a7, a8, a11, w) = (4/5 + ε±1 , 5/2 + ε±2 ,−5/8 + ε±3 , 1 + ε±4 , 2 + ε±5 , 3 + ε±6 ) in the
projected system (5.3). As we saw before, we consider the separation set {(u, v) ∈ R2 : v = 0}
of the projected system and then we consider the perturbative parameter ε+ = (ε+1 , . . . , ε+6 ) for
v > 0, ε− = (ε−1 , . . . , ε−6 ) for v < 0 and ε = (ε+1 , . . . , ε+6 , ε−1 , . . . , ε−6 ). We denote by Li(ε), the cor-
responding Lyapunov constants. When ε = 0 the origin is a center and then Li(0) = 0 for all
i. Using the method explained in Section 2.4 we compute the Taylor series of these Lyapunov
constants up to first-order with respect to ε, L[1]

i (ε), and we write Li(ε) = L[1]
i (ε)+O2(ε) where

L[1]
2 (ε) = − 48ε−2 + 33ε−5 − 36ε−6 + 48ε+2 − 33ε+5 + 36ε+6 ,

L[1]
3 (ε) = − 7680ε−2 + 5280ε−5 − 5760ε−6 + 7680ε+2 − 5280ε+5 + 5760ε+6 + π

(
675ε−1 − 56ε−2

−540ε−4 + 70ε−5 − 102ε−6 + 675ε+1 − 56ε+2 − 540ε+4 + 70ε+5 − 102ε+6
)

,

L[1]
4 (ε) = 6380640ε−1 − 263540576ε−2 − 50641200ε−3 − 6099840ε−4 + 152862163ε−5

− 159148902ε−6 − 6380640ε+1 + 263540576ε+2 + 50641200ε+3 + 6099840ε+4
− 152862163ε+5 + 159148902ε+6 + π

(
13668750ε−1 − 1134000ε−2 − 10935000ε−4

+1417500ε−5 − 2065500ε−6 + 13668750ε+1 − 1134000ε+2 − 10935000ε+4
+1417500ε+5 − 2065500ε+6

)
.

(5.9)

We omit the expressions of L[1]
i (ε), 5 ≤ i ≤ 12 because of their size.

In the case (a) (resp. (b)) we consider a continuous (resp. refractive) perturbation of this
center family. As we saw above, it implies that ε+i = ε−i , for i = 1, 2, 3, 4 (resp. ε+i = ε−i , for

i = 2, 3, 4). With this assumption, the matrix formed by the coefficients of (L[1]
2 , . . . , L[1]

7 ) with
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respect to ε has rank 5 (resp. 6). Adding the trace parameter and using the Melnikov theory,
as we have explained in the Section 2.4, we obtain 5 (resp. 6) hyperbolic crossing limit cycles
of small amplitude bifurcating from the origin.

Finally, in the case (c), the proof follows because the matrix formed by the coefficients
of (L[1]

2 , . . . , L[1]
12 ) with respect to ε has rank 9, so adding the trace parameter and using the

Melnikov theory, as we explained in the Section 2.4, we get 9 hyperbolic crossing limit cycles
of small amplitude bifurcating from the origin. Adding the sliding or escaping segments we
obtain one more crossing limit cycle and the proof follows.
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