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Abstract. In this paper, ground-state solutions to a Hartree–Fock type system with a
critical growth are studied. Firstly, instead of establishing the local Palais–Smale (P.–
S.) condition and estimating the mountain-pass critical level, a perturbation method
is used to recover compactness and obtain the existence of ground-state solutions. To
achieve this, an important step is to get the right continuity of the mountain-pass level
on the coefficient in front of perturbing terms. Subsequently, depending on the internal
parameters of coupled nonlinearities, whether the ground state is semi-trivial or vecto-
rial is proved.
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1 Introduction

In this paper, we will study the following class of Hartree–Fock (HF) system{
−∆u + u + ϕu,vu = |u|2q−2u + β|v|q|u|q−2u + µ(u5 + α|v|3|u|u), x ∈ R3,

−∆v + v + ϕu,vv = |v|2q−2v + β|u|q|v|q−2v + µ(v5 + α|u|3|v|v), x ∈ R3,
(1.1)

where the Coulomb term ϕu,v has the following form

ϕu,v(x) =
1

4π

∫
R3

u2(y) + v2(y)
|x − y| dy, x ∈ R3, (1.2)

α, β, µ ∈ R+ := [0, ∞) are parameters and q ∈ (2, 3).
It is well known that the (HF) equation is one of the most important equations in quan-

tum physics, condensed matter physics and quantum chemistry. For example, in the study
of a molecular system composed of M atomic nucleus interacting with N electrons through
Coulomb potential, the (HF) equation is used as an approximation to describe the stationary
state, and one can refer to [5] for the specific process of derivation. According to [5], in the sys-
tem (1.1), −∆u,−∆v represent the kinetic part of the electronic system, Vu, Vv denote poten-
tials of the action on electronic system by nucleus, ϕu,vu, ϕu,vv represent the electron-electron
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Coulomb interactions, and the power-type nonlinearity describes the effects of exchange and
correlation among electrons. For more details on the physical aspects of the Hartree–Fock
system, we refer readers to [1, 2, 8–11] and the references therein.

In mathematics, a particular case of system (1.1), when µ = 0, leads to the following class
of Hartree–Fock type system with a cooperative pure power and subcritical nonlinearity

{
−∆u + u + ϕu,vu = |u|2q−2u + β|v|q|u|q−2u, x ∈ R3,

−∆v + v + ϕu,vv = |v|2q−2v + β|u|q|v|q−2v, x ∈ R3,
(1.3)

which has been studied by d′Avenia, Maia and Siciliano in [5]. In the case that q ∈ (3/2, 3),
they showed the existence of semitrivial and vectorial ground state depending on parame-
ters involved. Furthermore, they also derived the asymptotic behavior of ground states with
respect to the parameter β.

In view of conclusions obtained in [5], we considered the Sobolev critical case q = 3.
However, combining the Pohozaev identity and Nehari manifold, it could be proved that the
system (1.3) has no nontrivial solution when q = 3. Motivated by the above facts, we would
like to consider the system (1.1), which is obtained through a Sobolev perturbation basing
on the above system (1.3). It is well known that since Brezis and Nirenberg published their
famous paper [3] in 1983, elliptic equations or systems with Sobolev critical growth have
been researched extensively. The usual strategy to achieve the ground-state solution to these
critical problems is establishing the local (P.-S.) condition and verifying that the ground-state
energy belongs to the interval where the (P.-S.) condition holds. Differently, in this paper, we
will achieve the existence of ground-state solutions to the system (1.1) with a perturbation
method.

Before stating our main results, we introduce the variational setting used in this paper.
Firstly, let H1

r (R
3) =

{
w ∈ H1(R3) : w(x) = w(|x|)

}
and ∥w∥2

1 =
∫

R3

[
|∇w|2 + w2] for w ∈

H1
r (R

3). Then our working space is H := H1
r (R

3)× H1
r (R

3) endowed with the norm

∥(u, v)∥ =
(
∥u∥2

1 + ∥v∥2
1
)1/2, (u, v) ∈ H.

It is well known that the embedding H1
r (R

3) ↪→ Ls(R3) is continuous for s ∈ [2, 6] and com-
pact for s ∈ (2, 6). Hence the same conclusions hold for the embedding H ↪→ Ls(R3) ×
Ls(R3) for s ∈ [2, 6]. Throughout this paper, denote the norm endowed in Ls(R3) by | · |s :
|w|s =

[∫
R3 |w|s

]1/s for w ∈ Ls(R3). While the norm of Ls(R3) × Ls(R3) is |(u, v)|s =

(|u|ss + |v|ss)
1/s for (u, v) ∈ Ls(R3)× Ls(R3). Subsequently, we will give the energy functional

corresponding to the system (1.1). According to the Hardy–Littlewood–Sobolev inequality, the
nonlocal term

∫
R3 ϕu,v(u2 + v2) is well defined in H. Therefore, we could define the energy

functional related to the system (1.1) as

Jµ(u, v) =
1
2
∥(u, v)∥2 +

1
4

∫
R3

ϕu,v(u2 + v2)− 1
2q

[
|u|2q

2q + |v|2q
2q + 2β

∫
R3

|u|q|v|q
]

− µ

6

[
|u|66 + |v|66 + 2α

∫
R3

|u|3|v|3
]

=:
1
2

A(u, v) +
1
4

B(u, v)− 1
2q

C(u, v)− µ

6
D(u, v), (u, v) ∈ H. (1.4)
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Via a standard proof, there also holds that Jµ ∈ C1(H, R) with〈
J′µ(u, v), (φ, ψ)

〉
=

∫
R3
(∇u · ∇φ +∇v · ∇ψ + uφ + vψ) +

∫
R3

ϕu,v(uφ + vψ)

−
∫

R3

[
|u|2q−2uφ + |v|2q−2vψ + β(|v|q|u|q−2uφ + |u|q|v|q−2vψ)

]
− µ

∫
R3

[
u5φ + v5ψ + α(|v|3|u|uφ + |u|3|v|vψ)

]
, (u, v), (φ, ψ) ∈ H.

Hence, finding solutions of the system (1.1) is equivalent to seeking critical points of the func-
tional Jµ in H. Furthermore, to achieve the ground-state solution to the system (1.1), we may
consider the ground state of the energy functional Jµ, and the Nehari manifold is used in this
paper. Now, let Iµ be the related Nehari functional, that is, Iµ(u, v) :=

〈
J′µ(u, v), (u, v)

〉
, (u, v) ∈

H. Then adopting notations given in (1.4) it could be rewritten as

Iµ(u, v) = A(u, v) + B(u, v)− C(u, v)− µD(u, v), (u, v) ∈ H. (1.5)

Let us denote by Nµ the Nehari manifold associated to the functional Jµ, namely

Nµ = {(u, v) ∈ H \ {(0, 0)} : Iµ(u, v) = 0},

and define the ground-state energy as

d(µ) = inf
Nµ

Jµ.

In this context, the ground-state solution to be found in this paper is a radial ground state
whose energy is minimal among all other radial ones.

Now, we formulate our first result for the system (1.1).

Theorem 1.1. Assume that q ∈ (2, 3). Then for any given α, β ∈ R+, there exists µ0 > 0 such that
the system (1.1) has a ground-state solution (uµ, vµ) ̸= (0, 0) for all µ ∈ [0, µ0).

An important step to prove Theorem 1.1 via perturbation methods is estimating the dis-
tance between the (P.–S.)m(µ) sequence of the functional Jµ and the ground-state critical points
set of the functional J0 for µ small enough. Here m(µ) is the mountain-pass level of the
functional Jµ. To achieve this, we first verify the fact that m(µ) = d(µ) and get the right conti-
nuity of m(·) at µ = 0 by showing that limµ→0+ d(µ) = d(0) subsequently, where the implicit
function theorem is used.

Basing on the existence of ground-state radial solutions, motivated by [4] and [5], we
also consider whether the ground state obtained above is semitrivial or vectorial and get the
following conclusion. Here we say that (u, v) ̸= (0, 0) is semitrivial if u = 0 or v = 0, and
(u, v) is vectorial if u ̸= 0 and v ̸= 0.

Theorem 1.2. Assume that q ∈ (2, 3) and µ ∈ [0, µ0), where µ0 is given by Theorem 1.1. Let (uµ, vµ)

be the ground state achieved in Theorem 1.1.

(i) If 0 ⩽ α < 3, 0 ⩽ β < 2q−1 − 1, then (uµ, vµ) is semitrivial.

(ii) If α > 3, β > 2q−1 − 1, then (uµ, vµ) is vectorial.
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In view of Theorem 1.2, there is an open question that whether the ground state obtained
in Theorem 1.1 is semitrivial or vectorial in the cases that (α, β) ∈ (0, 3] × [2q−1 − 1, ∞) or
(α, β) ∈ [3, ∞)× (0, 2q−1 − 1]. This is caused by the non-homogeneity of the nonlinearity in
the system (1.1).

This paper is organized as follows. In Section 2, we give some preliminaries to get the
existence of ground state via the perturbation method, subsequently, Theorems 1.1 and 1.2 are
proved in Sections 3 and 4 respectively. Throughout this paper, Ci(i = 0, 1, 2, . . . ) represent
some positive constants which may be different from line to line.

2 Preliminaries

In this section, we first give some inequalities about the four functionals A, B, C, and D by the
following lemma.

Lemma 2.1. There exist some constants C0, C1, C2 independent of µ such that for any (u, v) ∈ H, the
following inequalities hold

B(u, v) ⩽ C0[A(u, v)]2, (2.1)

C(u, v) ⩽ C1|(u, v)|2q
2q ⩽ C2[A(u, v)]q, (2.2)

D(u, v) ⩽ C1|(u, v)|66 ⩽ C2[A(u, v)]3. (2.3)

Proof. For (2.1), it follows from (1.2) that ϕu,v ∈ D1,2(R3) is a weak solution to the equation
−∆ϕu,v = u2 + v2 for all (u, v) ∈ H. Consequently,

B(u, v) =
∫

R3
ϕu,v(u2 + v2) =

∫
R3

|∇ϕu,v|2.

By the Hölder inequality and the Sobolev embedding, there exists a constant C0 > 0 indepen-
dent of (u, v) such that ∫

R3
ϕu,vu2 ⩽ |ϕu,v|6|u|212/5 ⩽ C0|∇ϕu,v|2∥u∥2

1.

Similarly, we get ∫
R3

ϕu,vv2 ⩽ C0|∇ϕu,v|2∥v∥2
1.

Thus
|∇ϕu,v|22 =

∫
R3

ϕu,v(u2 + v2) ⩽ C0|∇ϕu,v|2∥(u, v)∥2 = C0|∇ϕu,v|2A(u, v),

which implies that (2.1) holds.
By the Hölder inequality and the embedding that H ↪→ Ls(R3)× Ls(R3) for s ∈ [2, 6],

C(u, v) ⩽ |u|2q
2q + |v|2q

2q + 2β|u|q2q|v|
q
2q ⩽ max{β, 1}

(
|u|q2q + |v|q2q

)2
⩽ C1|(u, v)|2q

2q ⩽ C2[A(u, v)]q.

Hence (2.2) holds. Similarly, (2.3) holds.

Next, we prove that the functional Jµ has a mountain pass geometry structure for all
µ ∈ R+. Let

Γµ = {γ ∈ C([0, 1], H) : γ(0) = 0, Jµ(γ(1)) < 0},

and
m(µ) = inf

γ∈Γµ

max
t∈[0,1]

Jµ(γ(t)).

Then we could prove that both Γµ and m(µ) are well defined.
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Lemma 2.2. Assume µ ∈ R+. Then Γµ ̸= ∅ and m(µ) > 0.

Proof. First, for any (u, v) ∈ H\{(0, 0)}, we define a fiber mapping corresponding to the
functional Jµ as follows:

gu,v(t) = Jµ(t(u, v))

=
t2

2
A(u, v) +

t4

4
B(u, v)− t2q

2q
C(u, v)− µ

6
t6D(u, v), t ∈ R. (2.4)

Since q ∈ (2, 3), there exists a sufficiently small positive number δ depending on µ such that
gu,v(t) > 0, t ∈ (0, δ). Moreover, note that gu,v(t) → −∞ as t → ∞. Then there exists t0 > 0
such that Jµ(t0(u, v)) = gu,v(t0) < 0. Let γ0(t) = tt0(u, v), t ∈ [0, 1]. Then γ0 ∈ Γµ.

For µ ∈ R+, it follows from inequalities (2.2) and (2.3) that

Jµ(u, v) ⩾
1
2

A(u, v)− 1
2q

C2[A(u, v)]q − 1
6

µC2[A(u, v)]3, (u, v) ∈ H.

Therefore, there exists ρ > 0 depending on µ such that if 0 < ∥(u, v)∥2 = A(u, v) < ρ2, then
Jµ(u, v) > 0. Moreover,

αµ := inf
∥(u,v)∥=ρ

Jµ(u, v) > 0.

Furthermore, by the standard process one can deduce that m(µ) ⩾ αµ > 0.

Lemma 2.3. Suppose that (u, v) ∈ H\{(0, 0)}. Then the following conclusions hold:

(i) for any µ ∈ R+, there exists a unique t(µ) > 0 such that t(µ)(u, v) ∈ Nµ, Iµ(t(u, v)) > 0, t ∈
(0, t(µ)) and Iµ(t(u, v)) < 0, t ∈ (t(µ), ∞). Furthermore,

Jµ(t(µ)(u, v)) = max
t∈R+

Jµ(t(u, v));

(ii) the function t(·): R+ → (0, ∞) is differentiable and

t′(µ) = − t5(µ)D(u, v)
2A(u, v) + 4t2(µ)B(u, v) + 2qt2q−2(µ)C(u, v) + 6µt4(µ)D(u, v)

. (2.5)

Moreover, t(·) is decreasing in µ.

Proof. (i) Assume µ ∈ R+. For each (u, v) ∈ H\{(0, 0)}, recall the definition of gu,v given in
(2.4). Then

g′u,v(t) = tA(u, v) + t3B(u, v)− t2q−1C(u, v)− µt5D(u, v), t ∈ R+, (2.6)

which yields that

g′u,v(t)/t → A(u, v) > 0, t → 0+, g′u,v(t) → −∞, t → ∞. (2.7)

Therefore, there exists t(µ) > 0 satisfying g′u,v(t(µ)) = 0, and so t(µ)u ∈ Nµ. Furthermore, it
follows from (2.6) that

t−2(µ)A(u, v)− t2q−4(µ)C(u, v)− µt2(µ)D(u, v) = −B(u, v).
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Because the function t 7→ t−2A(u, v)− t2q−4C(u, v)−µt2D(u, v) is decreasing in t, then g′(u,v)(t)
= 0 has a unique positive root. Hence, t(µ) is the unique positive critical point of gu,v.
Combining this with (2.7) and (1.5), we know that (i) holds.

(ii) Let H(t, µ) = Iµ(t(u, v)), (t, µ) ∈ (−δ, ∞)× (−δ, ∞) for some δ > 0. Then it follows
from (1.5) that

H(t, µ) = t2A(u, v) + t4B(u, v)− t2qC(u, v)− µt6D(u, v), (t, µ) ∈ (−δ, ∞)× (−δ, ∞).

For any (t, µ) ∈ (−δ, ∞)× (−δ, ∞) for some δ > 0, we have

∂H
∂t

(t, µ) = 2tA(u, v) + 4t3B(u, v)− 2qt2q−1C(u, v)− 6µt5D(u, v) (2.8)

and
∂H
∂µ

(t, µ) = −t6D(u, v).

Note that H(t(µ), µ) = 0 i.e. Iµ(t(µ)(u, v)) = 0 for µ ∈ [0, 1]. Then it could be derived from
(2.8) and (1.5) that

∂H
∂t

(t(µ), µ) = −2t(µ)A(u, v)− (2q − 4)t2q−1(µ)C(u, v)− 2µt5(µ)D(u, v) < 0.

Therefore, by the implicit function theorem, we can obtain that t(·) : R+ → (0, ∞) is con-
tinuous and differentiable, and (2.5) holds. It then follows from (2.5) directly that for given
(u, v) ∈ H\{(0, 0)}, t(·) is decreasing in µ.

Lemma 2.4. infµ∈[0,1] dist(0,Nµ) > 0.

Proof. Assume µ ∈ [0, 1]. Given (u, v) ∈ Nµ, it follows from (1.5), (2.2) and (2.3) that

A(u, v) ⩽ A(u, v) + B(u, v)

= C(u, v) + µD(u, v)

⩽ C2
[
[A(u, v)]q + [A(u, v)]3

]
.

Therefore there exists a σ > 0 independent of µ such that ∥(u, v)∥2 = A(u, v) ⩾ σ for all
(u, v) ∈ Nµ. The proof is complete.

In view of Lemma 2.4, since 2q > 4, then for any (u, v) ∈ Nµ, it holds that

Jµ(u, v) = Jµ(u, v)− 1
4

Iµ(u, v) ⩾
1
4
∥(u, v)∥2, (u, v) ∈ Nµ, (2.9)

from which one can also derive that d(µ) is well defined for all µ ∈ R+. Moreover, recall the
definition of m(µ). Then by Lemma 2.2 and (i) of Lemma 2.3, we can prove that following
lemma via a standard process similarly to the proof of [12, Theorem 4.2, p. 73].

Lemma 2.5. For any µ ∈ R+, it holds that m(µ) = d(µ).

Note that due to definitions of Jµ, Γµ and m(µ) for µ ∈ R+, it could be concluded that m(·)
is decreasing on R+. Then by Lemma 2.5, d(·) is also decreasing on R+. Now, we will prove
the continuity of m(·) at µ = 0. Actually, by the above lemma, it is sufficient to illustrate the
right continuity of d(·) at µ = 0. Hence, we have the following lemma.
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Lemma 2.6. d(·) is right continuous at µ = 0.

Proof. Assume {µn} ⊂ [0, 1] satisfies that µn → 0+ as n → ∞. Then, according to the definition
of d(µn), for each ε ∈ (0, d(0)), there exists (un, vn) ∈ Nµn such that

Jµn(un, vn) ⩽ d(µn) + ε/2, n ∈ N. (2.10)

Combining this with (2.9), one gets that

A(un, vn) = ∥(un, vn)∥2 ⩽ 4d(µn) + 2ε < 6d(0). (2.11)

Thus, there exist (u, v) ∈ H and a subsequence of {(un, vn)} (still denoted by {(un, vn)}) such
that (un, vn) ⇀ (u, v). Moreover, (u, v) ̸= (0, 0). Otherwise, it follows from (un, vn) ∈ Nµn ,
(2.2), the compact embedding H ↪→ L2q(R3)× L2q(R3), (2.3) and (2.11) that

A(un, vn) + B(un, vn) = C(un, vn) + µnD(un, vn) ⩽ C1|(un, vn)|2q
2q + µnC2[A(un, vn)]

3 → 0,

which contradicts to Lemma 2.4. Hence (u, v) ̸= (0, 0). Consequently, noting (un, vn) → (u, v)
in L2q(R3)× L2q(R3), there exists some N0 > 0 such that for n > N0,

C(un, vn) ⩾ |(un, vn)|2q
2q ⩾ |(u, v)|2q

2q/2 > 0,

which implies that for some positive number C3 independent of n such that

C(un, vn) ⩾ C3 > 0, n ∈ N (2.12)

Now, for given n > N0, according to (i) of Lemma 2.3, let tn(µ) satisfy that tn(µ)(un, vn) ∈
Nµ for all µ ∈ [0, µn], and define

hn(µ) = Jµ(tn(µ)(un, vn)), µ ∈ [0, µn].

Since tn(µ)(un, vn) ∈ Nµ, one could derive that

h′n(µ) =
〈

J′µ(tn(µ)(un, vn)), (un, vn)
〉

t′n(µ)−
1
6

t6
n(µ)

[
|un|66 + |vn|66 + 2α

∫
R3

|un|3|vn|3
]

= −1
6

t6
n(µ)D(un, vn), µ ∈ [0, µn].

Hence, from tn(µn) = 1, (ii) of Lemma 2.3, (2.3) and (2.11), we arrive at

J0(tn(0)(un, vn))− Jµn(un, vn)

= hn(0)− hn(µn)

= −
∫ µn

0
h′n(s)ds

=
1
6

∫ µn

0
t6
n(s)D(un, vn)ds

⩽
1
6

t6
n(0)µnC2[A(un, vn)]

3 ⩽ 36t6
n(0)µnC2d3(0). (2.13)

Next, we shall illustrate that {tn(0)} is bounded. Indeed, due to I0(un, vn) > Iµ(un, vn) = 0
and (i) of Lemma 2.3, it holds that tn(0) > 1. Moreover, by (2.12), (2.1) and (2.11) one can
deduce that

C3t2q
n (0) ⩽ t2q

n (0)C(un, vn) = t2
n(0)A(un, vn) + t4

n(0)B(un, vn) ⩽ 6d(0)t2
n(0) + 36C2d2(0)t4

n(0).
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Since q > 2, this implies that there exists some C4 independent of n such that 1 < tn(0) ⩽ C4

for n ∈ N.
Subsequently, combining this with (2.13), it holds that

J0(tn(0)(un, vn))− Jµn(un, vn) ⩽ 36C6
4µnC2d3(0).

Furthermore, as a consequence of Lemma 2.5, the fact that m(0) ⩾ m(µ) for µ ⩾ 0 and (2.10),
we also get that

0 ⩽ d(0)− d(µn) ⩽ J0(tn(0)(un, vn))− Jµn(un, vn) + ε/2 ⩽ 36C6
4µnC2d3(0) + ε/2.

Thus,
0 ⩽ lim sup

n→∞
[d(0)− d(µn)] ⩽ ε/2,

which yields that d(µn) → d(0) as a consequence of the arbitrariness of ε. The proof is
complete.

3 Proof of Theorem 1.1

Lemma 3.1. Assume µ ∈ (0, 1] and {(uµ
n, vµ

n)} is a (P.–S.)m(µ) sequence for the functional Jµ. Then

lim
µ→0

lim
n→∞

dist
(
(uµ

n, vµ
n), K

)
= 0,

where
K = {(u, v) ∈ H : J′0(u, v) = 0, J0(u, v) = m(0)}.

Proof. This proof is motivated by [13] and [6]. Firstly, by the mountain pass theorem and the
fact that J0 satisfies the (P.–S.) condition on H, it holds that K ̸= ∅.

Secondly, for any µ ∈ (0, 1], since {(uµ
n, vµ

n)} is a (P.–S.)m(µ) sequence for the functional Jµ,
we have

m(µ) + 1 + ∥(uµ
n, vµ

n)∥ ⩾ Jµ(u
µ
n, vµ

n)−
1
4

Iµ(u
µ
n, vµ

n).

Thus, similarly to (2.9) we can derive that

m(0) + 1 + ∥(uµ
n, vµ

n)∥ ⩾
1
4
∥(uµ

n, vµ
n)∥2. (3.1)

Therefore, there is a constant C5 > 0 independent of µ and n such that ∥(uµ
n, vµ

n)∥ ⩽ C5 for all
n ∈ N and µ ∈ (0, 1].

Now, assume that {µi} satisfies µi → 0 as i → ∞. Denote the (P.–S.)m(µi) sequence of the
functional Jµi by {(uµi

n , vµi
n )}. Furthermore, for any given i, we could find ni > i such that∣∣Jµi(u

µi
ni , vµi

ni )− m(µi)
∣∣ ⩽ 1

i
,

∥∥∥J′µi
(uµi

ni , vµi
ni )

∥∥∥ ⩽
1
i

.

Denote {(uµi
ni , vµi

ni )} by {(ui, vi)}. Then by (2.3), the uniform boundedness of the sequence
{(uµ

n, vµ
n)}, Lemma 2.6 and µi → 0, we can derive that

|J0(ui, vi)− m(0)| ⩽ |Jµi(ui, vi)− m(µi)|+
µi

6

[
|ui|66 + |vi|66 + 2α

∫
R3

|ui|3|vi|3
]
+ m(0)− m(µi)

⩽
1
i
+

µi

6
C2C6

5 + m(0)− m(µi) → 0, i → ∞.
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Similarly,
∥J′0(ui, vi)∥ ⩽ ∥J′0(ui, vi)∥+ µiC6∥(ui, vi)∥5 → 0, i → ∞,

where C6 is some positive constant independent of i. These yield that {(ui, vi)} is a (P.-S.)m(0)
sequence of J0. Due to the fact that J0 satisfies the (P.–S.) condition on H, then there exists
(u0, v0) ∈ K and up to a subsequence still denoted by {(ui, vi)} such that (ui, vi) → (u0, v0) as
i → ∞. Thus, one can derive that

lim
i→∞

lim
n→∞

dist
(
(uµi

n , vµi
n ), K

)
⩽ lim

i→∞
dist

(
(ui, vi), K

)
= 0.

In the end, by the arbitrariness for {µi}, the proof is complete.

Proof of Theorem 1.1. Assume µ ∈ [0, 1] and {(uµ
n, vµ

n)} is a (P.–S.)m(µ) sequence of the func-
tional Jµ. Similarly to (3.1), we can derive that {(uµ

n, vµ
n)} is uniformly bounded for µ ∈ [0, 1],

then there exists (uµ, vµ) ∈ H and a subsequence for {(uµ
n, vµ

n)} still denoted by {(uµ
ni , vµ

ni)}
such that (uµ

ni , vµ
ni) ⇀ (uµ, vµ) as i → ∞ and J′µ(uµ, vµ) = 0.

In what follows, we will prove that there exists µ0 > 0, such that (uµ, vµ) ̸= (0, 0) for
µ ∈ [0, µ0]. Indeed, since m(0) > 0 and K is nonempty and compact, δ0 := dist((0, 0), K) =

min(u,v)∈K ∥(u, v)∥ > 0. According to Lemma 3.1,

lim
µ→0

lim
i→∞

dist
(
(uµ

ni , vµ
ni), K

)
= 0.

Hence, for any given δ < δ0/2, there exists some µ0 = µ0(δ) satisfying: for any µ ∈ (0, µ0)

there is i0 = i0(µ) such that

dist
(
(uµ

ni , vµ
ni), K

)
< δ, i > i0.

Thus, for fixed µ ∈ (0, µ0), by the compactness of K, one can obtain a sequence {(uµ
i , vµ

i )} ⊂ K
such that ∥(uµ

ni , vµ
ni) − (uµ

i , vµ
i )∥ ⩽ δ for i > i0. Moreover, noting that there is (uµ

0 , vµ
0 ) ∈ K

such that (uµ
i , vµ

i ) → (uµ
0 , vµ

0 ) as i → ∞, it also holds that (uµ
ni , vµ

ni) ∈ B2δ(u
µ
0 , vµ

0 ) for i large.

Therefore, the facts that B2δ(u
µ
0 , vµ

0 ) is closed weakly and (uµ
ni , vµ

ni) ⇀ (uµ, vµ) lead to

(uµ, vµ) ∈ B2δ(u
µ
0 , vµ

0 ).

Thereby, owing to the choosing of δ,

∥(uµ, vµ)∥ ⩾ ∥(uµ
0 , vµ

0 )∥ − 2δ > 0, µ ∈ (0, µ0).

In the end, we will prove that (uµ, vµ) is a ground-state solution to the system (1.1). Ac-
tually, it is sufficient to prove that Jµ(uµ, vµ) = d(µ) since (uµ, vµ) ̸= (0, 0) and J′µ(uµ, vµ) = 0.
To achieve this, we calculate the following inequalities:

d(µ) ⩽ Jµ(uµ, vµ)

= Jµ(uµ, vµ)− Iµ(uµ, vµ)/4

= A(uµ, vµ)/4 + (q − 2)C(uµ, vµ)/(4q) + µD(uµ, vµ)/12

⩽ lim inf
i→∞

[
A(uµ

ni , vµ
ni)/4 + (q − 2)C(uµ

ni , vµ
ni)/(4q) + µD(uµ

ni , vµ
ni)/12

]
= lim inf

i→∞
[Jµ(u

µ
ni , vµ

ni)− Iµ(u
µ
ni , vµ

ni)/4] = m(µ).

Hence, it follows from Lemma 2.5 that Jµ(uµ, vµ) = d(µ). Therefore, (uµ, vµ) is a ground-state
solution to the system (1.1).
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4 Proof of Theorem 1.2

Lemma 4.1. Let p ∈ [2, ∞), and σ ⩾ 0. Define

hσ(s) = sp + (1 − s)p + 2σsp/2(1 − s)p/2, s ∈ [0, 1].

Then

(i) if σ < 2p−1 − 1, then hσ(s) < 1 for all s ∈ (0, 1);

(ii) if σ > 2p−1 − 1, then hσ(1/2) > 1.

Proof. For (i) one can refer to [4, Lemma 2.7] or [5, Lemma 2.4], while (ii) could be derived
through a direct calculation.

Lemma 4.2. Assume that q ∈ (2, 3), µ > 0, 0 ⩽ α < 3, 0 ⩽ β < 2q−1 − 1. If (u, v) ∈ H is a
ground-state radial solution to the system (1.1) with Jµ(u, v) = d(µ), then u = 0 or v = 0.

Proof. Suppose by contradiction, u ̸= 0 and v ̸= 0. Then replacing (u, v) with (|u|, |v|), by a
regularity process and the maximum principle, one could also assume that u > 0 and v > 0.
Now, let (ρ, θ) be the polar form of (u, v), that is, that is,

(u, v) = (ρ cos θ, ρ sin θ), ρ = ρ(x) > 0, θ = θ(x) ∈ (0, π/2).

Then on one aspect, by the convexity inequality for gradients in [7], there also holds that
ρ =

√
u2 + v2 ∈ H1

r (R
3). On the other aspect, through calculations, we could get that

∇u = (cos θ)∇ρ − ρ(sin θ)∇θ, ∇v = (sin θ)∇ρ + ρ(cos θ)∇θ.

Hence, it follows from definitions of functionals A, B, C and D given in (1.4),

A(u, v) =
∫

R3

[
|∇ρ|2 + ρ2|∇θ|2 + ρ2] = A(ρ, 0) +

∫
R3

ρ2|∇θ|2,

B(u, v) = λ
∫

R3
ϕu,v(u2 + v2) = λ

∫
R3

ϕρ,0ρ2 = B(ρ, 0),

C(u, v) =
∫

R3
ρ2q [cos2q θ + sin2q θ + 2β cosq θ sinq θ

]
=

∫
R3

ρ2qhβ(cos2 θ),

and similarly there holds

D(u, v) =
∫

R3
ρ6hα(cos2 θ).

Furthermore, since θ ∈ (0, 1), then by Lemma 4.1 it holds that

C(u, v) < |ρ|2q
2q = C(ρ, 0), D(u, v) < D(ρ, 0).

Note that by (i) of Lemma 2.3 there exists some t(µ) > 0 such that t(µ)(ρ, 0) ∈ Nµ. Then

d(µ) ⩽ Jµ(t(µ)(ρ, 0))

=
1
2

t2(µ)A(ρ, 0) +
1
4

t4(µ)B(ρ, 0)− 1
2q

t2q(µ)C(ρ, 0)− 1
6

µt6(µ)D(ρ, 0)

<
1
2

t2(µ)A(u, v) +
1
4

t4(µ)B(u, v)− 1
2q

t2q(µ)C(u, v)− 1
6

µt6(µ)D(u, v)

= Jµ(t(µ)(u, v)) < Jµ(u, v) = d(µ).

This is absurd. Thus, it could only hold that u = 0 or v = 0.
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Lemma 4.3. Assume that q ∈ (2, 3), µ > 0, α > 3, β > 2q−1 − 1. If (u, v) ∈ H is a ground-state
radial solution to the system (1.1) with Jµ(u, v) = d(µ), then u ̸= 0 and v ̸= 0.

Proof. Arguing by contradiction, we suppose that v = 0. Define (u0, v0) = (u/
√

2, v/
√

2).
Then (u0, v0) ∈ H\{(0, 0)}. Similarly to the proof of Lemma 4.2, one could derive that

A(u0, v0) = A(u, 0), B(u0, v0) = B(u, 0)

and
C(u0, v0) = hβ(1/2)C(u, 0), D(u0, v0) = hα(1/2)D(u, 0).

Moreover, by (i) of Lemma 2.3, there exists a unique t(µ) > 0 such that t(µ)(u0, v0) ∈ Nµ.
Now, we make the following calculation

Jµ(t(µ)(u0, v0))

=
1
2

A(u0, v0)t2(µ) +
1
4

B(u0, v0)t4(µ)− 1
2q

C(u0, v0)t2q(µ)− 1
6

µD(u0, v0)t6(µ)

=
1
2

A(u, 0)t2(µ) +
1
4

B(u, 0)t4(µ)− 1
2q

hβ(1/2)C(u, 0)t2q(µ)− 1
6

µhα(1/2)D(u, 0)t6(µ)

<
1
2

A(u, 0)t2(µ) +
1
4

B(u, 0)t4(µ)− 1
2q

C(u, 0)t2q(µ)− 1
6

µD(u, 0)t6(µ) = Jµ(t(µ)(u, 0)).

Consequently,

d(µ) ⩽ Jµ(t(µ)(u0, v0)) < Jµ(t(µ)(u, 0)) ⩽ Jµ(u, 0) = d(µ),

which is a contraction. Thus, it holds that u ̸= 0 and v ̸= 0.

Proof of Theorem 1.2. According to Lemmas 4.2 and 4.3, one can get Theorem 1.2 directly.
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