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Abstract. We show the existence of a positive solution to the (p, q)-Laplacian problem{
−∆pu − a∆qu = λ f (u)− h(x) in Ω,
u = 0 on ∂Ω,

for λ large, where Ω is a bounded domain in Rn with smooth boundary ∂Ω, a is a
nonnegative constant, h ∈ L∞(Ω), p > q > 1, and f satisfies f (0) = f (r) = 0 with
f > 0 on (0, r) for some r > 0.
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1 Introduction

Consider the (p, q) Laplacian problem{
−∆pu − a∆qu = λ f (u)− h(x) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is bounded domain in Rn with smooth boundary ∂Ω, p > q > 1, ∆ru =

div(|∇u|r−2∇u), f : [0, ∞) → R, h : Ω → R, a is a nonnegative constant, and λ is a positive
parameter.

In contrast to the p-Laplacian, the (p, q) -Laplacian is not homogenous and occurs in ap-
plied areas such as chemical reactions and quantum physics (see e.g. [2, 6]) and has been
studied extensively in recent years. The existence of a positive solution to (1.1) for λ large
when f is p-sublinear at ∞ was studied in [1]. We are interested here in the case when f
has falling zeroes and are motivated by a result in [9, Theorem 1.1], where the existence of a
positive solution to (1.1) was established for λ large when a = 0 (the p-Laplacian equation),
h ≡ ε is small, and f satisfies the following condition:
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(H) There exists a constant r > 0 such that f : [0, r] → R is continuous with f (0) = f (r) = 0
and f > 0 on (0, r).

This result extended a previous work in [4] where p = 2 and f (u) = u − u3. Note that under
the assumption (H), the function g(u) = λ f (u) − ε has at least two zeroes for λ large as
g(0) = g(r) < 0 and g(r/2) = λ f (r/2) − ε > 0 for λ large. The purpose of this note
is to extend the result in [9] to the general (p, q)-Laplacian. In fact, we show that for any
h ∈ L∞(Ω), (1.1) has a positive solution provided that λ is large enough. This extension is
nontrivial since the lack of homogeneity of the operator makes it difficult to create a positive
subsolution.

Our main result is

Theorem 1.1. Let (H) hold and c0 > 0. Suppose h ∈ L∞(Ω) with 0 ≤ h ≤ c0 in Ω. Then there exists
a constant λ0 > 0 depending on c0 such that (1.1) has a positive solution for λ > λ0.

We shall denote by ∥ · ∥p, | · |1, and | · |1,ν the norms in Lp(Ω), C1(Ω̄), and C1,ν(Ω̄) respec-
tively.

Lemma 1.2. Let f ∈ L∞(Ω) with ∥ f ∥∞ ≤ M. Then the problem{
−∆pu − a∆qu = f in Ω,

u = 0 on ∂Ω
(1.2)

has a unique solution u ∈ C1,ν(Ω̄) for some ν ∈ (0, 1). Furthermore |u|1,ν ≤ C, where C > 0 is a
constant depending on M (but not on a and f ).

Proof. Let E = W1,p
0 (Ω) with norm ∥u∥ =

(∫
Ω |∇u|p

)1/p. Define

⟨Au, v⟩ =
∫

Ω
|∇u|p−2∇u · ∇v + a

∫
Ω
|∇u|q−2∇u · ∇v

and
F(v) =

∫
Ω

f v

for u, v ∈ E. Then it is easily seen that A : E → E∗ is continuous with

⟨Au, u⟩
∥u∥ ≥ ∥u∥p−1 → ∞ as ∥u∥ → ∞

and

⟨Au − Av, u − v⟩ ≥
∫

Ω

(
|∇u|p−2∇u − |∇v|p−2∇v · ∇u −∇v

)
> 0 for u ̸= v.

Hence by the Minty–Browder Theorem (see [3]), there exists a unique u ∈ E such that
Au = F in E∗ i.e. u is the unique weak solution of (1.2). To show that u ∈ C1,ν(Ω̄) for some
ν ∈ (0, 1), we need Lieberman’s regularity result in [8]. By the weak comparison principle
[10, Theorem 10.1], |u| ≤ ũ in Ω, where ũ satisfies{

−∆pũ − a∆qũ = M in B(0, R),

ũ = 0 on ∂B(0, R),
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where R > 0 is such that Ω ⊂ B(0, R) and B(0, R) denotes the open ball centered at 0 with
radius R in Rn. Note that ũ is unique, radial, and

ũ(x) =
∫ R

|x|
ϕ−1

(
Ms
n

)
ds ≤

∫ R

0

(
Ms
n

) 1
p−1

ds =
(

M
n

) 1
p−1

R
p

p−1 ≡ M0 ∀x ∈ B(0, R),

where ϕ(t) = |t|p−2t + a|t|q−2t.
Next, let w ∈ C1,ν(Ω̄) satisfy ∆w = f in Ω, w = 0 on ∂Ω. Then the equation in (1.2)

becomes
div A(x, u,∇u) = 0 in Ω,

where A(x, z, µ) = |µ|p−2µ + a|µ|q−2µ +∇w(x). Since A(x, z, µ) satisfies assumptions (1.10a)–
(1.10d) in [8, p. 320] and |u| ≤ M0 in Ω, it follows from the remark after Theorem 1.7 in [8]
that u ∈ C1,ν(Ω̄) for some ν ∈ (0, 1) and |u|1,ν ≤ C, where C depends on M.

Lemma 1.3. Let f , g ∈ L∞(Ω) and u, v ∈ W1,p
0 (Ω) satisfy{

−∆pu − a∆qu = f in Ω,

u = 0 on ∂Ω,
and

{
−∆pv − a∆qv = g in Ω,

v = 0 on ∂Ω.

Then |u − v|1 → 0 as ∥ f − g∥1 → 0.

Proof. By Lemma 1.2, u, v ∈ C1,ν(Ω̄) for some ν ∈ (0, 1) and |u|1,ν, |v|1,ν ≤ C, where C depends
on an upper bound of ∥ f ∥∞, ∥g∥∞.

Multiplying the equation

−(∆pu − ∆pv)− a(∆qu − ∆qv) = f − g in Ω

by u − v and integrating, we get∫
Ω
|∇(u − v)|p + a

∫
Ω
|∇(u − v)|q =

∫
Ω
( f − g)(u − v)

≤ 2C∥ f − g∥1 → 0

as ∥ f − g∥1 → 0. From this and the interpolation inequality [7, Corollary 1.3],

|w|1 ≤ c|w|1−θ
1,β ∥w∥θ

W1,p ∀w ∈ C1,β(Ω̄)

for some c > 0 and θ ∈ (0, 1), we obtain |u − v|1 → 0 as ∥ f − g∥1 → 0, which completes the
proof.

Lemma 1.4. Let m > 0 and um be the solution of{
−∆pu − a∆qu = m in Ω,

u = 0 on ∂Ω.

Then

(i) ∥um∥∞ → ∞ as m → ∞.

(ii) ∥um∥∞ → 0 as m → 0.
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Proof. (i) A calculation shows that um = m
1

p−1 vm, where vm satisfies{
−∆pvm − am

q−p
p−1 ∆qvm = 1 in Ω,

vm = 0 on ∂Ω.
(1.3)

Suppose ∥um∥∞ ̸−→ ∞ as m → ∞. Then by going to a subsequence if necessary, we can
assume that ∥um∥∞ ≤ M ∀m > 0 for some M > 0.

This implies |vm| ≤ Mm− 1
p−1 ≤ M in Ω for m > 1. By Lemma 1.2, |vm|1,ν ≤ C, where

C > 0 is independent of m. Hence there exists v0 ∈ C1(Ω̄) and a subsequence of (vm), which
we still denote by (vm), such that vm → v0 in C1(Ω̄). Since∫

Ω
|∇vm|p−2∇vm · ∇ψ + am

q−p
p−1

∫
Ω
|∇vm|q−2∇vm · ∇ψ =

∫
Ω

ψ ∀ψ ∈ W1,p
0 (Ω),

it follows by letting m → ∞ that∫
Ω
|∇v0|p−2∇v0 · ∇ψ =

∫
Ω

ψ ∀ψ ∈ W1,p
0 (Ω),

i.e v0 satisfies −∆pv0 = 1 in Ω, v0 = 0 on ∂Ω. Consequently,

∥um∥∞ = m
1

p−1 ∥vm∥∞ → ∞ as m → ∞

a contradiction which proves (i).

(ii) Using Lemma 1.3 with f = m and g = 0, we obtain the result.

Proof of Theorem 1.1. Let um be defined by Lemma 1.4. By Lemma 1.3, the map m 7→ ∥um∥∞

is continuous. This, together with Lemma 1.4, implies the existence of an m > 0 such that
∥um∥∞ = r. By [10, Corollary 8.4], um > 0 in Ω and ∂um

∂n < 0 on ∂Ω, where n denotes the
outward unit normal on ∂Ω. Let 0 < α < β < r and zα,β ∈ C1,β(Ω̄) be the solution of

−∆pz − a∆qz =

{
m if um ∈ [α, β],

−c0 otherwise
≡ hα,β, z = 0 on ∂Ω.

Note that the existence of zα,β follows from Lemma 1.2. Since −∆pum − a∆qum = m in Ω and

∥hα,β − m∥1 = (m + c0)|B| → 0

as α → 0 and β → r, where |B| denotes the Lebesgue measure of

B = {x : um(x) < α} ∪ {x : β < um(x) ≤ r},

it follows from Lemma 1.3 that |zα,β − um|1 → 0 as α → 0 and β → r. Hence there exist α, β

such that zα,β ≡ z0 such that
um

2
≤ z0 ≤ um in Ω. (1.4)

Note that the right side inequality in (1.4) follows from the weak comparison principle in
[10, Theorem 10.1]. In particular, α

2 ≤ z0 ≤ β when um ∈ [α, β], which implies f (z0) ≥
inf[α/2,β] f ≡ γ > 0 and therefore

−∆pz0 − a∆qz0 = m ≤ λγ − c0 ≤ λ f (z0)− h(x) (1.5)

for um ∈ [α, β] and λ > m+c0
γ . For such λ and um /∈ [α, β],

−∆pz0 − a∆qz0 = −c0 ≤ −h(x) ≤ λ f (z0)− h(x) (1.6)

since f (z0) ≥ 0 in view of (1.4). Combining (1.5) and (1.6), we see that z0 is a subsolution of
(1.1). Clearly, z1 ≡ r is a supersolution of (1.1) with z0 ≤ z1 in Ω. Hence (1.1) has a solution z
with z0 ≤ z ≤ z1 in Ω by [5, Corollary 1], which completes the proof.



An existence result for (p, q)-Laplacian BVP with falling zeros 5

References

[1] B. Alreshidi, D. D. Hai, R. Shivaji, On sublinear singular (p,q) Laplacian problems,
Commun. Pure Appl. Anal. 22(2023), 2773–2783. https://doi.org/10.3934/cpaa.2023087;
MR4636133.

[2] V. Benci, D. Fortunato, L. Pisani, Soliton like solutions of a Lorentz invariant equa-
tion in dimension 3, Rev. Math. Phys. 10(1998), 315–344. https://doi.org/10.1142/
S0129055X98000100; MR1626832.

[3] H. Brezis, Analyse fonctionnelle, theorie et applications, Masson, Paris, 1983. MR0697382.

[4] K. J. Brown, R. Shivaji, Simple proofs of some results in perturbed bifurcation theory, Proc.
Roy. Soc. Edinburgh Sect. A 93(1982), 71–82. MR0688286.

[5] L. F. O. Faria, O. H. Miyagaki, D. Montreanu, M. Tanaka, Existence results for nonlin-
ear elliptic equations with Leray–Lions operator and dependence on the gradient, Non-
linear Anal. 96(2014), 154–166. https://doi.org/10.1016/j.na.2013.11006; MR3143809.

[6] L. Cherfils, Y. Il’yasov, On the stationary solutions of generalized reaction diffusion
equations with p&q-Laplacian, Commun. Pure Appl. Anal. 3(2005), 9–22. https://doi.
org/10.3934/cpaa.4.9; MR2126276.

[7] A. Le, On the local Hölder continuous of the inverse of the p-Laplace operator, Proc. Amer.
Math. Soc. 135(2007), 3553–3560. https://doi.org/10.1090/S0002-9939-07-08913-7;
MR2336570.

[8] G. M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya
and Uraltseva for elliptic equations, Comm. Partial Differential Equations 16(1991), No. 2–3,
311–361. https://doi.org/10.1080/03605309108820761; MR1104103.

[9] S. Oruganti, R. Shivaji, Existence results for classes of p-Laplacian semipositone equa-
tions, Bound. Value Probl. 2006, Art. ID 87483, 7 pp. https://doi.org/10.1155/BVP/2006/
87483; MR2211402.

[10] P. Pucci, J. Serrin, The strong maximum principle revisited, J. Differential Equations
196(2004), 1–66. https://doi.org/10.1016/j.jde.2003.05.001; MR2025185.

https://doi.org/10.3934/cpaa.2023087
https://www.ams.org/mathscinet-getitem?mr=4636133
https://doi.org/10.1142/S0129055X98000100
https://doi.org/10.1142/S0129055X98000100
https://www.ams.org/mathscinet-getitem?mr=1626832
https://www.ams.org/mathscinet-getitem?mr=0697382
https://www.ams.org/mathscinet-getitem?mr=0688286
https://doi.org/10.1016/j.na.2013.11006
https://www.ams.org/mathscinet-getitem?mr=3143809
https://doi.org/10.3934/cpaa.4.9
https://doi.org/10.3934/cpaa.4.9
https://www.ams.org/mathscinet-getitem?mr=2126276
https://doi.org/10.1090/S0002-9939-07-08913-7
https://www.ams.org/mathscinet-getitem?mr=2336570
https://doi.org/10.1080/03605309108820761
https://www.ams.org/mathscinet-getitem?mr=1104103
https://doi.org/10.1155/BVP/2006/87483
https://doi.org/10.1155/BVP/2006/87483
https://www.ams.org/mathscinet-getitem?mr=2211402
https://doi.org/10.1016/j.jde.2003.05.001
https://www.ams.org/mathscinet-getitem?mr=2025185

	Introduction

