An existence result for (p, q)-Laplacian BVP with falling zeros

Bandar Alreshidi and Dang Dinh Hai ${ }^{\boxtimes}$
Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, U. S. A.

Received 1 April 2024, appeared 2 July 2024
Communicated by Patrizia Pucci

Abstract. We show the existence of a positive solution to the (p, q)-Laplacian problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u-a \Delta_{q} u=\lambda f(u)-h(x) \text { in } \Omega \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

for λ large, where Ω is a bounded domain in \mathbb{R}^{n} with smooth boundary $\partial \Omega, a$ is a nonnegative constant, $h \in L^{\infty}(\Omega), p>q>1$, and f satisfies $f(0)=f(r)=0$ with $f>0$ on ($0, r$) for some $r>0$.
Keywords: positive solutions, (p, q) Laplacian, semipositone.
2020 Mathematics Subject Classification: 34J60, 35 J62.

1 Introduction

Consider the (p, q) Laplacian problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u-a \Delta_{q} u=\lambda f(u)-h(x) \text { in } \Omega, \tag{1.1}\\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

where Ω is bounded domain in \mathbb{R}^{n} with smooth boundary $\partial \Omega, p>q>1, \Delta_{r} u=$ $\operatorname{div}\left(|\nabla u|^{r-2} \nabla u\right), f:[0, \infty) \rightarrow \mathbb{R}, h: \Omega \rightarrow \mathbb{R}, a$ is a nonnegative constant, and λ is a positive parameter.

In contrast to the p-Laplacian, the (p, q)-Laplacian is not homogenous and occurs in applied areas such as chemical reactions and quantum physics (see e.g. [2,6]) and has been studied extensively in recent years. The existence of a positive solution to (1.1) for λ large when f is p-sublinear at ∞ was studied in [1]. We are interested here in the case when f has falling zeroes and are motivated by a result in [9, Theorem 1.1], where the existence of a positive solution to (1.1) was established for λ large when $a=0$ (the p-Laplacian equation), $h \equiv \varepsilon$ is small, and f satisfies the following condition:

[^0](H) There exists a constant $r>0$ such that $f:[0, r] \rightarrow \mathbb{R}$ is continuous with $f(0)=f(r)=0$ and $f>0$ on $(0, r)$.

This result extended a previous work in [4] where $p=2$ and $f(u)=u-u^{3}$. Note that under the assumption (H), the function $g(u)=\lambda f(u)-\varepsilon$ has at least two zeroes for λ large as $g(0)=g(r)<0$ and $g(r / 2)=\lambda f(r / 2)-\varepsilon>0$ for λ large. The purpose of this note is to extend the result in [9] to the general (p, q)-Laplacian. In fact, we show that for any $h \in L^{\infty}(\Omega)$, (1.1) has a positive solution provided that λ is large enough. This extension is nontrivial since the lack of homogeneity of the operator makes it difficult to create a positive subsolution.

Our main result is
Theorem 1.1. Let (H) hold and $c_{0}>0$. Suppose $h \in L^{\infty}(\Omega)$ with $0 \leq h \leq c_{0}$ in Ω. Then there exists a constant $\lambda_{0}>0$ depending on c_{0} such that (1.1) has a positive solution for $\lambda>\lambda_{0}$.

We shall denote by $\|\cdot\|_{p,}|\cdot|_{1}$, and $|\cdot|_{1, v}$ the norms in $L^{p}(\Omega), C^{1}(\bar{\Omega})$, and $C^{1, v}(\bar{\Omega})$ respectively.

Lemma 1.2. Let $f \in L^{\infty}(\Omega)$ with $\|f\|_{\infty} \leq M$. Then the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u-a \Delta_{q} u=f \text { in } \Omega, \tag{1.2}\\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

has a unique solution $u \in C^{1, v}(\bar{\Omega})$ for some $v \in(0,1)$. Furthermore $|u|_{1, v} \leq C$, where $C>0$ is a constant depending on M (but not on a and f).

Proof. Let $E=W_{0}^{1, p}(\Omega)$ with norm $\|u\|=\left(\int_{\Omega}|\nabla u|^{p}\right)^{1 / p}$. Define

$$
\langle A u, v\rangle=\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla v+a \int_{\Omega}|\nabla u|^{q-2} \nabla u \cdot \nabla v
$$

and

$$
F(v)=\int_{\Omega} f v
$$

for $u, v \in E$. Then it is easily seen that $A: E \rightarrow E^{*}$ is continuous with

$$
\frac{\langle A u, u\rangle}{\|u\|} \geq\|u\|^{p-1} \rightarrow \infty \quad \text { as }\|u\| \rightarrow \infty
$$

and

$$
\langle A u-A v, u-v\rangle \geq \int_{\Omega}\left(|\nabla u|^{p-2} \nabla u-|\nabla v|^{p-2} \nabla v \cdot \nabla u-\nabla v\right)>0 \quad \text { for } u \neq v .
$$

Hence by the Minty-Browder Theorem (see [3]), there exists a unique $u \in E$ such that $A u=F$ in E^{*} i.e. u is the unique weak solution of (1.2). To show that $u \in C^{1, v}(\bar{\Omega})$ for some $v \in(0,1)$, we need Lieberman's regularity result in [8]. By the weak comparison principle [10, Theorem 10.1], $|u| \leq \tilde{u}$ in Ω, where \tilde{u} satisfies

$$
\left\{\begin{array}{l}
-\Delta_{p} \tilde{u}-a \Delta_{q} \tilde{u}=M \quad \text { in } B(0, R), \\
\tilde{u}=0 \text { on } \partial B(0, R),
\end{array}\right.
$$

where $R>0$ is such that $\Omega \subset B(0, R)$ and $B(0, R)$ denotes the open ball centered at 0 with radius R in \mathbb{R}^{n}. Note that \tilde{u} is unique, radial, and

$$
\tilde{u}(x)=\int_{|x|}^{R} \phi^{-1}\left(\frac{M s}{n}\right) d s \leq \int_{0}^{R}\left(\frac{M s}{n}\right)^{\frac{1}{p-1}} d s=\left(\frac{M}{n}\right)^{\frac{1}{p-1}} R^{\frac{p}{p-1}} \equiv M_{0} \quad \forall x \in B(0, R),
$$

where $\phi(t)=|t|^{p-2} t+a|t|^{q-2} t$.
Next, let $w \in C^{1, v}(\bar{\Omega})$ satisfy $\Delta w=f$ in $\Omega, w=0$ on $\partial \Omega$. Then the equation in (1.2) becomes

$$
\operatorname{div} A(x, u, \nabla u)=0 \quad \text { in } \Omega,
$$

where $A(x, z, \mu)=|\mu|^{p-2} \mu+a|\mu|^{q-2} \mu+\nabla w(x)$. Since $A(x, z, \mu)$ satisfies assumptions (1.10a)(1.10d) in [8, p. 320] and $|u| \leq M_{0}$ in Ω, it follows from the remark after Theorem 1.7 in [8] that $u \in C^{1, v}(\bar{\Omega})$ for some $v \in(0,1)$ and $|u|_{1, v} \leq C$, where C depends on M.

Lemma 1.3. Let $f, g \in L^{\infty}(\Omega)$ and $u, v \in W_{0}^{1, p}(\Omega)$ satisfy

$$
\left\{\begin{array} { l }
{ - \Delta _ { p } u - a \Delta _ { q } u = f \text { in } \Omega , } \\
{ u = 0 \text { on } \partial \Omega , }
\end{array} \text { and } \left\{\begin{array}{l}
-\Delta_{p} v-a \Delta_{q} v=g \text { in } \Omega, \\
v=0 \text { on } \partial \Omega .
\end{array}\right.\right.
$$

Then $|u-v|_{1} \rightarrow 0$ as $\|f-g\|_{1} \rightarrow 0$.
Proof. By Lemma 1.2, $u, v \in C^{1, v}(\bar{\Omega})$ for some $v \in(0,1)$ and $|u|_{1, v,}|v|_{1, v} \leq C$, where C depends on an upper bound of $\|f\|_{\infty},\|g\|_{\infty}$.

Multiplying the equation

$$
-\left(\Delta_{p} u-\Delta_{p} v\right)-a\left(\Delta_{q} u-\Delta_{q} v\right)=f-g \text { in } \Omega
$$

by $u-v$ and integrating, we get

$$
\begin{aligned}
\int_{\Omega}|\nabla(u-v)|^{p}+a \int_{\Omega}|\nabla(u-v)|^{q} & =\int_{\Omega}(f-g)(u-v) \\
& \leq 2 C\|f-g\|_{1} \rightarrow 0
\end{aligned}
$$

as $\|f-g\|_{1} \rightarrow 0$. From this and the interpolation inequality [7, Corollary 1.3],

$$
|w|_{1} \leq c|w|_{1, \beta}^{1-\theta}\|w\|_{W^{1, p}}^{\theta} \quad \forall w \in C^{1, \beta}(\bar{\Omega})
$$

for some $c>0$ and $\theta \in(0,1)$, we obtain $|u-v|_{1} \rightarrow 0$ as $\|f-g\|_{1} \rightarrow 0$, which completes the proof.

Lemma 1.4. Let $m>0$ and u_{m} be the solution of

$$
\left\{\begin{array}{l}
-\Delta_{p} u-a \Delta_{q} u=m \quad \text { in } \Omega, \\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Then
(i) $\left\|u_{m}\right\|_{\infty} \rightarrow \infty$ as $m \rightarrow \infty$.
(ii) $\left\|u_{m}\right\|_{\infty} \rightarrow 0$ as $m \rightarrow 0$.

Proof. (i) A calculation shows that $u_{m}=m^{\frac{1}{p-1}} v_{m}$, where v_{m} satisfies

$$
\left\{\begin{array}{l}
-\Delta_{p} v_{m}-a m^{\frac{q-p}{p-1}} \Delta_{q} v_{m}=1 \quad \text { in } \Omega \tag{1.3}\\
v_{m}=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

Suppose $\left\|u_{m}\right\|_{\infty} \nrightarrow \infty$ as $m \rightarrow \infty$. Then by going to a subsequence if necessary, we can assume that $\left\|u_{m}\right\|_{\infty} \leq M \forall m>0$ for some $M>0$.

This implies $\left|v_{m}\right| \leq M m^{-\frac{1}{p-1}} \leq M$ in Ω for $m>1$. By Lemma 1.2, $\left|v_{m}\right|_{1, v} \leq C$, where $C>0$ is independent of m. Hence there exists $v_{0} \in C^{1}(\bar{\Omega})$ and a subsequence of $\left(v_{m}\right)$, which we still denote by $\left(v_{m}\right)$, such that $v_{m} \rightarrow v_{0}$ in $C^{1}(\bar{\Omega})$. Since

$$
\int_{\Omega}\left|\nabla v_{m}\right|^{p-2} \nabla v_{m} \cdot \nabla \psi+a m^{\frac{q-p}{p-1}} \int_{\Omega}\left|\nabla v_{m}\right|^{q-2} \nabla v_{m} \cdot \nabla \psi=\int_{\Omega} \psi \quad \forall \psi \in W_{0}^{1, p}(\Omega)
$$

it follows by letting $m \rightarrow \infty$ that

$$
\int_{\Omega}\left|\nabla v_{0}\right|^{p-2} \nabla v_{0} \cdot \nabla \psi=\int_{\Omega} \psi \quad \forall \psi \in W_{0}^{1, p}(\Omega)
$$

i.e v_{0} satisfies $-\Delta_{p} v_{0}=1$ in $\Omega, v_{0}=0$ on $\partial \Omega$. Consequently,

$$
\left\|u_{m}\right\|_{\infty}=m^{\frac{1}{p-1}}\left\|v_{m}\right\|_{\infty} \rightarrow \infty \quad \text { as } m \rightarrow \infty
$$

a contradiction which proves (i).
(ii) Using Lemma 1.3 with $f=m$ and $g=0$, we obtain the result.

Proof of Theorem 1.1. Let u_{m} be defined by Lemma 1.4. By Lemma 1.3, the map $m \mapsto\left\|u_{m}\right\|_{\infty}$ is continuous. This, together with Lemma 1.4, implies the existence of an $m>0$ such that $\left\|u_{m}\right\|_{\infty}=r$. By [10, Corollary 8.4], $u_{m}>0$ in Ω and $\frac{\partial u_{m}}{\partial n}<0$ on $\partial \Omega$, where n denotes the outward unit normal on $\partial \Omega$. Let $0<\alpha<\beta<r$ and $z_{\alpha, \beta} \in C^{1, \beta}(\bar{\Omega})$ be the solution of

$$
-\Delta_{p} z-a \Delta_{q} z=\left\{\begin{array}{ll}
m & \text { if } u_{m} \in[\alpha, \beta], \\
-c_{0} & \text { otherwise }
\end{array} \equiv h_{\alpha, \beta}, \quad z=0 \quad \text { on } \partial \Omega\right.
$$

Note that the existence of $z_{\alpha, \beta}$ follows from Lemma 1.2. Since $-\Delta_{p} u_{m}-a \Delta_{q} u_{m}=m$ in Ω and

$$
\left\|h_{\alpha, \beta}-m\right\|_{1}=\left(m+c_{0}\right)|B| \rightarrow 0
$$

as $\alpha \rightarrow 0$ and $\beta \rightarrow r$, where $|B|$ denotes the Lebesgue measure of

$$
B=\left\{x: u_{m}(x)<\alpha\right\} \cup\left\{x: \beta<u_{m}(x) \leq r\right\}
$$

it follows from Lemma 1.3 that $\left|z_{\alpha, \beta}-u_{m}\right|_{1} \rightarrow 0$ as $\alpha \rightarrow 0$ and $\beta \rightarrow r$. Hence there exist α, β such that $z_{\alpha, \beta} \equiv z_{0}$ such that

$$
\begin{equation*}
\frac{u_{m}}{2} \leq z_{0} \leq u_{m} \quad \text { in } \Omega \tag{1.4}
\end{equation*}
$$

Note that the right side inequality in (1.4) follows from the weak comparison principle in [10, Theorem 10.1]. In particular, $\frac{\alpha}{2} \leq z_{0} \leq \beta$ when $u_{m} \in[\alpha, \beta]$, which implies $f\left(z_{0}\right) \geq$ $\inf _{[\alpha / 2, \beta]} f \equiv \gamma>0$ and therefore

$$
\begin{equation*}
-\Delta_{p} z_{0}-a \Delta_{q} z_{0}=m \leq \lambda \gamma-c_{0} \leq \lambda f\left(z_{0}\right)-h(x) \tag{1.5}
\end{equation*}
$$

for $u_{m} \in[\alpha, \beta]$ and $\lambda>\frac{m+c_{0}}{\gamma}$. For such λ and $u_{m} \notin[\alpha, \beta]$,

$$
\begin{equation*}
-\Delta_{p} z_{0}-a \Delta_{q} z_{0}=-c_{0} \leq-h(x) \leq \lambda f\left(z_{0}\right)-h(x) \tag{1.6}
\end{equation*}
$$

since $f\left(z_{0}\right) \geq 0$ in view of (1.4). Combining (1.5) and (1.6), we see that z_{0} is a subsolution of (1.1). Clearly, $z_{1} \equiv r$ is a supersolution of (1.1) with $z_{0} \leq z_{1}$ in Ω. Hence (1.1) has a solution z with $z_{0} \leq z \leq z_{1}$ in Ω by [5, Corollary 1], which completes the proof.

References

[1] B. Alreshidi, D. D. Hai, R. Shivaji, On sublinear singular (p,q) Laplacian problems, Comтип. Pure Appl. Anal. 22(2023), 2773-2783. https://doi.org/10.3934/cpaa. 2023087; MR4636133.
[2] V. Benci, D. Fortunato, L. Pisani, Soliton like solutions of a Lorentz invariant equation in dimension 3, Rev. Math. Phys. 10(1998), 315-344. https://doi.org/10.1142/ S0129055X98000100; MR1626832.
[3] H. Brezis, Analyse fonctionnelle, theorie et applications, Masson, Paris, 1983. MR0697382.
[4] K. J. Brown, R. Shivaji, Simple proofs of some results in perturbed bifurcation theory, Proc. Roy. Soc. Edinburgh Sect. A 93(1982), 71-82. MR0688286.
[5] L. F. O. Faria, O. H. Miyagaki, D. Montreanu, M. Tanaka, Existence results for nonlinear elliptic equations with Leray-Lions operator and dependence on the gradient, Nonlinear Anal. 96(2014), 154-166. https://doi.org/10.1016/j.na.2013.11006; MR3143809.
[6] L. Cherfils, Y. Il'yasov, On the stationary solutions of generalized reaction diffusion equations with $p \& q$-Laplacian, Commun. Pure Appl. Anal. 3(2005), 9-22. https://doi. org/10.3934/cpaa.4.9; MR2126276.
[7] A. Le, On the local Hölder continuous of the inverse of the p-Laplace operator, Proc. Amer. Math. Soc. 135(2007), 3553-3560. https://doi.org/10.1090/S0002-9939-07-08913-7; MR2336570.
[8] G. M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations, Comm. Partial Differential Equations 16(1991), No. 2-3, 311-361. https://doi.org/10.1080/03605309108820761; MR1104103.
[9] S. Oruganti, R. Shivaji, Existence results for classes of p-Laplacian semipositone equations, Bound. Value Probl. 2006, Art. ID 87483, 7 pp. https://doi . org/10.1155/BVP/2006/ 87483; MR2211402.
[10] P. Pucci, J. Serrin, The strong maximum principle revisited, J. Differential Equations 196(2004), 1-66. https://doi.org/10.1016/j.jde.2003.05.001; MR2025185.

[^0]: ${ }^{\boxtimes}$ Corresponding author. Email: ddh123498@yahoo.com

