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1 Introduction

In the qualitative theory of planar differential systems, one of the classical problems is to study
the global phase portraits of polynomial differential systems. The global phase portraits of
polynomial differential systems have been extensively investigated, see for example [7, 9, 11,
20–27].

The isochronous center’s interest started the works of Huygens [15]. The isochronicity
phenomena occurred in many physical problems [10]. In the past few decades the study of
isochronicity, specially in the case of polynomial differential systems, has been driven by the
diffusion of more powerful methods of computerized analysis [1, 8, 13, 16, 28].

We assume that p is a center, then p is a uniform isochronous center if the system, in polar
coordinates x = r cos θ, y = r sin θ, is of the form ṙ = G(θ, r), θ̇ = k, k ∈ R\{0}. That is,
the angular velocity of the orbits of an uniform isochronous center does not depend on the
radius [13].

Proposition 1.1. Assume that a planar differential polynomial system ẋ = P(x, y), ẏ = Q(x, y) of
degree n has a center at the origin of coordinates. Then, this center is uniform isochronous if and only
if by doing a linear change of variables and a rescaling of time it can be written into the form

ẋ = −y + x f (x, y), ẏ = x + y f (x, y). (1.1)

Where f (x, y) is a polynomial in x and y of degree n − 1, and f (0, 0) = 0.
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See for instance [18] for a proof of Proposition 1.1.
Recently, the global phase portraits of differential systems with uniform isochronous cen-

ters has attracted scholars’ attention, for example [2, 8, 12, 17–19]. In 1999, Chavarriga et
al. study the phase portraits of the quadratic polynomial differential system S2 at P33 of [8].
Collins [12] found that differential systems with uniform isochronous cubic centers may have
three global different portraits. In 2016, Itikawa and Llibre [19] study the phase portraits of
uniform isochronous quartic centers. The first studies on some of these phase portraits are due
to Algaba et al. [3]. The phase portraits of uniform isochronous quartic centers whose non-
linear part is homogeneous and not homogeneous were studied in [19] and [18], respectively.
However, there are some mistakes in [18], which are corrected in [5]. Until now there are few
results about the global phase portraits of differential system with uniform isochronous of
degree 5 [2]. In this paper, we will study the global phase portraits of uniform isochronous
quintic centers at the origin with time reversibility such that their nonlinear part is not homo-
geneous. We say that systems (1.1) reversible with respect to the y-axis if it is invariant under
the transformation (x, y, t) 7→ (−x, y,−t). For this case, the differential system (1.1) of quintic
reversible uniform isochronous centers can be written as{

dx
dt = −y + x(a1x + a2xy + a3x3 + a4xy2 + a5xy3 + a6x3y),
dy
dt = x + y(a1x + a2xy + a3x3 + a4xy2 + a5xy3 + a6x3y),

(1.2)

where ai ∈ R, i = 1, 2, 3, 4, 5, 6, with a2
1 + a2

2 + a2
3 + a2

4 ̸= 0 and a2
5 + a2

6 ̸= 0.
If a3 ̸= 0, by a scaling (x, y) →

(
a−1/3

3 x, a−1/3
3 y

)
, we can assume a3 = 1, then system (1.2)

becomes {
dx
dt = −y + x(a1x + a2xy + x3 + a4xy2 + a5xy3 + a6x3y),
dy
dt = x + y(a1x + a2xy + x3 + a4xy2 + a5xy3 + a6x3y).

(1.3)

And if a3 = 0, then system (1.2) becomes{
dx
dt = −y + x(a1x + a2xy + a4xy2 + a5xy3 + a6x3y),
dy
dt = x + y(a1x + a2xy + a4xy2 + a5xy3 + a6x3y).

(1.4)

In what follows we state our main results.

Theorem 1.2. The phase portrait in the Poincaré disk of uniform isochronous quintic centers with time
reversibility is topologically equivalent to one of the following 67 possibilities global phase portraits of
Figure 1.1.

The rest of this paper is organized as follows. In Section 2, we characterize the global
phase portraits of system (1.2) in the Poincaré disc, that is we prove Theorem 1.2.

2 Proof of the results

In this section, we will prove Theorem 1.2. In order to obtain all possible phase portraits in
the Poincaré disc for the uniform isochronous system of degree 5, we shall study the finite
and infinite singular points of system (1.2).

By discussing the coefficient a3 of system (1.2), we divide into the following two cases: if
a3 ̸= 0, by parameter and time scale transformation, the system (1.2) can be given by system
(1.3); if a3 = 0, the system (1.2) can be given by system (1.4). Next, we will study the phase
portraits of system (1.3) and system (1.4).
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(61) (62) (63) (64)

(65) (66) (67)

Figure 1.1: Global phase portraits of system (1.2)

Table 1.1: The corresponding relationship between the global phase portraits of
system (1.3) and Figure 1.1

Figure 1.1 System (1.3)

(1)–(5)
a6 = 0, a5 > 0;

a5 = 0, a6 > 0, a4 = 0;
a5a6 > 0, a5 > 0.

(6)
a6 = 0, a5 < 0;

a5 = 0, a6 < 0, a4 = 0, a6 < −a2
2/4;

a5a6 > 0, a6 < 0.
(7)–(12) a5 = 0, −a2

2/4 ≤ a6 < 0, a4 = 0.
(13)–(14) a5 = 0, a6 > 0, a4 > 0.
(15)–(18) a5 = 0, a6 > 0, a4 < 0.
(19)–(21) a5 = 0, a6 < 0, a4 ̸= 0.
(25)–(30) a4a6 − a5 = 0, a5a6 < 0, a6 < 0, 4(a5 − a6) ≥ a2

2.
(31)–(46) a4a6 − a5 = 0, a5a6 < 0, a6 < 0, a2 ̸= 0, 4(a5 − a6) < a2

2.

(47)–(51)
a4a6 − a5 = 0, a5a6 < 0, a6 > 0;
a4a6 − a5 ̸= 0, a5a6 < 0, a6 > 0.

(52)–(66) a4a6 − a5 ̸= 0, a5a6 < 0, a6 < 0.

In polar coordinates defined by (x, y) = (r cos θ, r sin θ), a planar differential system (1.2)
with an uniform isochronous center at the origin always can be written as ṙ = p(r, θ), θ̇ = 1.
Hence such systems have no finite points except the origin.

By using Poincaré compactification in [14], in the local chart U1, we obtain

{
u̇ = (1 + u2)v4,

v̇ = (uv4 − a1v3 − a2uv3 − a3v − a4u2v − a5u3 − a6u)v,
(2.1)
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Table 1.2: The corresponding relationship between the global phase portraits of
system (1.4) and Figure 1.1

Figure 1.1 System (1.4)
(1)–(5) a5 = 0, a6 > 0.

(6)
a5 = 0, a6 < −a2

2/4;
a5a6 > 0.

(7)–(12) a5 = 0, −a2
2/4 ≤ a6 < 0, a4 = 0.

(19)–(21) a5 = 0, a6 < 0, a4 ̸= 0.
(22) a5a6 > 0, a6 > 0.

(23)–(24) a5 = 0, a6 > 0, a4 ̸= 0.
(25)–(30) a4 = 0, a5a6 < 0, a6 < 0, 4(a5 − a6) ≥ a2

2.
(31)–(46) a4 = 0, a5a6 < 0, a6 < 0, a2 ̸= 0, 4(a5 − a6) < a2

2.
(52)–(66) a5a6 < 0, a6 < 0, a4 ̸= 0.

(29), (67)
a5a6 < 0, a6 > 0, a4 ̸= 0;
a5a6 < 0, a6 > 0, a4 = 0.

and therefore all the points (u, 0) for all u ∈ R are infinite singular points of the system (2.1)
in U1. In order to obtain the local phase portraits near the infinity, we make a transformation
ds = vdt and obtain the following system{

u′ = (1 + u2)v3,

v′ = uv4 − a1v3 − a2uv3 − a3v − a4u2v − a5u3 − a6u.
(2.2)

Where the prime denotes derivative with respect to s and the system (2.2) has infinite singular
points in the u-axis.

In the local chart U2, we obtain{
u̇ = −(1 + u2)v4,

v̇ = (−uv4 − a1uv3 − a2uv2 − a3u3v − a4u2v − a5u − a6u3)v.
(2.3)

After the rescaling of time ds = vdt, we obtain{
u′ = −(1 + u2)v4,

v′ = −uv4 − a1uv3 − a2uv2 − a3u3v − a4u2v − a5u − a6u3.
(2.4)

It is obvious that the system (2.4) has the only singular point Ou2(0, 0).

2.1 Global phase portraits of system (1.3)

In this section, we discuss the global phase portraits of system (1.3). According to the number
of the singular points in the u-axis, the system can be divided into the following five cases.

Case I: a6 = 0, a5 ̸= 0.

In the chart U1, the system (2.2) has one singular point in the u-axis, that is OU1 (0, 0), the
corresponding linear part of system (2.2) is(

0 0
0 −1

)
.
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By the Theorem 2.19 of [14], we have the statements: if a5 > 0, then OU1 (0, 0) is a stable node;
if a5 < 0, then OU1 (0, 0) is a saddle.

For chart U2, the system (2.4) has only one singular point OU2 (0, 0), the corresponding
linear part of system (2.4) is (

0 0
−a5 0

)
.

It is easy to find that OU2 (0, 0) is a nilpotent singularity. By the Theorem 3.5 of [14], we have
the statements: if a5 > 0, then OU2 (0, 0) is a nilpotent saddle; if a5 < 0, and the system (2.4)
is symmetry about v-axis, then OU2 (0, 0) is a center. If the same situation appears again, we
will not explain in detail.

By the above analysis, if a5 > 0, the local phase portrait of system (1.3) is shown in Figure
2.1. Since v′ |v=0= −a5u3: when u > 0, v′ < 0; when u < 0, v′ > 0, the direction of the local
phase portrait through the disc is shown in the Figure 2.1.

Figure 2.1: Local phase portrait of system (1.3) on the Poincaré disk of Case I
for a5 > 0.

In Figure 2.1, there are four singularities on the equator, i.e. A, B, A′, B′, and the direction
between any two points is shown. Firstly, we consider the point A1. Since the system (1.3)
is symmetry about y axis, there are only four possibilities for the ω-limit set of unstable

manifold: a singularity on the arc
⌢

BA′, a point A, a point B, and itself (return to point A1 after
bypassing the periodic orbit around the origin, forming a homoclinic orbit). They are shown
in Figure 2.2 (1)–(4).

(1) (2) (3) (4)

Figure 2.2: Consider the point A in Figure 2.1, four possibilities for the ω limit
set of an unstable manifold.

The ω-limit set of the unstable manifold at point A′ in Figure 2.2 (1) can only be itself
(bypass the origin and returns to A′ again, forming a homoclinic orbit). Therefore, there are
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two possibility global phase portraits on the Poincaré disk, as shown in Figure 1.1 (1) and (2).
The ω-limit set of the unstable manifold at point A′ in Figure 2.2 (2) can only be itself

(bypass the origin and returns to A′ again, forming a homoclinic orbit). Next, we consider a

singular point on the arc
⌢

AB′, and its α-limit set can only be a point B′. Based on the symmetry

of the original system, the ω-limit set of a singular point on the arc
⌢
AB can only be a point B,

and its phase portrait is equivalent to the Figure 1.1 (3).

The α-limit set of a singular point on the arc
⌢

AB′ in Figure 2.2 (3) can only be the point B′.
Based on the symmetry of the original system, the ω-limit set of a singular point on the arc
⌢
AB can only be the point B, its phase portrait is equivalent to the Figure 1.1 (4).

The α-limit set of the stable manifold at point A′ in Figure 2.2 (4) can only be a singular

point on the arc
⌢
AB. Based on the symmetry of the original system, the ω-limit set of a

singular point on the arc
⌢

AB′ can only be the point B, and its phase portrait is equivalent to
the Figure 1.1 (5).

If a5 < 0, the local phase portrait of the system (1.3) on the Poincaré disk is shown in
Figure 2.3, which has four singularities on its equator.

Figure 2.3: The local phase portraits of system (1.3) on the Poincaré disk of
Case I for a5 < 0.

By the same argument as Figure 2.1, Figure 2.3 has only one global phase portrait, as
shown in the Figure 1.1 (6). This is the only one global phase portrait that can be determined.
Therefore, there are 6 possible global phase portraits of system (1.3) in Case I, as shown in
Figure 1.1 (1)–(6).

Case II: a5 = 0, a6 ̸= 0.

In chart U1, OU1 (0, 0) is a singular point of system (2.2), and its linear part is(
0 0

−a6 −1

)
.

Applying the Theorem 2.19 of [14], we have the statements: if a6 > 0, then OU1 (0, 0) is a stable
node; if a6 < 0, then OU1 (0, 0) is an unstable node.

For the chart U2, the system (2.4) can be written as{
u′ = −(1 + u2)v3,

v′ = −uv4 − a1uv3 − a2uv2 − u3v − a4uv − a6u3.
(2.5)



10 L. Guo and A. Chen

The origin OU2 (0, 0) of system (2.5) is a singular point and its linear part is identically zero,
so the OU2 (0, 0) is degenerate.

To investigate the local phase portraits of the degenerate singular points, we use the quasi-
homogeneous directional blow up(or (α, β)-blow up) technique [4, 6] . Since the choice of the
exponents α and β depends on the coefficients a4 of system (2.5), we need to consider whether
a4 is zero. Thus we apply a (3,2)-blow up and (1,1)-blow up to system (2.5) if a4 ̸= 0 and
a4 = 0, respectively.

Case II.1: a4 = 0. When a4 = 0, applying a (1, 1)-blow up to system (2.5). Firstly, we apply
blow-up (u, v) 7→ (ū, ūv̄) in the positive u-direction. After division by ū2, we get,{

ū′ = −(1 + ū2)ūv̄3,

v̄′ = −(−v̄4 + a1ūv̄3 + a2v̄2 + ūv̄ + a6).
(2.6)

Since in the line ū = 0, we have
v̄4 − a2v̄2 − a6 = 0.

Next, we only need to discuss the existence of the roots of the above equation.

(a) If
√

a22 + 4a6 > a2, i.e. a6 > 0, the equilibrium of (2.6) are P1
(
0,
√(

a2 +
√

a22 + 4a6
)
/2
)

and P2
(
0,−

√(
a2 +

√
a22 + 4a6

)
/2
)
. The corresponding linear part of system (3.11) at

P1 is −
(√(

a2 +
√

a22 + 4a6

)
/2
)3

0

∗ 2
√(

a2 +
√

a22 + 4a6

)
/2
√

a22 + 4a6

 ,

where “∗” stands for the formula about parameters a2 and a6. Applying the Theorem
2.15 of [14], we have P1 is a saddle. By the same argument, P2 is a saddle.

(b) If
√

a22 + 4a6 < a2, i.e. −a2
2/4 < a6 < 0, a2 > 0 , the singular points of system (2.6) in

the line ū = 0 are P1
(
0,
√(

a2 +
√

a22 + 4a6
)
/2
)
, P2
(
0,−

√(
a2 +

√
a22 + 4a6

)
/2
)
,

P3
(
0,
√(

a2 −
√

a22 + 4a6
)
/2
)

and P4
(
0,
√(

a2 −
√

a22 + 4a6
)
/2
)
. By the Theorem 2.15

of [14], P1 is a saddle, P2 is a saddle, P3 is a stable node, and P4 is an unstable node.

(c) If a2
2 + 4a6 < 0, i.e. −a2

2/4 > a6, then v̄4 − a2v̄2 − a6 = 0 has no roots, that is, the system
(2.6) has no singular point in v̄-axis.

(d) If a2
2 + 4a6 = 0, i.e. −a2

2/4 = a6, the singular points of system (2.6) in the line ū = 0
are P1

(
0,
√

a2/2
)
, P2

(
0,
√

a2/2
)
. By Theorem 3.5 of [14], P1 is a saddle-node, and P2 is a

saddle-node.

Consider the blow-up (u, v) 7→ (−ū, ūv̄) in the negative u-direction. After cancelling a
common factor ū2, we obtain{

ū′ = (1 + ū2)ūv̄3,

v̄′ = −v̄4 + a1ūv̄3 + a2v̄2 + ūv̄ + a6.
(2.7)

It can be verified that system (2.7) and system (2.6) have the same number and type of singu-
larities.
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In addition, we apply blow-up (u, v) 7→ (ūv̄, v̄) in the positive v-direction as well as
(u, v) 7→ (ūv̄,−v̄) in the negative v-direction. After division by v̄2, we get, respectively,{

ū′ = −1 + ū2(a1v̄ + a2 + a3ū2v̄ + a6ū2),

v̄′ = −ūv̄(v̄2 + a1v̄ + a2 + a3ū2v̄ + a6ū2),
(2.8)

and {
ū′ = 1 + ū2(−a1v̄ + a2 − a3ū2v̄ + a6ū2),

v̄′ = ūv̄(v̄2 − a1v̄ + a2 − a3ū2v̄ + a6ū2).
(2.9)

It is obvious that the origin of system (2.8) and system (2.9) are not a singular point.
The blow up procedure and local phase portrait of the system (2.5) at the origin are shown

in Figure 2.4 in Case (a). The trajectories of the circle is shown in Figure 2.4 (1). Retracting the
circle to the origin and obtaining the trajectories in the uov plane near the origin, see Figure
2.4 (2). Considering the transformation ds = vdt, the u axis is filled with singular points, and
the negative v-axis direction is reversed, as shown in Figure 2.4 (3).

(1) (2) (3)

Figure 2.4: The local phase portrait of system (2.3) at the origin. The horizontal
axis (3) is filled with singular points.

By the same argument as Case (a), we can obtain the local phase portrait of the system
(2.5) of Case (b) and Case (d) at the origin and is shown in Figure 2.5(a). Then the local phase
portrait of (1.3) of Case (a), Case (b) (d) and Case (c) are shown in Figure 2.1, Figure 2.5(b)
and Figure 2.3, respectively.

(a) The local phase por-
trait of the system (2.5)
of Case (b) at the ori-
gin.

(b) Local phase portrait
of system (1.3) on the
Poincaré disk of Case
(b).

Figure 2.5: Local phase portraits of systems (2.5) and (1.3).
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For Case II.1, according to the symmetry and the direction through the Poincaré disk of
system (1.3), we can obtain that, for Case (a), Figure 2.1 corresponds to the possible global
phase portraits are Figure 1.1 (1)–(5); for Case (b) and Case (d), Figure 2.5(b) corresponds to
the possible global phase portraits are Figure 1.1 (7)–(12); for Case (c), Figure 2.3 corresponds
to the possible global phase portraits is Figure 1.1 (6). Therefore, there are 12 possible global
phase portraits of system (1.2) of Case II.1, see Figure 1.1 (1)–(12).

Case II.2: a4 ̸= 0. Since a4 ̸= 0, applying a (3, 2)-blow up to system (2.5). By the same
argument as Case II.1, we get the local phase portrait of system (2.5) at the origin, see Figure
2.6. Then the local phase portraits of a6 > 0, a4 < 0 and a6 < 0, a4 < 0 of the system (2.5) are
topologically equivalent to (1) and (2) in Figure 2.6, respectively.

(1) a6 > 0, a4 > 0 (2) a6 < 0, a4 > 0

Figure 2.6: The local phase portrait of system (2.5) at the origin of Subcase II.2.

From the above analysis, we characterize the local phase portrait of system (1.3) on the
Poincaré disk, see Figure 2.7 (1)–(3), and they are topologically equivalent to the possible
global phase portraits Figure 1.1 (13)–(14), (15)–(18), (19)–(21) of Theorem 1.2, respectively.
Therefore we can obtain the global phase portraits for Subcase II.2 shown in Figure 1.1 (13)–
(21) of Theorem 1.2.

(1) a6 > 0, a4 > 0. (2) a6 > 0, a4 < 0. (3) a6 < 0.

Figure 2.7: Local phase portrait of system (1.3) on the Poincaré disk of Subcase
II.2.

Case III: a5a6 > 0.

In the chart U1, we consider the system (2.2). Since a5a6 > 0, the system (2.2) has only one
singular point OU1(0, 0), and its linear part of system (2.2) is
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(
0 0

−a6 −1

)
.

Its type of singular point is the same as the Case II.
In the chart U2, the origin is the only one singular point of system (2.4). Its linear part is(

0 0
−a5 0

)
.

Applying the Theorem 3.5 of [14], we have if a5 > 0, then the origin OU2(0, 0) is a saddle; and
if a5 < 0, then OU2(0, 0) is a center.

According to the above analysis, we characterize the local phase portrait of system (1.3)
on the Poincaré disk, see Figure 2.1 and Figure 2.3. Consequently the possible global phase
portraits can referenced by Case I, that is, they are shown in Figure 1.1(1)–(6) of Theorem 1.2.

Case IV: a4a6 − a5 = 0, a5a6 < 0.
In the chart U1, we consider the system (2.2). It is easy to find that there are three singular
points, OU1(0, 0), P1(

√
−a6/a5, 0) and P2(

√
−a6/a5, 0).

For the point OU1 (0, 0), we have the same results as the Case II. For the points P1 and P2,
their linear part is (

0 0
2a6 0

)
.

By the Theorem 3.5 of [14], if a6 > 0, then P1 and P2 are saddles. If a6 < 0,

(a) For a2 ̸= 0, we have the following statements hold.

(a.1) If 4(a5 − a6) ≥ a2
2, then P1 and P2 are centers;

(a.2) If 4(a5 − a6) < a2
2, then the phase portrait of P1 and P2 of the system (2.2) consists

of one hyperbolic and one elliptic sector.

(b) If a1 ̸= 0, a2 = 0, and 9a2
1a5 < 16a6(a6 − a5), then P1 and P2 are centers.

(c) If a1 = 0, a2 = 0, and 4(a5 − a6) > 9, then P1 and P2 are centers.

In the chart U2, the origin OU2(0, 0) is the only one singular point of system (2.4). By the
same argument as the Case III, we have if a5 > 0, then the origin OU2(0, 0) is a saddle, and if
a5 < 0, then the origin OU2(0, 0) is a center.

Except Case (a.2), the local phase portraits of system (1.3) on the Poincaré disk is shown
in Figure 2.8.

Figure 2.8: The local phase portrait of system (1.3) on the Poincaré disk except
Case (a.2).
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In Figure 2.8, there are eight singularities on the equator, i.e. A1, B1, C1, D1, A2, B2, C2, D2,
and the direction between any two points is shown. Firstly, we consider the point A1. Since
the system (1.3) is symmetry about y axis, there are only five possibilities for the ω-limit set

of unstable manifold: a singularity on the arc
⌢

B1C1, a point C1, a singular on the arc
⌢

D1A2, a
point A2, and itself (bypass the origin and return to A1 again, forming a homoclinic orbit). As
shown in Figure 2.9 (1)–(5).

(1) (2) (3)

(4) (5)

Figure 2.9: Consider the point A1 of Figure 2.8, five possibilities for the ω-limit
set of an unstable manifold at this point.

Figure 2.9 (1): Consider the point C2, the ω-limit set of the unstable manifold at this point
can only be the point C1. Next, we consider the unstable manifold at point C1. According
to the symmetry of the original system, there are three possibilities for the ω-limit set of an

unstable manifold at the point C1, which are a point on
⌢

D1A2, A2 and C2.

When the ω-limit set of an unstable manifold at point C1 is a singular point on arc
⌢

D1A2, ω-
limit set of the unstable manifold at this point can only be a itself (bypass the origin and return

to A2 again, forming a homoclinic orbit), C2 and a singular point on arc
⌢

D2C2, respectively.
According to the symmetry of the original system, the global phase portraits are equivalent
to Figure 1.1 (25), (26) and (27), respectively.

Figure 2.9 (2): Consider the unstable manifold at point C1, there are three possibilities

for the ω-limit set on point C1, which are a singular on the arc
⌢

D1A2, A2 and C2. When the

ω-limit set of an unstable manifold at C1 is a singular point on arc
⌢

D1A2, ω-limit set of the
unstable manifold at this point can only be a itself (bypass the origin and return to A2 again,

forming a homoclinic orbits), C2 and a singular point on arc
⌢

D2C2, respectively. According to
the symmetry of the original system, the global phase portraits are equivalent to the Figure
1.1 (29), (28) and (26), respectively.
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Figure 2.9 (3): Consider the point A2, the ω-limit set of the unstable manifold at this point
can only be a itself (bypass the origin and return to A2 again, forming a homoclinic orbit).

The α-limit set of the stable manifold at point C1 can only be a singular on the arc
⌢

A1B1.

The ω-limit set of the unstable manifold at point C1 can only be a singular on the arc
⌢

D1A2.
According to the symmetry of the original system, the global phase portrait is equivalent to
the Figure 1.1 (30).

Figure 2.9 (4): Consider the point C1, the ω-limit set of the unstable manifold at this point

can only be a singular on the arc
⌢

D1A2. The α-limit set of the stable manifold at point C1 can

only be a singular on the arc
⌢

A1B1. According to the symmetry of the original system, the
global phase portrait is equivalent to the Figure 1.1 (27).

Figure 2.9 (5): Consider the point C1, α-limit set of the unstable manifold at this point can

only be a singular on the arc
⌢

A1B1. Based on the the symmetry, ω-limit set of the unstable

manifold at the point C2 can only be a a singular on the arc
⌢

A1B2. Fixed the unstable manifold
of C1, there are three possibilities for the ω-limit set on the C1 , which are a singular on the

arc
⌢

D1 A2, A2 and C2. Then the global phase portraits are equivalent to the Figure 1.1 (30) (29)
(27).

Therefore, the local phase portraits Figure 2.8 have 6 possible global phase portraits as
shown in Figure 1.1 (25)–(30).

For case (a.2): a2 ̸= 0, 4(a5 − a6) < a2
2, the local phase portrait of P1 and P2 of the system

(2.2) consists of one hyperbolic and one elliptic sector by using blowing up. Moving P1 to the
origin through the change of coordinates (u, v) 7→

(
u +

√
−a6/a5, v

)
, the system (2.2) becomes

u′ = [1 + (u + 22)]v3,

v′ = uv4 +

√
− a6

a5
v4 − a1v3 − a2uv2 − a2

√
− a6

a5
v2 − 2a4

√
− a6

a5
uv

− a4u2v − a5u3 − 3a5

√
− a6

a5
u2 + 2a6u.

(2.10)

We apply a (2,1)-blow up to the system (2.1), and the local phase portrait of point P1 in the
system (2.1) is shown in Figure 2.10 (1). By the same argument, the local phase portrait of
point P2 in the system (2.1) is shown in Figure 2.10 (2). In the chart U2, we have the same
results as the Case IV.

(1) P1 (2) P2

Figure 2.10: Local phase portrait of system (2.1) at point P1 and point P2 . The
horizontal axis is filled with singular points.
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After the analysis of case (a.2): a2 ̸= 0, 4(a5 − a6) < a2
2, we characterize the local phase

portrait of system (1.3) on the Poincaré disk, see Figure 2.11 (1). By the symmetry of the
system and the directions of the Poincaré disc, the possible global phase portraits of system
(1.3) are shown in Figure 1.1 (31)–(46) of Theorem 1.2.

(1) case (a.2). (2) a6 > 0.

Figure 2.11: Local phase portrait of system (1.3) on the Poincaré disk of Case IV.

Using the similar argument as previous cases, if a6 > 0, the local phase portrait of system
(1.3) is Figure 2.11 (2), then the global phase portraits in the Poincaré disk are Figure 1.1
(47)–(51).

For Case IV, the possible global phase portrait of system (1.3) is shown in Figure 1.1 (25)–
(51) of Theorem 1.2.

Case V: a4a6 − a5 ̸= 0, a5a6 < 0.

In the chart U1, we consider the system (2.2). It is easy to find that there are three singular
points in the u-axis: OU1(0, 0), P1(

√
−a6/a5, 0) and P2(

√
−a6/a5, 0). For the point OU1(0, 0),

its singular point is the same to the system (2.2), please refer to Case II(i) and (ii) for details.
For the points P1 and P2, their linear part is(

0 0
2a6

a4a6−a5
a5

)
.

If a4a6 − a5 ̸= 0, we have the following statements hold.

(A.1) If a6 < 0 and a4a6 − a5 > 0, then P1 and P2 are unstable nodes.

(A.2) If a6 < 0 and a4a6 − a5 < 0, then P1 and P2 are stable nodes.

(A.3) If a6 > 0, then P1 and P2 are saddles.

In the chart U2 the origin is the only one singular point of system (2.4). By the same
argument as the Case III, if a6 < 0, then the origin is a saddle, and if a6 > 0, then the origin is
a center.

Based on the above analysis, we characterize the local phase portrait of system (1.2) on the
poincaré disk. If a6 > 0, it is shown in Figure 2.11 (2); if a6 < 0, Case (A.1) and Case (A.2) are
equivalent to Figure 2.12.
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a6 < 0, a4a6 < a5

Figure 2.12: Local phase portrait of system (1.3) on the Poincaré disk of Case
(A.1) and (A.2).

By the same argument as Figure 2.8, the possible global phase portraits of Figure 2.12 are
Figure 1.1 (52)–(66). For Case IV, the possible global phase portraits of Figure 2.11 (2) are
Figure 1.1 (47)–(51).

Therefore, the possible global phase portraits of Case V of system (1.3) are Figure 1.1(47)-
(66).

2.2 Global phase portraits of system (1.4)

In this section, we discuss the global phase portraits of system (1.4). For a6 = 0, a5 ̸= 0, the
global phase portraits of system (1.4) has been studied in [2], thus we only investigate the
following situations.

Case i: a5 = 0, a6 ̸= 0.

In the chart U1, the origin OU1(0, 0) of system (2.2) is a singular point and its linear part is(
0 0

−a6 0

)
.

By the Theorem 3.5 of [14], if a6 < 0, then OU1(0, 0) is a saddle, and if a6 > 0, then OU1(0, 0) is
a center.

In the chart U2, the origin OU2(0, 0) is the only one singular point of system (2.4). Due
to in the chart U2, the coefficient a3 does not work, the conclusion of system (1.4) is same to
system (1.3), as shown Case II.1 and Case II.2 in Section 2.1.

Based on the above analysis, the corresponding local and global phase portraits of system
(1.4) in Case I can be summarized as follows:

i.1 a4 = 0. If a6 > 0, the local phase portrait of system (1.4) on the Poincaré disk is Figure
2.3, but it needs to be rotated π/2 clockwise rotation, and all possible global phase
portraits are topologically equivalent to Figure 1.1 (6) and (22). If a6 < 0, the local phase
portrait of system (1.4) is Figure 2.5(a) and Figure 2.3, and all possible global phase
portrait is Figure 1.1 (7)–(12) and (6).

i.2 a4 ̸= 0. If a6 > 0, the local phase portrait of system (1.4) on the Poincaré disk is Figure
2.13, all possible global phase portraits are topologically equivalent to Figure 1.1 (23) and
(24). If a6 < 0, the local phase portrait of system (1.4) is Figure 2.7 (3), and all possible
global phase portraits are Figure 1.1 (19)–(21).
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Figure 2.13: Local phase portrait of system (1.4) on the Poincaré disk of Case i.2
for a6 > 0.

Therefore, the system (1.4) has 13 possible global phase portraits in Case i, as shown in
Figure 1.1 (6)–(12) and (19)–(24).

Case ii: a5a6 > 0.

If a6 > 0, the local phase portrait of system (1.4) on the Poincaré disk is Figure 2.3, but it
needs to be rotated π/2 clockwise rotation, all possible global phase portraits are topologically
equivalent to Figure 1.1 (6) and (22). If a6 < 0, the local phase portrait of system (1.4) is Figure
2.3, and all possible global phase portrait is Figure 1.1(6).

Therefore, the system (1.4) has 2 possible global phase portraits in Case ii, as shown in
Figure 1.1 (6) and (22).

Case iii: a5a6 < 0, a4 ̸= 0.

If a6 > 0, the local phase portrait of system (1.4) on the Poincaré disk is Figure 2.14, all possible
global phase portraits are topologically equivalent to Figure 1.1 (29) and (67). If a6 < 0, the
local phase portrait of system (1.4) is Figure 2.12, and all possible global phase portraits are
Figure 1.1 (52)–(66).

Figure 2.14: Local phase portrait of system (1.4) on the Poincaré disk of Case iii
for a6 > 0.

Therefore, the system (1.4) has 17 possible global phase portraits in Case iii, as shown in
Figure 1.1 (29) and (52)–(67).

Case iv: a5a6 < 0, a4 = 0.

If a6 > 0, the local phase portrait of system (1.4) is same to Case iii: a6 > 0, as shown in
Figure 2.14, its corresponding all possible global phase portraits are Figure 1.1 (29) and (67). If
a6 < 0, the local phase portrait of system (1.4) is same to Case IV: a6 < 0 , as shown in Figure
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2.8 and Figure 2.11 (1), and its corresponding all possible global phase portraits are Figure 1.1
(25)–(30) and (31)–(46).

Consequently, the system (1.4) has 22 possible global phase portraits in Case iv, as shown
in Figure 1.1 (25)–(46) and (67).

To sum up, the system (1.2) has 67 possible global phase portraits.
This completes the proof of Theorem 1.2.
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