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Abstract. In this paper, we utilize the Littlewood–Paley decomposition theory to estab-
lish two regularity criteria for the 3D magneto-micropolar equations in Vishik spaces,
specifically focusing on the gradient of the velocity field.
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1 Introduction

In this paper, we study the magneto-micropolar system in the whole space R3:

∂tu − (µ + χ)∆u + (u · ∇)u − (b · ∇)b − χ∇× ω +∇p = 0,

∂tω − γ∆ω − κ∇∇ · ω + 2χω + (u · ∇)ω − χ∇× u = 0,

∂tb − ν∆b + (u · ∇)b − (b · ∇)u = 0,

∇ · u = ∇ · b = 0,

u(x, 0) = u0(x), ω(x, 0) = ω0(x), b(x, 0) = b0(x),

(1.1)

where (x, t)∈R3×R+, u(x, t)=(u1(x, t), u2(x, t), u3(x, t)), ω(x, t)=(ω1(x, t), ω2(x, t), ω3(x, t)),
b(x, t) = (b1(x, t), b2(x, t), b3(x, t)) and p denote the fluid velocity, micro-rotational velocity,
magnetic field and scalar pressure, respectively. Here, µ is the kinematic viscosity, χ is the
vortex viscosity, 1

ν is the magnetic Reynolds number, while κ and γ denote angular viscosities.
This model has been used to study microelectrode fluid motion in the presence of a mag-
netic field. It was first proposed by Galdi and Rionero [8] to address microscopic physical
phenomena, such as the motion of animal blood, liquid crystals, and dilute aqueous polymer
solutions, which cannot be accurately described by the classical Navier–Stokes equations for
incompressible viscous fluids. These fluids are characterized by asymmetric stress tensors,
which is why they are referred to as asymmetric fluids. Due to the complex physical back-
ground and the richness of the phenomena involved, incompressible micropolar fluids have
been extensively studied (see [1, 2, 4, 5, 12, 17, 19, 23, 24] and references therein).
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Function spaces are essential tools for studying and solving systems of fluid mechanics
equations. By means of Sobolev spaces [13], researchers can effectively characterize solu-
tions to fluid dynamics problems and investigate their existence, uniqueness, and regularity.
To further refine the analysis of local behavior and regularity, especially when dealing with
nonlinear partial differential equations, Morrey-type spaces are employed (see [6, 16, 21, 27]).
These spaces better capture the local integrability and smoothness of solutions, aiding in the
study of conditions for the emergence of local singularities and vortex structures, while also
providing more precise integral estimates for nonlinear terms. The concept of weak solutions
relies on the weak formulation within function spaces. By examining the well-posedness of
fluid mechanics equations in various function spaces, researchers can not only ensure the rea-
sonableness and solvability of these systems but also gain a deeper understanding of solution
regularity, nonlinear characteristics, stability, and the feasibility of numerical computations.
For more details, please refer to [9, 10, 14].

Rojas-Medar and Boldrini [18] used the Galerkin method to prove, for the first time, the
existence of weak solutions to the 2D and 3D magnetic differential equations (1.1). Yuan
[25] showed that if ∇u ∈ L1(0, T; Ḃ0

∞,∞(R
3)), then the weak solution is smooth on R × [0, T].

Subsequently, Gala [7], Zhang et al. [28] and Xu [22] extended the regularity criterion to
Morrey–Campanato spaces, Triebel–Lizorkin spaces and Besov spaces, respectively. Yuan and
Li [26] further refined the results of Xu [22]. Recently, Wu [20] established the regularity of the
weak solution to this system by imposing specific conditions on the partial derivatives of the
velocity and magnetic field components. Additionally, Qin and Zhang [15] obtained optimal
decay estimates for the higher-order derivatives of the strong solution to the system (1.1).

The aim of this paper is to study the regularity criterion for the solution of the magneto-
micropolar equations (1.1). Understanding this criterion is crucial for comprehending the
physical laws governing magneto-micropolar motion. Notably, Ḃ0

∞,∞(R
3) ⊂ V̇0

∞,∞,θ(R
3), where

the Vishik spaces V̇s
p,r,θ(R

3) are introduced as a class of Banach spaces (see Definition 2.3).
Consequently, we anticipate that weak solution exhibit corresponding smoothness in such
Banach spaces. In this paper, we demonstrate that to ensure the regularity of weak solution to
(1.1), it is sufficient to impose certain conditions on the fluid’s velocity field. This finding also
indirectly suggests that, in the study of weak solution regularity, the fluid velocity u plays a
more significant role than both the microscopic rotational velocity ω of the particles and the
magnetic field b.

Our main result of the paper is stated as follows:

Theorem 1.1. Let (u0, ω0, b0) ∈ H1(R3) and ∇ · u0 = ∇ · b0 = 0. Assume that (u, ω, b) is a
weak solution to the system (1.1) on the interval [0, T]. If the velocity gradient ∇u satisfies one of the
following conditions:

∇u ∈ L1
(
(0, T; V̇

3
p

p,r,1(R
3)
)

, p ≥ 1, (1.2)

∇u ∈ L
2p

2p−3 (0, T; V̇0
p,r,1(R

3)), p ≥ 3
2

, (1.3)

then the weak solution (u, ω, b) is smooth on [0, T].

Remark 1.2. Notice that for θ ∈ [1, ∞], we have Ḃ0
∞,∞(R

3) ⊂ V̇0
∞,∞,θ(R

3). Therefore, Theo-
rem 1.1 can be viewed as a further improvement of [24].

The rest of this paper is organized as follows. Section 2 reviews some preliminaries.
Section 3 is devoted to the proof of Theorem 1.1.



Two regularity criteria of the 3D magneto-micropolar equations in Vishik spaces 3

2 Preliminaries

Let us begin with a brief review of the definition of Littlewood–Paley decomposition, as de-
tailed in [3]. Let χ be a smooth, radially non-increasing function that takes values in [0, 1] and
is supported within the ball |ξ| ≤ 4

3 . Define φ in terms of χ by setting φ(ξ) := χ( ξ
2 )− χ(ξ),

so that φ is supported in the annulus { 3
4 ≤ |ξ| ≤ 8

3}. These functions satisfy the following
partition of unity:

χ(ξ) + ∑
j≥0

φ(2−jξ) = 1, ∀ξ ∈ R3; ∑
j∈Z

φ(2−jξ) = 1, ∀ξ ̸= 0.

Let h = φ̌, h̃ = χ̌, where φ̌ and χ̌ denote the inverse Fourier transforms of φ and χ, respectively.
The dyadic blocks ∆̇ju and low-frequency cut-off Ṡju can then be defined as:

∆̇ju = φ(2−jD)u = 23j
∫

R3
h(2jy)u(x − y)dy,

Ṡju = ∑
k≤j−1

∆ju = 23j
∫

R3
h̃(2jy)u(x − y)dy, j ∈ Z.

According to the Bony decomposition, any distribution u ∈ S ′(R3) \ P(R3) can be expressed
as:

u =
+∞

∑
j=−∞

∆̇ju, u ∈ S ′
(R3) \ P(R3),

where P(R3) denotes the set of polynomials.
Recall the definition of the homogeneous Besov spaces [3], which are based on the

Littlewood–Paley decomposition.

Definition 2.1. Let p, r ∈ [1, ∞] and s ∈ R. The homogeneous Besov spaces Ḃs
p,r(R

3) are
defined as

Ḃs
p,r(R

3) :=
{

f ∈ S ′
(R3) \ P(R3) : ∥ f ∥Ḃs

p,r(R
3) < ∞

}
,

where

∥ f ∥Ḃs
p,r(R

3) :=


(

∑∞
j=1 2jrs∥∆̇j f ∥r

Lp

) 1
r

, r ̸= ∞,

supj∈Z ∥∆̇j f ∥Lp , r = ∞.

We also recall the Bernstein inequality, which plays a key role in the proof of the main
result, see [3].

Lemma 2.2. Let k ≥ 0 and 1 ≤ a, b ≤ ∞. Then the following inequality holds

∑
|α|=k

∥∂α∆̇ju∥Lb ≤ C2kj+3j( 1
a −

1
b )∥∆̇ju∥La ,

where C > 0 is a constant depending only on k, a, b.

Next, we introduce a class of Banach spaces, known as Vishik spaces [11], which generalize
the homogeneous Besov spaces.
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Definition 2.3. Let p, r ∈ [1, ∞], s ∈ R and θ ∈ [1, r]. The Vishik spaces V̇s
p,r,θ(R

3) are defined
as

V̇s
p,r,θ(R

3) :=
{

f ∈ S ′
(R3) \ P(R3) : ∥ f ∥V̇s

p,r,θ(R
3) < ∞

}
,

where

∥ f ∥V̇s
p,r,θ(R

3) :=

supN∈N∗
(∑N

j=−N 2jθs∥∆̇j f ∥θ
Lp )

1
θ

N
1
θ
− 1

r
, θ ̸= ∞,

∥ f ∥B0
p,∞(R3), θ = ∞.

3 The proof of Theorem 1.1

Proof. By taking the L2 inner product of the first equation, the second equation and the third
equation of (1.1) with u, ω and b, respectively, summing the results, and then integrating with
respect to t, we obtain

∥u∥2
L2 + ∥ω∥2

L2 + ∥b∥2
L2 + 2

∫ T

0
(µ∥∇u∥2

L2 + γ∥∇ω∥2
L2 + ν∥∇b∥2

L2)dt ≤ C(u0, ω0, b0).

The first equation, as well as the second and third equations in (1.1), are multiplied by
−∆u, −∆ω and −∆b, respectively, and then integrated over R3 with respect to x, which yields

1
2

d
dt

(∥∇u∥2
L2 + ∥∇ω∥2

L2 + ∥∇b∥2
L2) + (µ + χ)∥∆u∥2

L2 + γ∥∆ω∥2
L2 + ν∥∆b∥2

L2

+ 2χ∥∇ω∥2
L2 + κ∥∇∇ · ω∥2

L2

=
∫

R3
(u · ∇)u · ∆udx −

∫
R3
(b · ∇)b · ∆udx − χ

∫
R3

∇× ω · ∆udx − χ
∫

R3
∇× u · ∆ωdx

+
∫

R3
(u · ∇)ω · ∆ωdx +

∫
R3
(u · ∇)b · ∆bdx −

∫
R3
(b · ∇)u · ∆bdx

=: I1(t) + I2(t) + I3(t) + I4(t) + I5(t) + I6(t) + I7(t). (3.1)

According to the Littlewood–Paley decomposition theory, it can be obtained that

∇u = ∑
j<−N

∆̇j∇u +
N

∑
j=−N

∆̇j∇u + ∑
j>N

∆̇j∇u, (3.2)

where N is to be determined. Without loss of generality, we first estimate I5(t). Using inte-
gration by parts and (3.2), we have that

I5(t) =
∫

R3
(u · ∇)ω · ∆ωdx

= −
∫

R3
∂kui∂iωj∂kωjdx −

∫
R3

ui∂k∂iωj∂kωjdx

≤
∫

R3
|∇ω|2|∇u|dx

≤ ∑
j<−N

∫
R3

|∇ω|2|∆̇j∇u|dx +
N

∑
j=−N

∫
R3

|∇ω|2|∆̇j∇u|dx + ∑
j>N

∫
R3

|∇ω|2|∆̇j∇u|dx

=: I51 + I52 + I53. (3.3)
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Below we estimate I51–I53 separately. For I51, by means of the Hölder inequality and the
Bernstein inequality, it follows that

I51(t) = ∑
j<−N

∫
R3

|∇ω|2|∆̇j∇u|dx

≤ ∑
j<−N

∥∆̇j∇u∥L∞∥∇ω∥2
L2

≤ C ∑
j<−N

2
3j
2 ∥∆̇j∇u∥L2∥∇ω∥2

L2

≤ C2−
3N
2 ∥∇u∥L2∥∇ω∥2

L2 . (3.4)

For I52. Let p ≥ 1. By the Hölder inequality, the Bernstein inequality and the definition of
Vishik spaces, we have

I52(t) =
N

∑
j=−N

∫
R3

|∇ω|2|∆̇j∇u|dx

≤
N

∑
j=−N

∥∆̇j∇u∥L∞∥∇ω∥2
L2

≤ C
N

∑
j=−N

2
3j
p ∥∆̇j∇u∥Lp∥∇ω∥2

L2

≤ CN1− 1
r sup

N∈N∗

∑N
j=−N 2

3j
p ∥∆̇j∇u∥Lp

N1− 1
r

∥∇ω∥2
L2

≤ CN1− 1
r ∥∇u∥

V
3
p

p,r,1

∥∇ω∥2
L2 . (3.5)

For I53. From the Hölder inequality, the Bernstein inequality and space embedding relation, it
follows that

I53(t) = ∑
j>N

∫
R3

|∇ω|2|∆̇j∇u|dx

≤ C ∑
j>N

∥∆̇j∇u∥L3∥∇ω∥L2∥∇ω∥L6

≤ C ∑
j>N

2
j
2 ∥∆̇j∇u∥L2∥∇ω∥L2∥∆ω∥L2

≤ C
(

∑
j>N

2−j
) 1

2
(

∑
j>N

22j∥∆̇j∇u∥2
L2

) 1
2

∥∇u∥L2∥∆u∥L2

≤ C2−
N
2 ∥∇u∥B1

2,2
∥∇ω∥L2∥∆ω∥L2

≤ C2−
N
2 ∥∆u∥L2∥∇ω∥L2∥∆ω∥L2 . (3.6)

Combining (3.4)–(3.6), there are

I5(t) ≤ C2−
3N
2 ∥∇u∥L2∥∇ω∥2

L2 + CN1− 1
σ ∥∇u∥

V
3
p

p,r,1

∥∇ω∥2
L2 + C2−

N
2 ∥∇ω∥L2∥∆u∥L2∥∆ω∥L2

≤ C2−
3N
2 (∥∇u∥3

L2 + ∥∇ω∥3
L2) + CN1− 1

r ∥∇u∥
V

3
p

p,r,1

∥∇ω∥2
L2

+ C2−
N
2 ∥∇ω∥L2(∥∆u∥2

L2 + ∥∆ω∥2
L2). (3.7)
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Similarly, we have

I1(t) ≤ C2−
3N
2 ∥∇u∥3

L2 + CN1− 1
σ ∥∇u∥

V
3
p

p,r,1

∥∇u∥2
L2 + C2−

N
2 ∥∇u∥L2∥∆u∥2

L2 . (3.8)

Using the Hölder inequality and the Young inequality, one obtains that

I3(t) + I4(t) = − χ
∫

R3
∇× ω · ∆udx − χ

∫
R3

∇× u · ∆ωdx

≤ χ(∥∇ω∥L2∥∆u∥L2 + ∥∇u∥L2∥∆ω∥L2)

≤ µ + χ

4
∥∆u∥2

L2 +
γ

4
∥∆ω∥2

L2 + C∥∇u∥L2 + C∥∇ω∥L2 . (3.9)

Similar to I5, we have

I2(t) + I6(t) + I7(t) ≤
∫

R3
|∇b|2|∇u|dx

≤ C2−
3N
2 (∥∇u∥3

L2 + ∥∇b∥3
L2) + CN1− 1

σ ∥∇u∥
V

3
p

p,r,1

∥∇b∥2
L2

+ C2−
N
2 ∥∇b∥L2(∥∆u∥2

L2 + ∥∆b∥2
L2). (3.10)

Combining (3.2) and (3.7)–(3.10), one has

1
2

dt
dt

(∥∇u∥2
L2 + ∥∇ω∥2

L2 + ∥∇b∥2
L2) +

µ + χ

2
∥∆u∥2

L2 +
γ

2
∥∆ω∥2

L2 + ν∥∆b∥2
L2

+ 2χ∥∇ω∥2
L2 + κ∥∇∇ · ω∥2

L2

≤ C2−
3N
2 (∥∇u∥3

L2 + ∥∇ω∥3
L2 + ∥∇b∥3

L2) + CN1− 1
r ∥∇u∥

V
3
p

p,r,1

(∥∇u∥2
L2 + ∥∇ω∥2

L2 + ∥∇b∥2
L2)

+ C2−
N
2 (∥∇u∥L2 + ∥∇ω∥L2 + ∥∇b∥L2)(∥∆u∥2

L2 + ∥∆ω∥2
L2 + ∥∆b∥2

L2)

+ C(∥∇u∥2
L2 + ∥∇ω∥2

L2)

≤ C2−
3N
2 (∥∇u∥L2 + ∥∇ω∥L2 + ∥∇b∥L2)(∥∇u∥2

L2 + ∥∇ω∥2
L2 + ∥∇b∥2

L2)

+ CN1− 1
r ∥∇u∥

V
3
p

p,r,1

(∥∇u∥2
L2 + ∥∇ω∥2

L2 + ∥∇b∥2
L2)

+ C2−
N
2 (∥∇u∥L2 + ∥∇ω∥L2 + ∥∇b∥L2)(∥∆u∥2

L2 + ∥∆ω∥2
L2 + ∥∆b∥2

L2). (3.11)

We fix a large enough N, which obeys

C2−
N
2 (∥∇u∥L2 + ∥∇ω∥L2 + ∥∇b∥L2) ≤ 1

4
min{µ + χ, γ, 2ν},

i.e.

N ≥ 4 +
2lnC + 2ln(∥∇u∥L2 + ∥∇ω∥L2 + ∥∇b∥L2)− 2 min{µ + χ, γ, 2ν}

ln2
.

Taking

N =

[
4 +

2lnC + 2ln(∥∇u∥L2 + ∥∇ω∥L2 + ∥∇b∥L2)− 2 min{µ + χ, γ, 2ν}
ln2

]
+ 1,
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it follows from (3.11) that

1
2

dt
dt

(∥∇u∥2
L2 + ∥∇ω∥2

L2 + ∥∇b∥2
L2) +

(
µ + χ

2
− 1

4
min{µ + χ, γ, 2ν}

)
∥∆u∥2

L2 + 2χ∥∇ω∥2
L2

+

(
γ

2
− 1

4
min{µ + χ, γ, 2ν}

)
∥∆ω∥2

L2

+

(
ν − 1

4
min{µ + χ, γ, 2ν}

)
∥∆b∥2

L2 + κ∥∇∇ · ω∥2
L2

≤ C

(
1 + ∥∇u∥

V
3
p

p,r,1

)
(∥∇u∥2

L2 + ∥∇ω∥2
L2 + ∥∇b∥2

L2). (3.12)

Using the Gronwall inequality yields

sup
0≤t≤T

(∥∇u∥2
L2 + ∥∇ω∥2

L2 + ∥∇b∥2
L2) + C

∫ T

0
(∥∆u∥2

L2 + ∥∆ω∥2
L2 + ∥∆b∥2

L2)(t)dt

≤ exp

(
CT + C

∫ T

0
∥∇u∥

V
3
p

p,r,1

dt

)
(∥∇u0∥2

L2 + ∥∇ω0∥2
L2 + ∥∇b0∥2

L2).

Using the hypothetical condition (1.2), we get

u, ω, b ∈ L∞(0, T; H1(R3)) ∩ L2(0, T; H2(R3)).

For the regularity criterion (1.3), we focus our analysis on I5. Similarly, by applying the theory
of Littlewood–Paley decompositions, it follows that

I5(t) ≤ ∑
j<−N

∫
R3

|∇u|2|∆̇j∇u|dx +
N

∑
j=−N

∫
R3

|∇u|2|∆̇j∇u|dx + ∑
j>N

∫
R3

|∇u|2|∆̇j∇u|dx

=: J51 + J52 + J53. (3.13)

Using I51(t) and I53(t), one obtains that

J51(t) + J53(t) ≤ C2−
3N
2 ∥∇u∥3

L2 + C2−
N
2 ∥∇u∥L2∥∆u∥2

L2 . (3.14)

Let p ≥ 3
2 . From the Hölder inequality, the definition of Vishik spaces, the Gagliardo–

Nirenberg inequality and the Young inequality, we have

J52(t) =
N

∑
j=−N

∫
R3

|∇u|2|∆̇j∇u|dx

≤
N

∑
j=−N

∥∆̇j∇u∥Lp∥∇u∥2

L
2p

p−1

≤ CN1− 1
r sup

N∈N∗

∑N
j=−N ∥∆̇j∇u∥Lp

N1− 1
r

∥∇u∥
2− 3

p

L2 ∥∆u∥
3
p

L2

≤ CN1− 1
r ∥∇u∥V0

p,r,1
∥∇u∥

2− 3
p

L2 ∥∆u∥
3
p

L2

≤ µ + χ

4
∥∆u∥2

L2 + CN
(r−1)2p
(2p−3)r ∥∇u∥

2p
2p−3

V0
p,r,1

∥∆u∥2
L2 . (3.15)
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Combining (3.13)–(3.15), yields

I5(t) ≤ C2−
3N
2 ∥∇u∥3

L2 +
µ + χ

4
∥∆u∥2

L2 + CN
(r−1)2p
(2p−3)r ∥∇u∥

2p
2p−3

V0
p,r,1

∥∆u∥2
L2 + C2−

N
2 ∥∇u∥L2∥∆u∥2

L2 .

The analysis that follows is similar to that of the regularity criterion (1.3), except for a slight
difference in the choice of N, which is omitted here. We leave the details to the interested
reader.

Based on the above analysis, we complete the proof of Theorem 1.1.
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