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Abstract. This paper is concerned with the existence and multiplicity of a ground state
solution for the following class of elliptic fractional type problems given by

(=AY + |u]P~2u = Ay ()|l ~2uln u] + #bl(x)\dr\uw*zu in Q,

(=8)pv + |0|P~20 = phy(x)|v|? 20 In|v| + q:_rbz(x)|u|’|v|‘l*20 in Q,

u=0v=0, inIRN\Q,

where QO € RN is a bounded domain with Lipschitz boundary, s,t € (0,1), N >
max{ps, pt}, A,y >0,p < 6,2 <g+r < min{ %, %}, and the additional weights
hi,hy, b1, by € C(Q) are such that: by (x), by(x) are positive functions and hy(x), hp(x) are
sign-changing functions. The operators (—A); and (—A);, represents, both, fractional
p-Laplacian operator, a generalization for the fractional Laplacian (—A)%,0 < s < 1
(p = 2), defined in a integral way as

(_A)su(x) = C(nz’S) /IRN ZM(X) — (7an_)25 u(x — y) dy, p= IRN,

where c(n,s) is a positive normalizing constant, and another fractional operator.
Specifically, the operators (—A); and (fA); are defined, up to a normalization
constant, by the formula

0o s |u(x) —u(y)|P2(u(x) —u(y))
(=A)pulx) := i 2 RN\ B, (x) |x — y[NFsp

dy,

forall u € CP(RN),x € RN, and ¢ € {s, t}.
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mountain pass theorem.
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1 Introduction and main results

Since logarithmic nonlinearities play a significant role in depicting the mathematical and phys-
ical phenomena, they have received much attention in PDEs (see [15,16,19] and references
therein).

In [15], the authors studied the existence and multiplicity of a class of fractional Laplacian
systems with logarithmic nonlinearity in which three types of weights with certain regularity
are involved.

(—A)5u = Al (x)uln(|u]) + p’jqb(x)|v|q|u|p—2u inQ,
(—A)to = uhy(x)oIn(|o]) + qlrb(x)]u’r’z;]qzv in Q, (1.1)
u=0v=0, in RN\ Q

where O C RY is a bounded domain with Lipschitz boundary, s,t € (0,1), N > max{2s,2t},

Au>0,2<g+p<min{Z, 21, and the additional weights /1y, hp, b € C(Q) are such
that: b(x) are positive functions and h(x), ha(x) are sign-changing functions.

In [16], the authors studied a class of systems of equations where they showed the existence
and multiplicity of solutions for a mixed local-nonlocal system with logarithmic nonlinearities

(—A)suj + uj = /\]a](x)u] In |Ll]| + Z[Eij\uj\quuj in Q),
i#] (1.2)
u=0v=0, in RN\ O

where O C RY is a bounded domain with Lipschitz boundary, s € (0,1), N > 4, A]- are
parameters, B;; > 0 for all1 <i<j<k Bj=pjforalij=1,...k a € C(Q). When
1<2g<2<2"=2 and aj they are functions that change sign, they obtained two different
solutions using Nehar1 method. When1 < g <2 < 2" = % and a; are positive con-
stant functions, the existence of the ground state solution is obtained using the minimization

method.

In [9], the authors studied a class of fractional Laplacian systems where they showed
the existence of solutions using the Nehari method and multiplicity of solutions using the
Lusternik-Schnirelmann category, with polynomial nonlinearity.

(—AYu = Alu|"~2u + 2+ ol u*2u in O,
(=)0 =l 2u+ ol 2o in0), a3

u=v=0, in RN\ O

2N
—2s

where QO € RY is a bounded domain, s € (0,1), N > 4s, A, u > 0 are parameters, a + f =
is the critical Sobolev exponent.

In [6], the authors showed the existence of solutions for the fractional critical system (p, q)
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Laplacian using variational method

(=A)pu+ (=A)Fu = AQ(x)[ul"2u+ ——[olPlul*u inQ,

2
(~A)3o+ (—8)F0 = pQ(x)[ul~2u + f o2 inQ, (1.4)
u=v=0 in RN\ O

where Q € RN is a bounded domain, 0 < s, < s1 <L 1<gq<p<r<psg, N>ps;,Au>0

are parameters and & > 1 f > 1 satisfy a + = p;, with is the critical Sobolev exponent,

Np
N—ps;
and (—A)j is the fractional t-Laplacian operator.

In [19] was concerned with the existence and asymptotic behavior of normalized ground

states solutions for the following coupled Schroédinger system with logarithmic terms:

—Auy +wiug = Uil logu% + P 7 ‘MQ’q‘ul‘pi%/ll

— Ay + wotly = 1oty log u? + q
2 2U2 V220g2p+

q\ull’”\uﬂHuZ, (1.5)

/ uiPdx = pi, i=1,2,
0

where O = RN or Q C IRN(N > 3) is a bounded smooth domain, w; € R, y;,p; > 0,i = 1,2.
Moreover, p,q > 1,2 < p+q < 2* where 2* := 2N2.
In [17] the authors studied the existence of least energy solutions to the following fractional
Kirchhoff problem with logarithmic nonlinearity
M([u]f,t)(—A)’;u = h(xX)|ul®P2uln |u| + Au|i%u, x€Q 6)
u=0, x € RN\ Q, '

where s € (0,1), 1 < p < Np, Q C RV is a bounded domain with Lipschitz boundary,
M([u]f,) = [u]§9,, VP with @ >1and u,h € C(Q) may change sign, A > 0 and q € (1, p}).

On the other hand, parabolic and hyperbolic type equations with logarithmic nonlinearity
have been studied extensively in recent years. Here we only refer some results involving frac-
tional Laplacian. [2] considered the Cauchy problem of the following Schrodinger equation

iuy — (—A)u+uloglul> =0, x€Q,t>0. (1.7)

The existence of global solutions was obtained by using a compactness method. Moreover, the
author obtained the existence of ground states by the Nehari manifold approach. Xiang et al.
[18] studied the initial boundary value problem of the following parabolic equation involving
logarithmic nonlinearity

ur + [u]g(x_l)(—A)su = |[u|"?uln|ul®, x€Q, t>0. (1.8)

where x € (1,27/2) and 2k < g < 2*. By the potential well theory, the existence of global solu-
tions and blow-up properties of local solutions were discussed. Particularly, using the Nehari
manifold approach, the existence of ground state solutions for above stationary problem was
investigated.
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The main tool used in this paper is the so-called fibering method introduced by Pohozaev
[11], [12] and [13], and applied to a single equation of p-Laplacian type by Drabek and Po-
hozaev in [8]. Bozhkov and Mitidieri [4] used this method to study the existence for multiple
solution for a quasilinear system. Fibering method is very used to proof existence of multiple
solution for a large class of equations. For example, Brown and Wu [5] used this method to
show the existence of at least two positive solutions for the semilinear elliptic boundary-value
problem. For more recent applying of fibering method we indicate [1], used to show existence
of multiple solution for a class of Schrodinger equations involving indefinite weight functions,
and other interesting work involving the fractional operator is [7]

In this paper motivated by [9,15,16,19] we deal with the existence and multiplicity of
ground state solutions for the subcritical for the following class of problems

(—A);u + |u|P~2u = Ahy (%) |u|®2uln(|ul) + by (x)|o|" [u]7?u in O,

by(x)|ul"[0|7 %0 in Q, (P)

(—A),0 + [o]P~?0 = pha(x) [0|" 20 In([o]) +
u=0v=0, in RN\ Q.

Taking WS’j ={u € W(RN):u =0in RN \ O}, we define the normed space W, denoted
by W := W, (Q) x W' (Q) (see Section 3), the main results of this paper is writing as follows:

Theorem 1.1. Problem (P) has a nontrivial ground state solution in W fors,t € (0,1),2 < p+q <
min{p}, p; } and h1(x), ha(x) positive functions in C(Q).

Theorem 1.2. Problem (P) has a nontrivial ground state solution in W for s, t € (0,1),2 < p+q <
min{p}, p; } and hy(x), ha(x) two sign-changing functions in C(Q).

The paper is organized as follows. In Section 2 we study the variational framework. In
Section 3 study Nehari manifold and fibering map analysis. In Section 4 we prove Theorem
1.1. In Section 5 we prove Theorem 1.2.

2 The variational framework

First of all, in this section we introduce the fractional Sobolev space where lies the solution for
Problem (P). After defining this space, we introduce some technical results that will be used
to proof the main theorems.

Let O C RY be a domain. For for p € [1,00) and s € (0,1), we define the fractional
Sobolev space

WP (Q) := {u e LP(Q): W € LP(Q x Q)}; 2.1)
X—y 4

i.e., an intermediary Banach space between LP(Q)) and W'?(Q), endowed with the natural
norm

p p
[ulls = llullwsra </ \u|f’dx—i—/ |N+p)s| dxdy>



Existence and multiplicity solutions for a p-Laplacian fractional system

where

[u]s = [u]wsr(q) (// [u( |x— ’N+ps dxdy)l/p

is the so-called Gagliardo seminorm of u.
Moreover, we define the corresponding local fractional Sobolev spaces by

WeP(Q) :={uec L (Q): uc W(Q) forany Q' cC Q}.

loc

Also, we define the space

Wy" (Q) := {u e WP(RN): u=0in RV \ Q}.

Now we are able to define the space W := W7 (Q) x W/ (Q) where lies the solutions of
the Problem (P) in the Theorems 1.1 and 1.2. One can check that (W, | - |) is a normed space,

with norm given by

1/
(2 = 1l (w,0)llw = ()€ + [ulp + [} + Jol5) "
Motivated by [10] we show the following lemma for system.

Lemma 2.1. W is continuously embedding on L7 (Q)) x L (Q)).

Proof. Let u € W*P(Q)). Since QO C RN is an extension domain for W*?, then there exists a

constant C; = C1(N, p,s,Q2) > 0 such that

7] wsrmvy < Crllullwsr ()

(2.2)

with i such that 7i(x) = u(x) for x a.e. in ). On the other hand, by [10, Theorem 6.7], the
space W¥?(RN) is continuously embedded in L"(RYN), for any r € [p, p]; i.e., there exists a

constant C; = C2(N, p,s) > 0 such that
72| rrvy < Colli || wsrwyy-

Using (2.2) and (2.3), we get

[l ) = il < lillrmyy < Colld]lwsrryy < C2Crlul

Similarly we have the following inequality

1llrqy = 18l ra) < 191wy < Callollwer@ryy < CaCallvllwir (-

Finally using (2.4) and (2.5) we have

11, 9) || r ) <) < Cll(u,0)[lw
for some C € (0, ), from which follows the proposition.

Lemma 2.2. If g+ r < min{p, p} } then there exists a positive constant ¢ such that

([ urtotar)’ " < elwol

Ws,p(Q) .

(2.3)
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Proof. The proof follows from the definition

Il | -

(fo ulrlolocx) w

Srq = inf
(u,0)eW\{(0,0)}

and the inequality |u|"|v]7 < r_:q\u]’*q r+q\v\r+‘7 < u|" 4 |o|"ta. O
Lemma 2.3. Let ¢, € RN. Then,
2P (11728 + 1P 2n) (€ — 1), forp>2,
_ _ /2
E—nlP < 1 [(EP2E+ P2 E - ) (2.8)

— , forl<p<2.
(P=1 (lr + |y|r) P27

The proof of this lemma can be found in [14, Lemma 6].

Definition 2.4. We say that (u,v) € W is a (weak) solution of Problem (P) if

// Ju(x) —u(y) P2 (u(x) —uly ))(¢(x)—¢(y))dxdy+/ |u|P2uqdx
Q

’x_y‘Nﬂas

// [o(x) — v(y) P2 (v(x) —o(y ))((P(X)—<P(y))dxdy+/ o|P2ogdx
(@)

=y

:/\/ hy(x |u]9_2uln|u|q)dx+y/ hy(x)|0]° 20 In |v|pdx
0 0

qj_r/nbl(x)|v|r|u|”7_2uq)dx+[/’_Hf/gbz(x)|u|‘7]v|r_zv¢dx,

_|_

for any (¢, ¢) € W.

Now we consider the energy functional for Problem (P), E : W — R defined by

E(1,0) = Ilj[u]f,p%—;/Q|u\”dx+;[v]§t+119/0|v|”dx—Q/th(x)|u|eln|u|dx
A 0 _E/ 0 ﬁ/ 0
—1—92/Qh1(x)|u] dx 0 th(x)\v\ ln\v\dx—i—ez QhQ(x)]v] dx

— [ G ulloldx - —— [ b lulfjolax

q+ra g+ Jo

We also consider the functional
I(1,0) = [u Sp+/ u|Pdx + [0 +/ |v|de—/\/ 1 () )P I ] dx

—V/th x |v|91n]v|dx—/le(x)|u]‘7|v|rdx—/sz(x)|u|‘7\v]’dx.

As consequence of embedding on Remark 2.1 and Lemma 2.2, we obtain that the functional I
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is well-defined and E, I € C}(W,R). Moreover, note that, for all (¢, $) € W,

— 2 —
(o) - [, [ =M H0) a0 (00) =00 g [ up-buga
_ 2 _
[ [ e o) ) =0y | g
—/\/th X |u\9’2uln|ulq)dx—y/ hy(x)|0]° 20 1n |v|pdx
o @l ugdx — oo [ ba()lullof *opdx
and
_ 2 _
o) =p [ L1 00) D000 1 [ ap-2uge
v(x) —o(y)|P~2 v(y —
o /| PHO0) oW =00 gy 4 [ op-2agi

—)\9/ hy(x |u]9_2uq)ln\u|dx—/\/ By (x) |u)®ugpdx
0 0
—y@/ hz(x)|v|9_zvcpln|v|dx—;4/ hy(x)|0]°2vgpdx
0 0
—(a+7) [ @l |l 2ugdx — (g+7) [ ba()ul?fo] 2ogax.

Some important results will be used in this paper, including those concerning Sobolev’s
Logarithmic Inequalities to obtain some estimates of the problem and to resolve some arisen
difficult in the logarithmic term:

Lemma 2.5. Let p be a positive real number. Then we have the following inequalities
to
Int < % forall1 <t (2.9)

and .
[t Int| < o0 forall 0 <t <1. (2.10)

where e is Euler logarithm basis.

Proof. We consider the following function / : [1,00) — R defined by
h(t) =1Int— ltp forall t > 1.
ep

With respect to ¢, just by taking a simple derivative, we deduce

W (t) = oLt foran > 1.
I e
Then, t, = /¢ is the unique maximum point of function k. Thus, h(t) < h(t.) = 0 for all
t > 1 and the inequality (2.9) is valid.

To prove the inequality (2.10), we consider g : (0,1] — R defined by

¢(t) =t°|Int| forall t € (0,1].
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We can verify that t. = e~1/¢ is the unique minimum point of the function g. We can also

check that lim; o+ g(t) = 0. Thus,
1
> = —
g(t) z (k) ==

and the proof is complete. O

Lemma 2.6. Assume that (i, vy,) is bounded in W such that u,, converges to u a.e. and v, converges
tovin Q). Then

lim hl(x)\un\gln\un\dx:/ By (x)|u)® In |u|dx.
0

n—oo O

and

lim hz(x)\vn|91n]vn|dx:/ o () [0)? In 0] dx,
n—oo Q Q
for2 <0 <gq+r.

Proof. Since that (u,,v,) is bounded in W, we get that ||(u,,v,)| < C, for all n € IN, we first
need to discuss the two cases of |u,| as follows.

Case L If 0L~ 1 By Lemma 2.5 with (2.9) with p = 6 < p?, from the Sobolev Inequalities,

[ (1w, 00)|]
we get
h_x%9m<|w>r>‘gcluﬁn(rwmr>’
1@l s oo ) 1= G| e, 0T
Lo (|
Uy H H Up, On H

1’l/ n
Ch
< 791||(unrvn)|| =: gy (2.11)

- Ch1 H (u”'

Since (uy, v;) — (0,0) in W, then (u,,v,) — (0,0) in L%(Q) x LY(Q) for all 8 € (1, min{p}, p;})
using the Sobolev embeddings, we have

/|gn |dx< B (4, 00) | = 0, a5 1 = oo, (2.12)

Thus, |g}| — 0in L!(Q), which means that there exists some ¢; € L!(Q)) such that |g}(x)| <
¢'(x) ae.in Q for all n € IN.

Case IL If 1L~ 1, Using Lemma 2.5 with (2.9) and Holder’s inequality, we get

[1(ttn,00)]
i)t () < 0 ol (el ) |

un/ n

0—p
T e l(mamg‘
ioll G o) Il i 50T 1 Ul o)
0—p
< 0 Lol ooy @13)

Since (1, v;) — (0,0) in W, then (u,,v,) — (0,0) in L%(Q) x LY(Q) for all 8 € (1, min{p}, p; })
using the Sobolev embeddings, we have

C
[ 8@l < o) [ 0, asn (2.14)
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Thus, |¢2] — 0in L'(Q), which means that there exists some g1 € L!(Q) such that |g2(x)| <
¢! (x) a.e. in O for all n € N. Now, defining f, := |u,(x)|?|p|, we also have f, — 0in L1(Q),
which provides f € L'(Q) such that |f,(x)| < f(x) a.e. in N for all n € N.

Combining (2.11) and (2.13) , we have the following estimate

)l ()|

Un, On) ||

AR (RIS

(14, 00 |

+1nu<un,vn>||\un<x>ﬂ
< gh+g5+ fur (2.15)

where ¢} + ¢2 + f, € L1(Q), for all n € N. For other hand, since {(uy,v,)} is bounded in W,
up to a subsequence, we may assume that (u,(x), v,(x)) = (u(x),v(x)) a.e in Q. This implies
that

By () |1 ()| I | (x)| = By (x) |u(x) | In|u(x)|, ae. in Q. (2.16)

Therefore, using (2.15) and (2.16) the Lebesgue Dominated Convergence Theorem yields
that
lim / i () 14| I |1t | dc = / i (x) ] In | dox. 2.17)
o) o)

n— 00

Using the same idea of equation (2.17), we have the following convergence

dim [ () o, In oyl dx = /Q 1o (%) [0)? In o] dx. (2.18)
The proof is concluded. O

Lemma 2.7. Let QO C RN be a domain, q € [0,00) and (u,) be a bounded sequence in L' (Q). If
u, — u almost everywhere on Q) as n — oo, then for every q € [1,1].

lim / ‘|un|q—|un—u|q—|u|q Tdx = 0. (2.19)
0

n—r—+00

Also recall that pointwise convergence of a bounded sequence implies weak converge (see for example
[3, Proposition 4.7.12])

Lemma 2.8. Let the sequences (u,) and (v,) be in € W7 (Q) such that u, — u, v, — vin Wy" (Q)

and u,(x) — u(x), vy(x) = v(x) a.e. in Q. Then,

fim [|un|‘7|vn|r—|un—u|‘7|vn—v|1dx:/ (|70 dx.
n—oo /) O

Proof. By direct calculation we have the following equality of integrals

I (lalflonl” = s = ultlo, = of)x
= [ (al? =l = w0l + 1tz =l (lonl” = o = 01"

Since that u,, — u, v, — vin Wg’p(Q) and using Lemma 2.7, we get

q+r

lim (|un|q—\un—uw— |uw)7dx:o. (2.20)

n—+oo JO)
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which means that |u,|7 — |u, — u|7 — |u|7 in LqTM(Q), for other hand |v,|" — |v|" in Lqri'r(ﬂ),
this implies that

lim (\unw P yuw) 0|7 dx = 0.
n—-+o J0)

Also, note that |v,|" — [v, — v|" — |9|7 in LLjr(Q) As |uy, —ul7 — 0in LqTH(Q), this implies
that
lim / g = ul?(oul” = [0 — o )dx = 0. (2.21)

n—+oo JO

This concludes the proof. O
Lemma 2.9. Let (u,v) € W\ {(0,0)}. Then

A/ hl(x)]u\91n|u]dx+y/ ha(x)|0]? In |o|dx
0 0

S(M%+WQQHWMMV+mWwwHP%ﬁM@WWM+V%ﬁA@M%4

where

|(2‘ 1 Ppz [
= +—p P+ ———p it Cy :=maxl|hi(x)|], Cj, :=max|hy(x)|,
o0 e(p;‘ —9) pph e(Pf — 0) pl"t ) e | 1( )| hy e | 2( )|

and Sif , SZS? > 0 denote the best constants of embeddings from Wy" (Q), and Wé’p (Q)), respectively.

Proof. Let us consider () = ()1 U (), using integration properties over (), where ()1 = {x €
Q:jux)] < |[(u,0)]|}and QO = {x € Q: |u(x)| > ||(u,v)||} Then

o g o 1
J et 55— [ ol in e [l in g

1w, )]
Using (2.10) by direct calculation gives that

0
ot e < Gl [ g e

1 1
< iyl (w,0)|° [~ = G, (1,0 125

By Lemma 2.5 for p = p; — 6 > 0 and direct calculation

ul? In | <(Cy / ul? In ux)| dx
Lz<n| m ' e
MX -0
S / 6[ } dx
"anu
Ch1
e —0) > SRS
Cy, 1
S 1 * Sps ps
e —0) T oypo-v
Ch] 1 p *
— S | (u,0)||Ps
(7 —0) T oyro-ri 142l

Cr__gn:

:W P (u,0)]|°.
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Consequently we get
o] sh:
ueln[ ’}dx<C [| +p$] u,0)||%.
For other hand
A/ hl(x)|u|91n|u|dx:/\/ hl(x)|u191n[”’(“( ))’|de+1n(|| u,0)]) //\hl ¥)|ulPdx
o) o)
19 sr: ] 0 / 0
< Lnlal} 1 A .
<A | g+ oy 1007 + G In(l(w 2} ) [ Aul'ax

Similarly,
[ @) fol'tn oldx < uG, [0 0y 4 G In(l 0, 0)]) [ ol
: =1 g * oy —ay || O Crntlile )

Adding the integrals for (2; and (), we have

/\/ hl(x)|u|91n\u|dx+;4/ o (x)[0)° In [0]dx
(@) (@)

Q Sps SPs
< (00 +16m) | G+ s * s gy 1w

o) | [0l 4+ (o) .

3 Nehari manifold and fibering map analysis

The main tool used in this paper is the so-called fibering method introduced by Pohozaev
[11], [12] and [13]. In this section, we assume A, > 0, and the functions k1, hy, by, by € C(Q)).

We define the Nehari manifolds as
N :={(u,v) € W\ {(0,0)} | I(u,v) = 0}.
For all (u,v) € N, we have (u,v) # 0 and

|(u,0)||F = /\/th(x)|u]91n|u|dx+]4 /th(x)|v|91n|v|dx+/0(b1(x) + by(x))|u|?v|"dx
Now we define the C?(0, ) fibering map ®,,,) : (0,00) = R as D, (k) := E(k(u,v)), for

k> 0,itis

K Ak
@) (K) =l v)\r*’—*lnw/hl utta — 2 [ o)l
0
LA T [l 1n\k|/h2(x)|v|9dx—”k [ (ol ol
kG
1 [ty = 2 [ (o) + oo ullol
Consequentially:

O (k) =k (0P — A [ g (20|l In el dx — uk@Y [ B ()]0 In [ko|dax
(u,0) Q M Q

kL (b (x) + ba() ol
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and also,
D0 (k) = (p = DK 2| (w,0) P — (0 — 1)k9_2/\/0h1(X)|M!91n\ku!dx

. (9—1)k9_2y/0h2(x)|v|91n|kv|dx—)\k9_2/0h1(x)|u|9dx
—ykg’z/th(x)]v]de— (q+r—1)kq+f*2/0(b1(x) + by(x))ul[o]"dx.

Thus, one can easily verify that for all (u,v) € N,

@), (1) =0,
and
Pl (1) = (p = D (w,0)|F = A6 - 1) /Q i (%) |ul® In[uldx — (6 = 1) | ha(x)[o] In [o|dx

1,0) Q

A [ m)ufdx = p [ ma()lofdx = (g-+7=1) [ (b1(x) + balx) [ulf ol e,

consequently

() = (=D [ (@)l inuldx+ (= D | ha(x)]ol’ Infoldx
+(p=1) [ (01(x) + ba(x)ul?fol dx =20 1) [ ()|l In ulax
—;4(6—1)/0 hz(x)|v|91n]v|dx—)\/0h1(x)]u|9dx—y/QhQ(x)|v|9dx

(g +r=1) [ (or(x) + bal) ul7lol ax,

which implies that

(1) = Mp—0) [ 1 (@)lulInfuldx + p(p —0) [ a(x) ol In [olex

—A/th(x)\u|9dx—y/th(x)|v|9dx—(q+r—p)/()(b1+b2)(x)|u]q|v|rdx.

As a consequence of the previously calculus, it’s make possible to rewrite the Nehari manifold

N as
N=NTUN'UN,

where
NF = {(w0) € N[ ©,,)(1) > 0};
N = {(u,0) N | @, (1) = 0};
and

N~ = {(u,v) EN | @, (1) < o}.

Lemma 3.1. Assume (u,v) € W\ {(0,0)} and k> 0. Then (ku,kv) € N if, and only if, D0 (k) =0.
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Proof. 1f k(u,v) € N, for k > 0 we have I(ku,kv) = 0. So

0= K[ (i, 0) || — AK® /th(x)|u|eln lkue|dx — pk /th(x)|u|91n Ikoldx
—kq+r/0b1(x)|umvvdx—kq+r/0b2<x>\umvyrdx.
Dividing the above equation for k > 0, we have
0 = kP~1|| (1, 0) | P — AKO~! /Q Iy (x) |1 n [k dx — a1 /Q o () || In [ko|dx
—kq“‘l/ﬂ(bl+b2)(x)|u|‘7|v\rdx
— /(k).
This completes the proof. ]

Lemma 3.2. If (u,0) is a local minimizer for the functional E on N, with (u,0) # N°, then
E'(u,v) =0.

Proof. By the assumption for u € N, applying Lagrange’s multipliers, there exists v € R such
that

E'(u,0)(u,0) = yI'(u,0)(u,v). (3.1)

But because of (u,v) € N, we get
E'(u,0)(1,0) = H(u,v)Hp—)\/th(x)\u|91n|u]dx—y/ﬂhz(x)\v]eln\v\dx
—/Q(b1+b2)(x)|u|q|v|fdx
= 0.

Thus, I’ (u,v)(u,v) = 0. Now since (u,v) € N7, we get

I’(u,v)(u,v):A(p—9)/0hl(x)|u|91n|u|dx—|—y(p—9)/Oh2(x)|v|91n|v|dx—)t/0h1(x)|u|9dx
[ () ol'dx+ (p—g—r) [ (b1 +b2)()lul?fo]'dx
= @, (1) #0.
Thus, v # 0, and E'(u,v) = 0. O

Lemma 3.3. Let 0 < ACy,, +uCy, < t and 2 < q+r < min{p},p;}. If b1, by € L¥(Q)
are non-negative functions satisfying Cp < K, where Cp := max, g |b1(x) + b2(x)| then, for any
(u,v) € W\ {(0,0)}, we get

1) If A [y ha(x)|ul® + y/ hy(x)|v’dx > 0, then there exists a unique K0y > 0 such that
0
O, (k) = 0and ki, ) (1,v) € N~—. Moreover,

(u,0)

E(k(ll,?])ul k(u,y)v) - Sup E(ku, kZ))
k>0
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2) If A [y ha(x)|ul® + p [ ha(x) \v\gdx < 0, then there exists ki,ko > 0 such that 0 < k; <
kmax < Ky < oo where <I>’( uoy (k1) = 0= &, (kz) witch (kyu,kyv) € N'* and (kpu, kpv) €
N . Moreover,

E(kju, ko) = inf E(ku,kv) and E(kou,kyv) = sup E(ku,kv).

0<k<kmax k>0

Proof. Define, for k > 0, a function f : R — W given by
£ =K1 o) [P = K1 (A [ ()|l Il + [ o) ol In olde).
(@) Q
We can rewrite f(k), for k > 0, as
— kP—q-r p_jp—q-r 0 _ p—q-r 0
Fk) = KP=17"|| (i, 0) ||V — KP~7" In |K| (/\/th(x)w dx) k </\/Oh1(x)|u] ln\u|dx>
—kP—q—r1n|k|(A/ o ()]0 —kp—q—f@/ ha(x)[ol? In [o]dx).
(@) Q
A direct computation shows that

£ =k (=g =) 0)17 =4 o) luldx = AGp =g 1) [ (o)l In

i [ ha(®)lol’dx = u(p g =) | ha(x) ol In[olex

(o 0 0
(p—yq r)ln]k\(A/Qlﬁ(x)]u] dx—i—y/ﬂhz(x)\v\ dx)}.
Now we analyze all the possibilities:

i) If A [l (x)|ul®dx + u [ ho(x)|0|%dx > 0, then f € C(0,00) and because g +r > p, we
have
lim f(k) = +o0 and klirn fk) =
—00

k—0+

then there exists a unique minimum point kpin, > 0 such that f’(kmin) = 0. Because kmin > 0,
g — . 0 0
(p—q—r) ln]kmm\(/\/ohl(x)]u\ dx+;4/0h2(x)|v| dx)
= (P ==l wo)l" = A [ m(@)ul®dx=A(p =g —=r) [ ()|l in|uldx

— [ ha(x) ul’dx = p(p —q = 1) [ ma(x)lol’ Info]dx.
Thus

. I(t, 0)[IP=A Jo () |u In[uldx—p [ ho(x) [0 Infoldx 1 (32)
min = EXP A Joh(x)ulPdx+p [ ha(x)|v]dx p—q—r '

Obviously, f is decreasing on (0, kmin) and increasing on (kmin, o). Then, because equation
(3.2), the fact that kmin > 0 and that A [, 7y (x)|u[®dx + p [ ho(x)[0]dx > 0, we get

Fltmin) = Kegd ™ 10,017 = bl (A [ il 1 [ aColol’)

- </\/Qh1(x)|u]91n\u|dx—|—y/ hz(x)|v|91n]v|dx>}

:kﬁnr?r[p - /h1 |u]9dx+y/h2 |v\9dx>]

< 0.
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Since we have

/Q(b1+b2)(x)|u|ﬂv|rdx >0, and /\/th(x)|u]91n|u|dx+;4/0h2(x)|v|91n|v|dx >0,
and because

P, (k)

= ke [f(k) — (KPP0 k) | (u,0) |~ kp_e/ (b1 4 b2) (x)[u]]o|"dx |,
o)
there exists a unique k, ;) such that 0 < k(, ;) < kmin such that

2 0
Flu) = (Kl ™+ R0 ) w07 + K, [ (b + ) (o)l o,

and f'(k(,.)) < 0, we get k() (u,0) € N~. Moreover, it follows from f (k) < f(k(,)), for all
k> k(u,v and f(k) > f(k(up)), for all k < k), that

E(k(,,0)(u,v)) = sup E(ku, kv).
k>0

i) IFA [ by () u|®dx+ p [ ha(x |v|9dx = 0, it follows from Lemma 2.9 there exists a unique
K(u») > 0 such that k, . (u,0) € N,

E(k(,,)) = sup E(ku, kv).
k>0

i) If A [ ha(x)|ul®dx + p [ ha(x)|0]%dx < 0, then f € C(0,00), limy_,o+ f(k) = —oo and
limy_,o f(k) = 0. Then f has a unique maximum point kmax > 0 which is given by

H(u,v)up_A/th(x>\uyf’1nyu\dx+y/0h2(x>\v\91n\v\dx .

A/ hl(x)|u|9dx—|—y/ o (x) 0] dx p—q-—r
Q Q

kmax = exp

Moreover, f is increasing on (0, kmax) and decreasing on (kmax, o). By Lemma (2.9), we get

(1= ACu, +#C) DIy oy — 2

/\/ hl(x)|u|9dx+y/ Iy (x) |0 dx p—q-r
Q Q

kmax > exp

So,

(1 — (ACh, + pCi,) L) || (u, 0) ||

=1 l[(w,0)]"".
/\/ hy(x ]u]edx—i—y/ ho(x)|v|Pdx

knax > exp [ (p—q-

It is known that the following inequality holds:
exp(k—1) >k, Vk>0.

Then
1-— ()\Ch1 + uCp,)L

A/ I (x |u\9dx+]4/ o (x) 0| dx

knax > (p—q—71) (o) [
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Therefore

A/hl mmm+y/h2 )|o|dx
kmax - krP;lax
(k) = ——

> (1= (ACh, + pCp ) L) (1, 0) [ 7.

Because (k%Z,) +kp . r)H(u v)||P +kp y fQ (b1 + bp)(x)|u|7]v|"dx, > 0. By Holder’s

MU
inequality,
Pl 1-f -1 o " N
[ e+ b)) uloax < cola 7 ([ )" ([
Q Q Q
il )7,

for all (u,v) € W, where Cp = max, g \bl( ) + ba(x)| and Sq*,Sr > 0 denote the best con-

stants of embeddings W7 < L¥* and W Py LI, respec’uvely
Then

1-4 -
< CplQ| S,

* L**l
(1= (ACh, + HCy,)L)SE. S [ O > C,

it implies that
flhkmax) > (K20 -w@gﬁmumu+W%/wﬁwm@mmww>oz£$ﬂu
and it show us there exists kq, ko in which,
0 < ki < kmax < ka < oo,
such that
Flhka) = (R0 kS N )P K [ (o b)) lopdx = (ko)

It show us that <I>’(ulv) (k1) =0= (I)/(u,v) (k2). Moreover, f is increasing on (0, kmax) and decreas-
ing on (kmax, ). So

ki(u,0) e N* and ky(u,v) € N

Moreover, we have

£ = (1700 k) o)+ [ (b + b @lulfoldx, ke Kkl
and
ﬂm<@M%*ﬂMWWﬁm%mw+wﬁéwﬁwmﬂmmww, Vk € R\ [k, ko).

Thus
E(ki(u,v)) = inf E(k(u,v)) and E(ky(u,v)) =supE(k(u,v)).

0<k<kmax k>0

The proof is complete. O

Remark 3.4. In what follows, we define

1--% q 1--% q

08 mSp +10F mSy 1= (AG + Gy (L+ M)
o +7r— ’ o 1- % -
qtr—p oSS
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Lemma 3.5. If 0 < ACy, + uCp, < 1y; and Cp < K, then N° = @.
Proof. Arguing by contradiction, let (u,v) € N°. Then I(u,v) = 0, and

lw0) 1P =2 [ mluldx —p [ ha(x)fel’dx = [ o+ b)@luloldr G
and
ozA@—mAyﬂanmmwx+mp—m%ﬁﬂ@mhwmw (3.4)
—Alﬁﬂ@Wﬂh—yﬂﬁﬂﬂM%x
+(p—q=7) [ 01+ b)) ultlo dx.
From equations (3.3) and (3.4), and Lemma 2.9, we get
(w,0) |7 = [ (b1 -+ ba) (x) |
QO
< (AGh, + Gy )L (1, 0) [+ In |, 0) | (A [ s ()l + e | ma()fo'dx).
Then, again by (3.4)
(1= (A, +HC)D ) < In (e, 0)[| (2 [ mo)luldx+p [ ha()lol’dx)
+ [ o+ b2) () [ol?ol dx
<o)l (A [ mE@uldx+p [ ha(lofdx)
+p_;ﬂi—Mp—®Aﬁﬂ@MﬁMMM
~1(p=0) | ha(x)[of' inoldx
—|—A/th(x)\u|9dx—|—;4/th(x)\v]9dx}.
That is,
(1 = (ACh, + G L) 0, 0) [ < I [ (0,0 [ (A [ () P+ e [ () o))
+p_;_r[—A@—ﬂXLhﬂ@MWmWMx
—(p=0) [ ma()lol”In folex]

AC C 4 _a
A+ 1, (‘le ol SZ?‘)

|(u,0)[|7, (3.5)

q+r—p
which means that
ACh + Chy (11— ik g0 1=k g p
1= (AG, + §Ciy)L = =2 (j0f 0 8], 10/ s ) 1 (0)]
<In|(u A/h %4—/h °q
< Infl(w o) (A | m)ufdxtp | o)l 'dx)
1
—— (-a —ﬂt/h In |u|dx — —Gu/h *In |o]dx ).
o (2 A= 0) | )l Infuldx = p(p =) [ ha(x)lof' nfoldx)
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Because p < q + 1, equation (3.4) show us that

O>—A(p—9)/ hl(x)|u|91n|u|dx—y(p—9)/ o (x) 0] In [0]dx
Q Q

—|—A/ hl(x)\u](’dx—i—y/ hy(x)|o|%dx.
0 0
Then, we have

0> lnH(u,v)H(/\/th(x)]u]edx+y/0h2(x)\v\9dx)
"'p_;_r(_/\(P—G)Ahl(x)lu\eln\u!dx—y(p—9)/th(x)\v]91n\v\dx>.

Thus, it follows from ACy, + uCj, < ﬁ that ||(u,v)|| <1, where, here we consider M as on
Remark 3.4.
Otherwise, using (3.5), and one more time (3.3) and (3.4),
(1= (ACy, + 1Ci) L]0 < o) | (A [ ()|l + [ o) ol )
+ [ b1+ b)) ol ax
< (p=q =)0 [ (b1 +ba)(x) ol e
+ (ACh, + uC, )M (1, 0) |7 (3.6)

Now, we can note that

q

[ o+ )l oldx < ColOf S8 | (,0) |1, (3.7)

Thus

q

[1— (A, + uCi,)(L+M) — ClQ| 7 7§18 (u,0)]7 < 0.

Since (ACy, + 1Cy,) < 737, and

1— (ACy, + Gy, (L + M)
[
|Q| rs ptsp;‘S;;‘

4

Cp < K:=

it follows that || (#,v)|| = 0. Then (u,v) = (0,0), a contradiction. Therefore N'* = @. O

Remark 3.6. For next result, we consider

g4 _r

1-—%——% _1
1— (ACy, + uCy,)L — Cp|Q| 7 7S], S;;) =

Apyi=minq 1, <

1—-1
p¥  pf q. r
ColQ 7 75,5,

Lemma 3.7. If 0 < ACy,, + uCp, < 1337 and Cg < K, then ||(U, V)| > Ay, forall (U, V) € N~
and || (u,0)|| <1, for all (u,v) € N7T.
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Proof. Let (U, V) € N~. Then
I VIP=oA [ () U1 10 |uldx—p | ()| VIIn |Vidz= [ (b1b2) () U7V d, 38
and
(p=a—=7) [ (br+b2) (¥) U]V V'
< A/th(x)\ulodx—i—y/ﬂhz(x)\V\gdx
—(p—0)(A/th(x)ﬂl\eln|U]dx+y/0h2(x)]V|91n|V]dx>. (3.9)
Similar to equation (3.6) in Lemma 3.5, we have
1= (AGs, + G LI V)P < W V) (A [ o)l + e [ ha(o)|vIPdx)
+ Gl IS8 (U, )| (3.10)
We consider two cases:

i) If A/ hy(x)|U)dx + V/ hy(x)|V|%dx > 0, then ||(U, V)| > 1, because otherwise, being
Q Q
|(U, V)] <1, we have

1—1
*
Ps

[1— (ACh, + uCi)LI[[(U, V)P < CslQf %7 8155 (L, V) |77,

and together with Cp < K, we get

T

1— (AC,. + uCy)L
(ACh, + #Cia) >1, 3.11)

(W V)| > "
Cpl| ¥ wishst
s Pt

a contradiction. Thus ||[(U, V)| > 1.
i) If A [, b (x)|U|%dx + p [y ha(x)|V|%dx < 0, we have two more cases to analyze:

2.1) If [|(U, V)| > 1, similar to case i) above, we get the same equation (3.11).
2.2) If || (U, V)|l < 1, we have by equations (3.8) and (3.9),
[1 = (ACp, + pCi, ) L[| (U, V) ||
< CalO T S (U V)P

+(p—9)(A/th(x)yumnyu\dx+y/0h2(x)|vy"1nw\dx)

_ 4 _r
+ sl ST (UL V)T

So, because p < 6,

1-1 gtr—p
1— (ACy, + uCy,)L — celQ) st
(W V)| > 1 —— Pp >1
cslaf i ms‘; S

Thus, ||(U, V)| > Ay, forall (U, V) e N~



20 R. D. Carlos, V. C. de Oliveira and O. H. Miyagaki

Now, if (#,v) € N, a similar discussion show us that || (u,v)|| < 1.
Lemma 3.8. If 0 < ACy, + uCy, < ﬁ and Cp < K, then N~ is a closed subset o W.
Proof. The proof follows directly from Lemmas 3.5 and 3.7.

Lemma 3.9. If 0 < ACy, + uCy, < ﬁ Then the functional E is bounded from below on N.

Proof. Because of the relationship between the functionals E and I, for (u,v) € N, we have

E(u,v) = <;19 - ;) [ (u, 0)[|” + 912(A/th(x)|u|6dx+P‘/Qh2(X)\v\6dx)
- (v/ir - 519) /Q(bl +b2) (x)[u]7]0|"dx.

Because (#,v) € N, we have also
/Q(b1+b2)(x)|u|qu|fdx: H(u,v)Hp—A/th(x)|u\91n|u|dx—y/ﬂhz(x)|v|91n|v|dx.

So

1 1
= (== P 0 0
E(u,v) (P q+r> I|(u, )] + / hy (x)|ul dx—i—y/ ha(x)|v| dx)

i (;— qi) (A/Qh1<x>\u|91nru\dx+y/ﬂhz<x>\v\91n\v\dx)-

Now, concerning to exposed above, we consider two cases:

i) If A [y b (x)|ul®dx + [ ho(x)[v]?dx > 0, because 0 < p < 6 < g + 1, it follows that

1 1
E(u,v) > <9— P

i) If A [y () [u]dx 4+ [ ha(x)]0]%dx < 0, it follows from Lemma (2.9) that

)/ (b1 + b2) (x)|u)|o] dx > 0.
9]

1 1

B0) = (5 - 47 ) - (AGh + pCu Ll

1 1 1 ) 0
o (5= 75 ) mlwol] ([ melulds+p [ @),

Now, if & — (3 — q+r) In||(u,v)|| > 0, then E(u,v) > 0.
Otherwise, if 91—2 — (3 - 7 +r) In||(u,v)| <0, there exists a constant C > 0 such that
E(w0) > (=~ —— ) [1 - (ACy, + pCy) L[| (1, 0)]”
,0) =2 PR ER: T Hln, ’

1 1 1 0 0
e (5= 0 )l wol] ([ melulds+p [ o)

> <1— ! )[1—<Ach1+uchz>uu(u,v>up

p q+r
1 1 1
~¢ |- (5- ) mleol]
> —C.

Thus, E is bounded from below on N.
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4 Nontrivial ground state solution for positive weight function

In this section, we establish the existence of a ground state solution for problem (P) when the
weights functions h1,h; > 0 by Mountain Pass theorem and the existence of a level ¢, € W,
where the functional E satisfy the (PS),, condition.

Lemma 4.1. Let hy,hy € C(Q) and hy(x),ha(x) > 0 for all x € Q). Then there are exist 17,{ > 0,
such that

(i) E(u,v) >n >0forall ||(u,0)| =,
(ii) There exists (u,v) € W such that E(u,v) < 0if ||(u,v)|| > {.

Proof. Because the definition of E and inequality (3.7), we have

E(u,0) > [; ~ S(AGy + uchg)L} 1w, 0)]”

=gl (A [ meluldx+ [ ho(x)loldx)

1—1 1
CplQ| = nslsr,
- B (u,0) |77,

q+r
what implies that, for all (1,v) € W with 0 < [|(u,v)|| < 1,we have

-4 o
| ps PE S

CB|Q * 1’*
P () |7

1 1
> |- — =
E(u,v) > [p 2

(A -+ HCwL| N0 = =

Choosing ¢ € (0,1] small enough, such that

4 _r
cslQ s s

r
1 1 ps P?gqjtr >0
g+ ’

we have

I
CplQ| # nisls

11 P
- = q+r s Ptqurr (,p>0,

E(u,0) > <p 0(/\Ch1+yCh2)L>—

for all (u,v) € W, with ||(u,v)| = ¢. Thus (i) holds.
Otherwise, for all (1,v) € W\ {0,0} and k > 0, we have

E(ku, kv)

| kpma-
=k”’+[ ; [ (u, 0) ||

0—q—r f—gq—r b
_ keln|k|/0h1(x)]u\9dx— k )\/th(x)‘“|91n’”’dx+ ¢ 02 /\/th(x)|u]0dx

0
K=" In |K| ok . 9
_f/ahz(x)]v] dx — 7 y/ﬂhz(x)\v\ dx|,

0—

q—r
) y/ohz(x)|v|91n]v|dx+

and because 2 < p < 6 < g+, it implies that there exists ko > 0 large enough such that
|| (kou, kov)|| > ¢ and E(kou, kov) < 0. So, taking (u,v) = (kou, kgv), item (ii) holds O
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Lemma 4.2. Let (u,,v,) be a (PS).
bounded in W.

sequence of the functional E. Then, a sequence (uy,vy) is

%

Proof. For ¢, € R, we assume that {(u,,v,)}n C W with || (1, vs)|| > 1is a (PS)., sequence
with, it is
E(uy,vy) — ¢ and  E'(uy,vy)(un,vy) — 0,

as n — oo. Since (uy,,vy) is a (PS)., sequence for functional E, we have

1
Cs 40, (1) + Cl[(un,vn)|| > E(ttn, vy) — ;E/(“nrvnﬂ“nrvn)

_ 1(A/th(x)|un|9dx+y/th(x)]vn|9dx)

2
(2 25) [0+ e @l pas
p q+r a 1 2 n n
= Plz(/\/Qh1(x)|un|9dx+y/0h2(x)]vn|9dx). (4.1)
We have also
Cx + 0u(1) + Cl|(un, 0n) |
> E(tn, vn) — q_li_rEl(uann)(un; On)

1 1
_(1_ p
(5= 735) Mo
_ (;_ qir> (A/th(x)\unlelnundx—f—y/ﬂhz(x)lvﬂglnvndx)
1
o (A/th(x)|un|9dx+y/0h2(x)|vn|9dx)

1 1
> | —— p
> (5= ) ol

— (]19 — q—1H’> <)\/Qh1(x)\un]91nundx+y/ﬂhz(x)lvn\glnvndx>- (4.2)

Combining equations (4.1) and (4.2), Lemma (2.5) and Lemma (2.9), we have

(2~ 1) n-ac +acwn] il

p q+r
1 1 Pz[(”nrvn)]a
< (5-) el e el o)l -+ o)

0 Clan,0)]| + 0(1)
< C (14 [l o)) +-o(1),

where 0 € (0,p —1). Thus {(u,,vy)}» is bounded in W. O

Lemma 4.3. Let (u,,v,) be a (PS), sequence of the functional E. Then, functional E satisfies the
(PS),, condition at any level c..
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Proof. By Lemmas 2.6 and 2.8, we get

lim [ hy(x)ufu,|® 1 in uldx = / By (x)|ul® In|u|dx, (4.3)
n—oo Q Q
lim [ ho(x)v|v,]? tn |o|dx = / hy(x) 9] In|v|dx, (4.4)
n—oo Q Q
7}1_1}1010 Q(bl 4+ b2) (%) |t | T2 |0 | (1 — u)dx = 0, (4.5)
lim [ (b1 -+ b2) () [oul 2 ouun* (00 — 0)dx = 0. (4.6)
Note that
[(ttn — 1,00 = 0) [P = (E(tn, 00) — E'(u,0)) (tn — , 04 — 0)

+A/ () (laal® ot = VI ] ) (s — ek

—{—y/ hy(x (\vn|9 Un|o,| — \v|9’1ln]vl) (v, —v)dx

[t b)) (ol e ol 2a) (s — )
P /Q(bl +by)(x) (]un|qu_2vn — |u|‘7\v]’_207_20) (v, — v)dx.

Since (E'(un,vn) — E'(u,0))(t4y — u, v, —v) — 0 as n — oo, it follow from equations (4.3),
(4.4), (4.5), (4.6) and Lemma 2.3, that (u,,v,) — (u,v) in W. It yields the proof. O

Now we can prove one of our main results, Theorem 1.1.

4.1 Proof of Theorem 1.1

Define M := {(u,v) € W\ {0,0} | E'(u,v)(u,v) = 0}. By the previous lemmas, 91 is nonempty.
Let (u,v) € M, from Lemma (2.9), we have

0= [(u,)|" - (A/Oh1(x)]u|91n|u|dx—|—y/0h2(x)]v|91n\v]dx) —/Q(b1+b2)(x)|uyq|v|rdx
> (1—(ACh1+yCh2)L)H(u,v)\lp—ln||(u,v)]|(/\/th(x)|u]61n\u|dx+;4/0h2(x)\v]91n\v\dx)
—/Q(bl+b2)(x)|uw|v|rdx (47)
If | (u,v)|| <1, it follows from the above equation (4.7) that
1= (ACh, + G|, < [ (b -+ b))l loldx < ColOI' 7 7 a0 [0
Then,

(o) > |-G HG)E

rFcq
Gl sy,
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which implies that

/Q(bl + ) (%) [u|"|o["dx = [1 — (ACy, + pCy, )L (u, 0) [P

e
[1 B (ACM + :uchz)L]q_H

q

(4.8)
-1 p
(Calarf™= 753,53,

Define

1
qtr—p
i 1—(AC Cp, )L]7H S
¢ | L= (ACk + G L] and € :=inf{E(u,0) | (U, V,) € N},

1-L % p
pE el qr
Gl

then € > 0, because otherwise, there exists {(U,, V,,)},, C M such that E'(U,, V,,) — 0.
It follows from
1 1

o) = (5 = ¢ ) 10l + 51,0

+ g (0 f M@l [ (o)

N (qlr B ;1)) /Q(bl +b2) (x)[u|?|o|"dx,

that
1(/\/ hl(x)|ljn\9dx—|—y/ hz(x)]anedx) —( 1 —1> / (b + b)) (x)| U, || V| dx — 0,
62\ Ja 0 g+r p)Ja

when n — oo, and by Lemma 4.2. But, from equation (4.8) follows that
/Q<b1 4 b)) ()| U9 V| Fdx > € > 0,

and it implies that 0 > C > 0, a contradiction. Thus, ¢ > 0.
Finally, let {(un, v4)}n C 9N be a minimizing sequence. Then E'(uy, v,)(4y, vy) = 0 and
lim E(u,,v,) = € > 0. Again by Lemma 4.2, there exists (19,v9) € W\ {0,0} such that

n—00
(un/ vn) — (”O/ UO)

in W. Hence E(ug,v9) = € and E’(u9,v9) = 0, and it means that (1, vp) is a nontrivial ground
state solution of problem (P).

5 Nontrivial solutions for sing-changing weight functions

Lemma 5.1. E has a nontrivial and nonnegative minimizer on N't.

Proof. The proof of this lemma will be shown with two steps.
Step 1. The strong convergence of minimizing sequence. By Lemma 3.9, we get

ct = inf E(u,0).

(u,0)eN+
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We claim that ¢™ < 0. Indeed, for each (u,v) € N'T, we get
| (u,0)||F = )\/th(x)\u|91n]u]dx—i—y/ﬂhz(x)\vlgln\v\dx
+ [ (01(x) + ba(x))lulo (5.1)
Substituting (5.1), in the energy functional E, we have the following expression

E(u,0) = || (u,0)|” — /m %) [ul® In [uldx + = /h1 |uyf’dx—ﬁ/ ho () [0)° In [o]dx

EH
/hz ]v|9dx——/ %) + ba(x)) |u]7]0| dx
_ p[A/th(x)yu|91n|u|dx+y/ﬂhz(x)mﬁnyvydx+/ﬂ(b1(x)+b2(x))|u|q|vvdx]
A 0 A 9 H 0
——/ hy (x)|ul 1n|u|dx+—/ hy(x)|ul dx——/ hy(x)|o|” In|v|dx
62 0 Jo

/hz ]v|9dx——/ %) + ba (x)) |u]7]0| dx

_ <;_>[ /h1 |u|91n]u|dx+pt/ o (x |v|91n|v|dx}
1
+92[A [ ol + g /th<x>\v|9dx]

(5= ) [+ blolulloras

Using the logarithmic estimates for positive weight functions in addition with p < 6 and
p < q +r, we have the following inequality

(p—6) [A/th(x)|un\91n|u|dx+V/th(x)|vn|91n|v|dx}
> (q+r—p)/ﬂ(b1(x)+bz(x))\u|‘7]v|’dx+A/Qh1(x)\u|9dx+y/ﬂhz(x)|v|9dx.
From the last inequality, we have that
A/th x |un|91n\u|dx+]4/ o (x) [0a | In [0]dx

<~ [ 01 + () lullol ax
1
——A/h 9d+/h "d]. 5.2
9_p[ [ n@luldx+ p [ o) fol’ax 62
Finally, using (5.2) in the functional E, it follows that

E(u,0) = <;— ;) [A/th(x)|u|91n]u\derpt/ohz(x)|v\91n|v|dx}

w2 [ s+ [ ofolay]

+ <119 - q—ll—r> /Q(b1(x) + b (x)) |u||v|"dx
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1 1
<(p_q_r)<9—z?_v(v/+r)

+ <912 _ Gip> [/\/th(xﬂu]"dx—i—y/ﬂhz(x)\v\gdx} <0,

Let {(un,vy)} C N be a minimizing sequence. Then, we get

) [ a() + oo

Gt 0) [P = A [ (o)l i uldx+ e | Ba(x)[ou|”In foldx
+/Q(b1(x)+b2(x))|u]q|v|’dx (5.3)
and
Oy (1) = 100,00 [F =2 [ (o)l I aldx = [ o) ol In fol e
—/Q(b1+b2)(x)|un|q|vn|’dx—A/th(x)\unledx
i [ (@) fonl'dx+ (=g 1) [ 01(0)+ ba())ulol'dx. G

Using {(#y,v,)} C NT and @/

(unfvn)

(1) > 0, we conclude that

—/\/th(x)|un|9dx o /Q o (x) [on|Pdx + (p — g — 1) /Q(bl(x) 4 by(x))|ul7]o"dx > 0. (5.5)
Since {(u#y,v,)} is bounded by Lemma 3.8, up to subsequence we assume that

(tn,vy) = (u™,0") in W;
uy, = ut, v, »> ot strongly in L(Q)), for 1 <t < min{p%, p;}; (5.6)
Uy (x) = ut(x),v,(x) = vt (x) ae. in Q.

Similar to Lemma 4.3, we obtain the following convergences:

lim th(x)un\un\elnmnux:/th(x)yu+|91n|u+|dx, (5.7)
and

lim hz(x)vn]vn|91n|vn|dx:/ hy(x)|o* | In |0t |dx, (5.8)

n—oo JO) @)

Furthermore, the dominated convergence theorem of Lebesgue is valid for the product of
functions |#|7 and |v|", hence we have that

; Doy [Ty — + 19 |7

tim [ by (@)l lol'dx = [ ba(e)|u 9]0, 59)
and

lim | by(x) |9 00| dx = / b (x) |t 7|0t dox. (5.10)

If (uy,vy) - (u,0") in W, then

[, o) 2 < limin [ (1, 00)
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This implies that
||(u+,v+)\|r’—A/ hl(x)|u+|91n|u+|dx—y/ hy () [0 P In [0t |dx
(@) O
—/ bl(x)wmvﬂrdx—/ b (x)u 9]0 | dx
Q O

< liminf [||(un,vn)||2—A/th(x)|un|91n|unydx—y/ﬂhl(x)mmn|vn|dx

n—+-+co
- /le(x)\unmvn]’dx — /sz(x)\unmvn]’dx] =0. (5.11)
Now we prove that for (u",v") there exists 0 < f(,+ ,+) 7 1 such that
tr oy (uF,07) € N
Since ¢ < 0, one can show that (u*,v") # (0,0). By (5.5), we deduce that
A/Qbl(x)|u+\”/dx~|—y/0b2(x)|v+|’dx <0,
then by Lemma 3.3 there exists ¢(,+ ,+) > 0 such that
Fue oy (07, 07) €NTand Wiy (Fur o)) = 0.

By (5.11), ‘I"(u+ »+y(1)) < 0. Thus, t(,: ) 7# 1. Note that t(,: ) (u*,v") is minimizer of
¢(t) = E(t(u™, to"). Thus,

E(t(u+,v+)u+, t(u*,v*)v+) < E(u"’lzﬁ‘)) < ngl}-looE(un, Un) = (u,yi)rg/\ﬂ E(M,U),

and this is absurd. Therefore, we obtain (u,,v,) — (u*,v") in W.

Step 2. Existence of nonnegative minimizers. If (u,,v,) — (u*,v") in W and Lemma 3.9, we
get

—A/th(x)|u+|9dx—V/th(x)|v+|9dx+(p—q—r)/ﬂ(bl+b2)(x)|u+|”7|v+|rdx>0. (5.12)

Thus, we obtain that (u™,v") € N'*. This gives that (u*,v") is a minimizer of E on N'*t.
Proof, we can prove (|u™|,|o™]|) is also a minimizer /. Since

E(Jut],[o*]) < E(ut,0")
and using (5.12) hold for (|u™|, |[v™]), it suffices to show that
16, o) P =2 [ @l P infuldx = g [ )" In fo fd
- /le(x)yu+|ﬂyv+vdx+ /sz(x)wmvﬂfdx. (5.13)
Using [|u™|]f < [u*]!, we obtain
16, o) P =2 [ ol infufdx =g [ G o* In o |d

g/ bl(x)|u+|‘7|v+|rdx+/ b (x) |t [0t | dx. (5.14)
0O (@)
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If
|(u*, o) —/\/th(x)|u+]91n\u+]dx—y/ﬂhl(x)]vﬂeln\vﬂdx
< /le(x)|u+\q|v+|rdx+/sz(x)|u+|‘7|v+|rdx, (5.15)
then ‘I’/(‘”ﬂ/'w‘)(l)) < 0. For (|u*|,|vo*|), by Lemma 3.3 there exist t(,+|,+)) € N* and
"I’,(‘u+|"v+‘)t(‘u+‘,|v+|) = 0. Thus, t(,+||o+|) 7 1. For other hand ¢(|,;+| |,+) is @ minimizer of
E(t) :== E(u™,0™).

Thus,

ECt (e oI b oy [0 T < E(TL [07]) < E(ut,07) = inf | E(u, ).

This is absurd. Thus, (|u*|,[v"|) € N and

E(lut|,|vT]) = inf E(u,
(| lo ) = int E(u,0)

In conclusion, we get nonnegative minimizer E on N . ]
Lemma 5.2. E has a nontrivial and nonnegative minimizer on N'—.

Proof. By Lemma 3.9, we know ¢~ := inf, e p E(u,v) is attained. Let {(uy,v,)}n C N~ be
a minimizing sequence such that E(u,,v,) — ¢~. Then

G, o) 17 =2 [ mlnl'dx = [ ma(loaldx = [ 01+ ) @lunlllondx,  (5.16)
and,
0>)\(p—6)/th(x)|un|91n]un]dx—|—y(p—6)/QhZ(x)|vn]91n\vn|dx
~AMp=0) [ m)lunl'dx = p(p = 0) [ ma(x)fonldx
—(@+r=p) [ 01+ b2) (@)l llon ] d (5.17)

We claim that {(u,,v,)}, is bounded in N ™.
Without loss of generality, we assume that || (#,, v, )| > 1. Then

1
¢ +0n(1) = E(un, vn) — EE/(“anH)(“anH)
(2=3) ([ @il e [ ho(eol? ol )
1
+@ ()\/th(x)|un|9dx+V/th(x)lvﬂgdx)

’ (zlo ) ﬁ) JRCERSIOIUEC (5.18)
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So
c +o (1) > <—> ()\/ h (x)\u \‘ln|u |dx—|—“l/l/ h (x)|v ’f ln\v ]dx)
n i 6 1 n n 2 n n

+ lz (/\/th(x)|un|9dx—i—y/th(x)\vn|9dx> : (5.19)

If A / By (x) |1y |0 dx + pt/ hy(x)|v,|°dx > 0, then from equations (5.18), (5.19), we have
Ja 0

_1_

p—2
O] [ — |
5 — 9(ACh, + pCiy) L

If, /\/ h1(x)|un|9dx + y/ hy(x) ]vn|9dx < 0, from equation (5.19), we have
Q Q

¢~ +0n(1) = E(un, vn)

1 1
> |5 = 300 +HCL | (0017

1 1 1 ]
e (o gy ) mionl ] (3 [l ol ax).

We have two cases to analyze:

i) If 5 — (3 — qur) In || (t4n,0,)|| <0, we have
¢+ 0a(1) = (= = —— ) [1 = (ACy, + HCi) L[| (1t 0) |
n - p q+r hl ‘u l’lz nrv¥n 7
which implies that
p(g+r)(c” +0.(1)) ’
Un, Un)|| < .
|2 [(q+r—iﬂ)[1— (ACh, + uC, L]
i) If 5 — (5 — qur) In || (4, 0n) || > 0, then || (1, vy) || < exp (g5 e )) So there exists C > 0

such that || (u,,v,)| < C.

Thus, every minimizer sequence of E on N~ is bounded.

Now, since {(uy,,v,)} is bounded in N7, up to a subsequence, we may assume that
(thn,vy) — (u—,v_) weakly in W;
(thn,vy) — (u—,v_) strongly in L"(Q)) x LT(Q);
(

Up,Uy) — (Uy,v4) aein(),

where 1 < v, T < min{p{, p; }. It implies that
lim / iy () |14 |° I |1t dx = / iy () 1| In [u_|dx;
n—oo JO O

lim hz(x)\vnlelnlvn\dx:/ hy(x)|o_|? In|o_|dx;
0

n—oo JO

im [ & 164 :/h oy
im [ m(@)lldx = [ ol fdx

n—00

lim [ (x)[oa|fdx = / o (x) [0 |Pdx.
Q 0O

n—oo
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An easy computation, combined with equation (5.17), shows that

I(u_,v_) < liminf I(u,,v,) = 0.

n—o0

It means that (u—,v-) € N~. Now, by Lemma 3.3(1), there exists k(,, > 0 such that
I ko y=0andk, , )# 1. Since (uy,v,) /> (u—,v-), we get

(u_0-)
k(u,,v,) (un/ Uﬂ) 7L> k(u,,v,) (u*r U*)
in W. Another easy computation shows that
E(k(u,,v,)ufl k(u,,v,)vf) < E(k(u,,v,) Un, k(u,,v,)vn)'
Now, observe that the function z(k) := E(ku,, kv, ) attains its maximum at k = Ku_0_)- SO

E(k(uﬂu)u_,k(uﬂvi)v_) < hﬂgle(k(u—/v—)””’ k(uﬂvf)vn)
< lim E(uy,vy)
n—00
= inf E(u,v),
(u,0)eN—
a contradiction. Thus (u,,v,) — (u—,v_) in W.
Because (u_,v_) € N, then (u_,v_) is a minimizer of E on N'~. Moreover, a similar
discussion as Theorem 5.1 - step 2- one can show that (Ju_|,|v_|) is a minimizer of E on N .
This yields the proof. O

Now it is possible to prove Theorem 1.2.

5.1 Proof of Theorem 1.2

From Theorems 5.1 and 5.2, E has two non-negative minimizers (u4,v;) € N and (u_,v_) €
N~. Then, from Theorem 3.2, E has two non-negative critical points on W, which is non-trivial
and non-negative local least energy solution of Problem (P). This two solution are distinct,
because is obviously that N™ NN =@

We claim that (#4,v4) and (u_,v_) are not semi-trivial solution.

Supposing, otherwise, v; = 0 in (u4,v4), we get that u, is a non-trivial solution of the
problem

/

(u,0) € WP (Q) x WP (Q) )

Then [|(ut,0)|[F = [us]l = A [ (x)|us|®In|uy|dx, and because (u4,0) € N and
CID’(’u’v)(l) > 0, we get

{(—A);u + Ju|P2u = Ahy (x)|u|®2uln |u| inQ,

A(p—G)/th(x)]qu\edx < A/th(x)\u+|9dx.

Because p < 6, we have [, I (x)|u|%dx < 0.

Now we choose w € Wé’p( )\ {0} such that [ h(x)|w|%dx < 0.
For (u4+,w), by Lemma 3.3, there exists a unique k; > 0 such that k1 (1, w) € N'*. More-
over, we have

b = ex (e, w) 1P = A foy b () [ | In [y [dx + p [y ho (%) [w|* In fw|®dxe 1
max = EXp A Johi(x)Pdx + [ ho(x)|w|fdx p—q-—r
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and
E(kyuy, kyw) = inf  E(kuy, kw).
0<k<kmax
It follows that
ct < E(kjuy, kyw) < E(uy,w) < E(uy,0) =c¥,

a contradiction. Thus (u4,v4) is not a semi-trivial solution for problem (P).

Otherwise, (1#_,v_) is not a semi-trivial solution for problem (P), by using the same above
argument, but this time assuming v_ = 0. In this case (u_,0) is a nontrivial solution for
problem (P') and [ h1(x)|u—|’dx > 0 and w € Wé’p(Q) \ {0} is taking such that

/\/ hl(x)|u,|9dx+y/ o (x) |w|%dx < 0.
@) Q

In this way we concluded what we wanted.
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