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Abstract. We consider the existence of normalized solutions for a fractional coupled
Hartree system, with the upper critical exponent in the sense of the Hardy–Littelwood–
Sobolev inequality. Particularly, in an L2-subcritical regime or an L2-supercritical
regime, we establish the existence of positive normalized solutions for the two cases,
respectively. Furthermore, we prove the nonexistence of positive normalized solutions,
under the nonlinearities satisfying the Sobolev critical growth.
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1 Introduction

This paper is concerned with the existence of solutions (λ1, λ2, u, v) ∈ R2 × Hs(RN , R2) to the
following fractional critical Hartree system:{

(−∆)su = λ1u + µ1|u|p−2u + βr1|u|r1−2u|v|r2 + (Iα ∗ |v|2
∗
α,s)|u|2∗α,s−2u, in RN ,

(−∆)sv = λ2v + µ2|v|p−2v + βr2|v|r2−2v|u|r1 + (Iα ∗ |u|2
∗
α,s)|v|2∗α,s−2v, in RN ,

(1.1)

satisfying the additional conditions∫
RN

u2dx = a2, and
∫

RN
v2dx = b2. (1.2)

The masses a, b > 0 are prescribed and the parameters µ1, µ2, β > 0. Here (−∆)s is the
fractional Laplacian, s ∈ (0, 1), 2s < N ≤ 4s, α ∈ (0, N), 2∗α,s = 2N−α

N−2s is the upper critical
exponent due to the Hardy–Littlewood–Sobolev inequality, 2∗s = 2N

N−2s is the fractional Sobolev
critical exponent, r1, r2 > 1, p, r1 + r2 ∈ (2, 2∗s ] with p < r1 + r2 and ∗ stands for the convolution
on RN with Iα : RN \ {0} → R is the Riesz potential,

Iα(x) =
AN,α

|x|α , with AN,α =
Γ( α

2 )

2N−απ
N
2 Γ(N−α

2 )
.
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The fractional Laplacian operator (−∆)s is defined for any u : RN → R sufficiently smooth by

(−∆)su(x) = C(N, s)P.V.
∫

RN

u(x)− u(y)
|x − y|N+2s dy,

where P.V. stands for the Cauchy principal value and C(N, s) is a positive constant depend-
ing only on N and s. Recently, a great attention has been devoted to study the nonlinear
problems involving fractional elliptic operators, both for the pure mathematical research and
applications. We refer to [3, 11, 16, 37] for a simple introduction to basic properties of the frac-
tional Laplacian operator and concrete applications based on variational methods. Moreover,
fractional Choquard type equation with critical growth has been studied by many researchers,
see [1, 22, 23, 35, 36] and references therein.

The problem under investigation comes from the research of solitary waves for the follow-
ing physical model:{

(−∆)sϕ1 = −i ∂ϕ1
∂t + µ1|ϕ1|p−2ϕ1 + βr1|ϕ1|r1−2ϕ1|ϕ2|r2 + (Iα ∗ |ϕ2|2

∗
α,s)|ϕ1|2

∗
α,s−2ϕ1,

(−∆)sϕ2 = −i ∂ϕ2
∂t + µ2|ϕ2|p−2ϕ2 + βr2|ϕ2|r2−2ϕ2|ϕ1|r1 + (Iα ∗ |ϕ1|2

∗
α,s)|ϕ2|2

∗
α,s−2ϕ2,

(1.3)

where i2 = −1 and ϕj(j = 1, 2) is the wave function of the jth component, and µj, β denote
the intra-species and intra-species scattering lengths. In particular, the interaction of states
is attractive if β > 0, while the interaction of states is repulsive when β < 0. Solitary wave
solutions of system (1.3) are solutions having the form

ϕ1(x, t) = eiλ1tu(x), ϕ2(x, t) = eiλ1tv(x),

where λ1, λ2 ∈ R are the chemical potentials and (u, v) solves (1.1). Since ϕ1(x, t), ϕ2(x, t)
retain their masses over time, we consider this problem from two aspects: one can either
regard the frequencies λ1, λ2 as fixed, or include them in the unknown and prescribe the
masses.

Fixing the parameters λ1, λ2 in (1.1), we call it the fixed frequency problem. The two-
component system with Hartree-type nonlinearities describes the boson stars in mean-field
theory [18, 27], which appears naturally in optical systems [30] and is known to influence
the propagation of electromagnetic waves in plasmas [7]. Moreover, the non-locality of the
critical term also plays an important role in the theory of Bose-Einstein condensation, where
it accounts for the finite-range many-body interaction [15]. The Hartree type systems, mainly
on λ1, λ2 are prescribed, have been widely studied. We refer to [20] and references therein.
However, much less is known when the masses are prior prescribed. In this case, λ1, λ2 ∈ R

are unknown quantities arising as Lagrange multipliers. In recent years, since physicists are
interested in normalized solutions (which L2-norms of solutions are prescribed), mathematical
researchers began to investigate the solutions of various classes of Schrödinger equations or
systems having a prescribed L2-norm, that is a solution which satisfies

∫
RN |u|2dx = c for a

priori given c.
When s = 1, i.e. the fractional Laplace operator (−∆)s reduces to the local differential

operator −∆, the literature for the normalized solutions of Schrödinger equations or sys-
tems is abundant. Starting from the seminal paper by Jeanjean in [25], he firstly studied
L2-supercritical case, and dealt with the existence of normalized solutions when the energy
functional is unbounded from below, by using the mountain pass lemma and a skillful com-
pactness argument. Furthermore, for the particular case of a combined nonlinearity of power
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type, in [38], Soave considered the existence of normalized solutions and orbitally stable for
the following problem: {

−∆u = λu + µ|u|q−2u + |u|p−2u, in RN ,∫
RN |u|2dx = c, in RN ,

(1.4)

where N ≥ 1, q, p ∈ (2, 2∗) and q < p. Moreover, when p = 2∗ in (1.4), in [39], the Sobolev
critical case was studied by Soave, where he considered the energy level less than a certain
number to get the compactness, and obtained the existence and nonexistence of normalized
solutions. For the system case, Bartsch, Jeanjean and Soave investigated the following elliptic
system 

−∆u = λ1u + µ1u3 + βuv2, in R3,

−∆v = λ2v + µ2u3 + βvu2, in R3,∫
R3 |u|2dx = a,

∫
R3 |v|2dx = b,

(1.5)

where µ1, µ2, a, b > 0. In [4], Bartsch, Jeanjean and Soave obtained the existence results for
different ranges of β > 0 and stability properties of (1.5). Furthermore, in [6], Bartsch and
Soave considered the case β < 0 of (1.5) and showed phase separation occurs for the solutions
as β → −∞. In particular, Bartsch, Li and Zou [5] studied the normalized solutions for
a Schrödinger systems with Sobolev critical nonlinearities. Specifically, in [5], they proved
the existence and nonexistence results and obtained the asymptotic behavior as β → 0+ or
β → +∞. When 3 ≤ N ≤ 4, in [29], Li and Zou obtained the existence of positive normalized
ground state for (1.5). For more researches of the normalized solutions of the Laplacian
systems, we refer to [31, 34] and references therein.

The situation is different when s ∈ (0, 1), and few results are available. We note that the
L2-critical exponent for fractional case is p̄ := 2 + 4s

N . In [32], Luo and Zhang studied the
existence and nonexistence of normalized solutions for the following fractional problem{

(−∆)su = λu + µ|u|q−2u + |u|p−2u, in RN ,∫
RN |u|2dx = c, in RN ,

(1.6)

where q, p ∈ (2, 2∗s ), q < p and µ ∈ R. Moreover, when p = 2∗s in (1.6), Zhen and Zhang
[44] proved the existence and nonexistence results of the normalized solutions by using the
Jeanjean’s skill in [25], and they also considered the behavior of the ground state obtained as
µ → 0+. Furthermore, in [24], He, Rădulescu and Zou showed the existence and nonexis-
tence of solutions for a fractional equation with the upper critical exponent, among 3 cases:
L2-subcritical, L2-critical and L2-supercritical. In the case of fractional systems, Zuo and
Rǎdulescu studied the following problem

(−∆)su = λ1u + µ1|u|p−2u + |u|2∗s −2u + γα|u|α−2u|v|β, in RN ,

(−∆)sv = λ2v + µ2|v|q−2v + |v|2∗s −2v + γβ|v|α−2v|u|β, in RN .∫
RN |u|2dx = a,

∫
RN |v|2dx = b, in RN ,

(1.7)

where s ∈ (0, 1), p, q, α + β ∈ ( p̄, 2∗s ). In [45], Zuo and Rădulescu showed the existence
of positive normalized solutions when γ is big enough, and obtained the nonexistence of
positive normalized solutions if p = q = α + β = 2∗s . Li [28] studied the existence of positive
radial solutions for a fractional Hartree–Fock type system in L2-subcritical case, L2-critical
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case and L2-supercritical case, but without the upper critical exponent in the sense of the
Hardy–Littlewood–Sobolev inequality (see Lemma 2.1).

Inspired by the above mentioned works, in the present paper, our goal is two-fold. On one
hand, we show the existence of normalized ground states for p ∈ (2, 2∗s ), and r1 + r2 ∈ (p, 2∗s );
on the other hand, we obtain the nonexistence result for p = r1 + r2 = 2∗s . Compared to the
Laplace operator, the fractional Laplacian problems are nonlocal and more challenging. More-
over, since the compactness of system is closely related to (see Proposition 4.9) the following
problem {

(−∆)su = λu + µ|u|p−2u, in RN ,∫
RN u2dx = c2,

(1.8)

we may be more careful to the energy level and solutions of (1.8). However, for p = p̄ and
c > 0 , the Pohožaev manifold related to (1.8) is indefinite (see Lemma 5.2), which makes it
difficult to construct the geometry for the related energy functional.

Before we state our main results, we introduce some notations for the fractional Sobolev
space Hs(RN). Let s ∈ (0, 1). We denote by Ds(RN) the completion of C∞

c (RN) with

[u]2 =
∫∫

R2N

|u(x)− u(y)|2
|x − y|N+2s dxdy.

The fractional Sobolev space is defined by

Hs(RN) := {u ∈ L2(RN) : [u] < ∞},

with the standard norm and inner product

∥u∥2 = [u]2 +
∫

RN
|u|2dx, and ⟨u, φ⟩ =

∫
RN

(
(−∆)

s
2 u(−∆)

s
2 φ + uφ

)
dx.

It is well known (see [2]) that the embedding Hs(RN) ↪→ Lq(RN) is continuous for all q ∈
[2, 2∗s ], locally compact for all q ∈ [1, 2∗s ) and Ds(RN) ↪→ L2∗s (RN) is continuous. Then we
define the working space H as

H := {(u, v) : u ∈ Hs(RN), v ∈ Hs(RN)},

endowed with the norm
∥(u, v)∥2

H := ∥u∥2 + ∥v∥2,

and related inner product is, for any (φ, ψ) ∈ H:

⟨(u, v), (φ, ψ)⟩H := ⟨u, φ⟩+ ⟨v, ψ⟩.

By using the variational methods, a classical way for studying the normalized solutions of
system (1.1) is to look for critical points of the following C1-functional

J(u, v) =
1
2
([u]2 + [v]2)− 1

p
(µ1|u|

p
p + µ2|v|pp)− β

∫
RN

|u|r1 |v|r2 dx − 1
2∗α,s

∫
RN

(Iα ∗ |u|2
∗
α,s)|v|2∗α,s dx,

constrained on the set
S := {(u, v) ∈ H : (u, v) ∈ Sa × Sb},

where |u|r =
( ∫

RN |u|rdx
) 1

r and Sa := {u ∈ Hs(RN) :
∫

RN |u|2dx = a2}. The main results of
this paper can be stated as follows:
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Theorem 1.1. When 2s < N ≤ 4s, p ∈ (2, p̄) and r1 + r2 ∈ (p, 2∗s ), there exists β∗ > 0 such that
for 0 < β < β∗, there exist µ∗

1 = µ∗
1(β), µ∗

2 = µ∗
2(β), such that for any µ1 ∈ (0, µ∗

1), µ2 ∈ (0, µ∗
2),

(1.1)–(1.2) has a normalized ground state (u, v), which is a positive and radially symmetric function,
for some λ1, λ2 < 0. Moreover, (u, v) is an interior local minimizer on the set

Br(a, b) := {(u, v) ∈ S : ([u]2 + [v]2)
1
2 < r},

for a suitable r > 0 small enough; and any other ground state solution of J(u, v)|S is a local minimizer
of J(u, v) on Br(a, b).

Theorem 1.2. When 2s < N ≤ 4s, p ∈ ( p̄, 2∗s ) and r1 + r2 ∈ (p, 2∗s ), there exists β0 > 0, such
that for any β > β0, (1.1)–(1.2) has a normalized ground state (u, v), which is a positive and radially
symmetric function, for some λ1, λ2 < 0, and (u, v) is a Mountain Pass type solution.

Theorem 1.3. When 2s < N ≤ 4s, suppose p = r1 + r2 = 2∗s , then the system (1.1)–(1.2) has no
positive normalized solutions.

Remark 1.4.

(I) In Theorem 1.1, we consider 3 cases: r1 + r2 ∈ (2, p̄), r1 + r2 = p̄ and r1 + r2 ∈ ( p̄, 2∗s ).
These different situations are mainly reflected in Lemmas 4.3 and 5.3.

(II) From the processes in our proof, one difference between Theorems 1.1 and 1.2 lies in
their respective geometric structures. In fact, when p changes from L2-subcritical to L2-
supercritical, it changes the geometry of J(u, v)|S and prevents the existence of a local
minimizer in Theorem 1.2.

(III) Compared with the result in [24], we need an elementary inequality (see Proposition 4.9),
which combined the single case (1.8) with the coupling case (1.1), to ensure compactness
result. Theorems 1.1, 1.2, 1.3 seem to be the first results of normalized solutions for a
fractional coupling systems with the upper critical exponent in the sense of the Hardy–
Littlewood–Sobolev inequality.

The paper is organized as follows. In Section 2, we give some preliminaries for the func-
tional space. In Section 3, we will briefly introduce the properties of a single case (1.8), which
plays an important role to the proof of Palais–Smale condition in our problem. In Section 4,
we prove Theorem 1.1. In Section 5, we obtain Theorem 1.2. At last, we show the nonexistence
for Theorem 1.3 in Section 6.

2 Preliminaries

Following, for the convenience of the reader, we recall some basic properties, which we shall
need in the sequel. Let us first recall the well-known Hardy–Littlewood–Sobolev inequality.

Lemma 2.1 ([30]). Let t, r > 1, 0 < α < N, with 1
t +

α
N + 1

r = 2, f ∈ Lt(RN) and h ∈ Lr(RN).
There exists a sharp constant C(N, t, α, r) independent of f and h, such that

∫
RN

∫
RN

f (x)h(y)
|x − y|α ≤ C(N, t, α, r)| f |t|h|r, (2.1)
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where | · |q stands for the Lq(RN)-norm for q ∈ [1,+∞). If t = r = 2N
2N−α , then

C(N, t, α, r) = C(N, α) = π
α
2

Γ(N
2 − α

2 )

Γ(N − α
2 )

.

Besides, there is a equality in (2.1) if and only if f ≡ (constant.)h and

h(x) = C(γ2 + |x − a|2)− 2N−α
2 ,

for some C ∈ C, γ ̸= 0 and a ∈ RN .

According to Lemma 2.1, the functional∫
RN

∫
RN

up(x)up(y)
|x − y|α dydx,

is well defined in Hs(RN) × Hs(RN) if 2N−α
N ≤ p ≤ 2N−α

N−2s . We often call 2N−α
N is the

lower Hardy–Littlewood–Sobolev critical exponent and 2N−α
N−2s is the upper Hardy–Littlewood–

Sobolev critical exponent. From Lemma 2.1, we define the best constant

Sh,l = inf
Ds(RN\{0})

[u]2

(
∫

RN (Iα ∗ |u|2
∗
α,s)|u|2∗α,s dx)

1
2∗α,s

,

and from [23], we know Sh,l is attained by the function

ũε,y = C̃N,α,suε,y, x, y ∈ RN , and ε > 0,

such that
[ũε,y]

2 = S
2N−α

N−α+2s
h,l ,

with ũε,y satisfying this equation

(−∆)su = (Iα ∗ |u|2
∗
α,s)|u|2∗α,s−2u, x ∈ RN .

The function uε,y = κ(ε2 + |x − y|2)− N−2s
2 solves

(−∆)su = |u|2∗s −2u, in RN ,

and achieves the infimum of

S := inf
Ds(RN\{0})

[u]2

|u|22∗s
,

with

Sh,l = SC
− 1

2∗α,s
N,α,s and κ =

(
S

N
2s Γ(N)

π
N
2 Γ(N

2 )

) N−2s
2N

.

In order to prove our problem, we shall make use of the following infimum

S∗ := inf
(u,v)∈Ds(RN)×Ds(RN)

[u]2 + [v]2( ∫
RN (Iα ∗ |u|2

∗
α,s)|v|2∗α,s dx

) 1
2∗α,s

, (2.2)

and from [43, Lemma 2.2], we know
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Lemma 2.2. We have
S∗ = 2Sh,l ,

and S∗ is achieved if and only if, for C > 0,

u = v = Cuε,y.

Then we recall the fractional Gagliardo–Nirenberg–Sobolev inequality, which can be seen
in [19].

Lemma 2.3. Let N > 2s and p ∈ (2, 2∗s ), then there exists a constant C(N, p, s) > 0, such that for
all u ∈ Hs(RN),

|u|pp ≤ C(N, p, s)|(−∆)
s
2 u|

N(p−2)
2s

2 |u|p−
N(p−2)

2s
2 . (2.3)

Defining γp := N(p−2)
2ps , it is easy to see

pγp


< 2, if 2 < p < p̄,

= 2, if p = p̄, and γ2∗s = 1,

> 2, if p̄ < p < 2∗s .

and
|u|pp ≤ C(N, p, s)|(−∆)

s
2 u|pγp

2 |u|p(1−γp)
2 . (2.4)

Following, we obtain the corresponding Pohožaev type identity for system (1.1). Before the
statement of this result, we introduce the s-harmonic extension (see [11]) techniques. Denote
RN+1 = {(x, y) : x ∈ RN , y ∈ R} and define X = Xs(RN+1

+ )× Xs(RN+1
+ ) under the norms

∥(U, V)∥X =

(
κs

∫
RN+1

+

y1−2s|∇U|2dxdy + κs

∫
RN+1

+

y1−2s|∇V|2dxdy
) 1

2

,

where Xs(RN+1
+ ) is the completion of C∞

0 (RN+1
+ ) with the norm

∥U∥Xs(RN+1
+ ) =

(
κs

∫
RN+1

+

y1−2s|∇U|2dxdy
) 1

2

.

Let (u, v) ∈ H be a solution of (1.1) and define (U, V) ∈ X be its s-harmonic extension to the
upper half space RN+1

+ , then u = U(x, 0), v = V(x, 0) and (U, V) is a solution to the following
problem

−div(y1−2s∇U) = 0;−div(y1−2s∇V) = 0, in RN+1
+ ,

− ∂U
∂y1−2s = λ1u + µ1|u|p−2u + βr1|u|r1−2u|v|r2 + (Iα ∗ |v|2

∗
α,s)|u|2∗α,s−2u, on RN ,

− ∂V
∂y1−2s = λ2v + µ2|v|p−2v + βr2|v|r2−2v|u|r1 + (Iα ∗ |u|2

∗
α,s)|v|2∗α,s−2v, on RN .

(2.5)

From [8, Proposition A.1] and [42, Lemma 4.1], we have the following result.

Proposition 2.4. Let (u, v) ∈ H be a weak solution of (1.1), that is (u, v) satisfies:

0 = ⟨u, φ⟩+ ⟨v, ψ⟩ −
∫

RN
(λ1uφ + λ2vψ)dx

−
∫

RN
(µ1|u|p−2uφ + µ2|v|p−2vφ)dx − β

∫
RN

(r1|u|r1−2u|v|r2 φ + r2|u|r1 |v|r2−2vψ)dx

−
∫

RN
[(Iα ∗ |v|2

∗
α,s)|u|2∗α,s−2uφ + (Iα ∗ |u|2

∗
α,s)|v|2∗α,s−2vψ]dx, ∀(φ, ψ) ∈ H,
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then we have (u, v) satisfies

N − 2s
2

∫
RN

(|(−∆)
s
2 u|2 + |(−∆)

s
2 v|2)dx

=
N
2

∫
RN

(λ1|u|2 + λ2|v|2)dx +
N
p

∫
RN

(µ1|u|p + µ2|v|p)dx

+ βN
∫

RN
|u|r1 |v|r2 dx +

2N − α

2∗α,s

∫
RN

(Iα ∗ |u|2
∗
α,s)|v|2∗α,s dx.

Proof. If (u, v) ∈ H is a weak solution of (1.1), from [2, Proposition 3.2.14], we have (u, v) ∈
L∞(RN) × L∞(RN). Using the same arguments as in [13, Proposition 4.1], we get (u, v) ∈
C2,τ(RN) × C2,τ(RN) with τ depending on s. Let (U, V) be its s-harmonic extension and
satisfy (2.5), then (U, V) ∈ C2(RN+1

+ )× C2(RN+1
+ ).

Set Dm := {(x, y) ∈ RN+1 : |(x, y)| ≤ m} and Qr = D+
r ∪ (Dr ∩ (RN × {0})), where

D+
r = Dr ∩ RN+1

+ . Let φ ∈ C∞
0 (RN+1) with 0 ≤ φ ≤ 1, φ = 1 in D1, φ = 0 outside D2 and

|∇φ| ≤ 2. For R > 0, define

ψR(x, y) = ψ

(
(x, y)

R

)
, where ψ = φ|

RN+1
+

.

Multiplying (2.5) by ((x, y) · ∇U)ψR and ((x, y) · ∇V)ψR respectively, we obtain from [8,
Proposition A.1],

lim
R→∞

∫
D2R∩(R×{0})

|u|p−2u · (x, y) · ∇UψRdx = −N
p

∫
RN

|u|pdx.

lim
R→∞

∫
D2R∩(R×{0})

u · (x, y) · ∇UψRdx = −N
2

∫
RN

|u|2dx.

and
lim

R→∞

∫
D2R∩(RN×{0})

|v|p−2v · (x, y) · ∇VψRdx = −N
p

∫
RN

|v|pdx.

lim
R→∞

∫
D2R∩(RN×{0})

v · (x, y) · ∇VψRdx = −N
2

∫
RN

|v|2dx.

Moreover,

lim
R→∞

∫
D2R∩(RN×{0})

(
r1|v|r2 |u|r1−2u · (x, y) · ∇UψR + r2|u|r1 |v|r2−2v · (x, y) · ∇VψR

)
dx

= − N
∫

RN
|u|r1 |v|r2 dx.

and
lim

R→∞

∫
Q2R

y1−2s∇U∇[((x, y) · ∇U)ψR]dxdy = −N − 2s
2

∫
RN+1

+

y1−2s|∇U|2dxdy,

lim
R→∞

∫
Q2R

y1−2s∇V∇[((x, y) · ∇V)ψR]dxdy = −N − 2s
2

∫
RN+1

+

y1−2s|∇V|2dxdy.

Furthermore, combining with [42, Lemma 4.1], we have

lim
R→∞

∫
D2R∩(RN×{0})

(
(Iα ∗ |v|2

∗
α,s)|u|2∗α,s−2 · (x, y) · ∇UψR

+ (Iα ∗ |u|2
∗
α,s)|v|2∗α,s−2 · (x, y) · ∇VψR

)
dx

=
α − 2N

2∗α,s

∫
RN

(Iα ∗ |u|2
∗
α,s)|v|2∗α,s dx.
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Multiplying (2.5) by UψR and VψR respectively, and using the same techniques of [8, Propo-
sition A.1], we firstly obtain∫

RN+1
+

y1−2s|∇U|2dxdy =
∫

RN
|(−∆)

s
2 u|2dx,∫

RN+1
+

y1−2s|∇V|2dxdy =
∫

RN
|(−∆)

s
2 v|2dx,

and then we finish this proof.

Lemma 2.5. Let (u, v) ∈ H be a weak solution of (1.1), then we have Pohožaev manifold

Pµ1,µ2 = {(u, v) ∈ S : Pµ1,µ2(u, v) = 0},

where

Pµ1,µ2(u, v) = s([u]2 + [v]2)− sγp(µ1|u|
p
p + µ2|v|pp)− sβ(r1 + r2)γ(r1+r2)

∫
RN

|u|r1 |v|r2 dx

− 2s
∫

RN
(Iα ∗ |u|2

∗
α,s)|v|2∗α,s dx.

(2.6)

Proof. Since Proposition 2.4, we have (u, v) satisfies

N − 2s
2

∫
RN

(|(−∆)
s
2 u|2 + |(−∆)

s
2 v|2)dx

=
N
2

∫
RN

(λ1|u|2 + λ2|v|2)dx +
N
p

∫
RN

(µ1|u|p + µ2|v|p)dx

+ βN
∫

RN
|u|r1 |v|r2 dx +

2N − α

2∗α,s

∫
RN

(Iα ∗ |u|2
∗
α,s)|v|2∗α,s dx,

and∫
RN

(|(−∆)
s
2 u|2 + |(−∆)

s
2 v|2)dx =

∫
RN

(λ1|u|2 + λ2|v|2)dx +
∫

RN
(µ1|u|p + µ2|v|p)dx

+ β(r1 + r2)
∫

RN
|u|r1 |v|r2 dx + 2

∫
RN

(Iα ∗ |u|2
∗
α,s)|v|2∗α,s dx.

Thus,
s
∫

RN
(|(−∆)

s
2 u|2 + |(−∆)

s
2 v|2)dx

= sγp

∫
RN

(µ1|u|p + µ2|v|p)dx + βs(r1 + r2)γ(r1+r2)

∫
RN

|u|r1 |v|r2 dx

+ 2s
∫

RN
(Iα ∗ |u|2

∗
α,s)|v|2∗α,s dx,

and the conclusions follows.

Under the L2-invariant scaling introduced by Jeanjean in [25],

t ∗ u := e
Nt
2 u(etx), and t ∗ (u, v) := (t ∗ u, t ∗ v),

it is natural to study the fiber maps

Ψµ1,µ2(t) := J(t ∗ (u, v)) =
e2st

2
([u]2 + [v]2)− espγpt

p
(µ1|u|

p
p + µ2|v|pp)

− βes(r1+r2)γ(r1+r2)
t
∫

RN
|u|r1 |v|r2 dx

− e22∗α,sst

2∗α,s

∫
RN

(Iα ∗ |u|2
∗
α,s)|v|2∗α,s dx,

(2.7)
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satisfying Ψ′
µ1,µ2

(t) = Pµ1,µ2(t ∗ u, t ∗ v), that is

Pµ1,µ2 = {(u, v) ∈ S : Ψ′
µ1,µ2

(0) = 0}.

We decompose Pµ1,µ2 into 3 disjoint unions Pµ1,µ2 = P+
µ1,µ2

∪ P0
µ1,µ2

∪ P−
µ1,µ2

, defined by

P+
µ1,µ2

:= {u ∈ Pµ1,µ2 : Ψ′′
µ1,µ2

(0) > 0};

P0
µ1,µ2

:= {u ∈ Pµ1,µ2 : Ψ′′
µ1,µ2

(0) = 0};

P−
µ1,µ2

:= {u ∈ Pµ1,µ2 : Ψ′′
µ1,µ2

(0) < 0}.

Set m(a, b) = infPµ1,µ2
J(u, v) and m±(a, b) = inf(u,v)∈P±

µ1,µ2
J(u, v), respectively. The main idea

of this paper is to show whether m(a, b) is achieved.

3 The relevant results

Before solving problem (1.1) and (1.2), we study the following problem:{
(−∆)su = λu + µ|u|p−2u, in RN ,∫

RN u2dx = c2, u ∈ Hs(RN),
(3.1)

where µ, c > 0, p ∈ (2, 2∗s ) \ { p̄}. The standard method obtaining the normalized solutions of
(3.1) is to search for the critical points of

Iµ,c(u) =
1
2
[u]2 − µ

p

∫
RN

|u|pdx,

constrained on Sc := {u ∈ Hs(RN) : |u|22 = c2}. By the same arguments as in Section 2, the
Pohožaev identity related to (3.1) is

Pµ,c(u) = s[u]2 − µγps|u|pp,

and the corresponding Pohožaev manifold is

Pµ,c := {u ∈ Sc : [u]2 = µγp|u|pp}.

Moreover, we have

Ψµ,c(t) := Iµ,c(t ∗ u) =
e2st

2
[u]2 − µepγpst

p

∫
RN

|u|pdx,

and Pµ,c can also be divided into 3 disjoint unions Pµ,c = P+
µ,c ∪ P0

µ,c ∪ P−
µ,c, where

P+
µ,c := {u ∈ Pµ,c : Ψ′′

µ,c(0) > 0};

P0
µ,c := {u ∈ Pµ,c : Ψ′′

µ,c(0) = 0};

P−
µ,c := {u ∈ Pµ,c : Ψ′′

µ,c(0) < 0}.

Define mµ(c) = infu∈Pµ,c Iµ,c(u) and let m(a, 0) = mµ1(a), m(0, b) = mµ2(b). From Lemma 2.3,
for any u ∈ Sa, there is C1 := C1(N, p, a, s) > 0, such that∫

RN
|u|pdx ≤ C(N, p, s)|u|p(1−γp)

2 [u]pγp = C1[u]
pγp ≤ C1([u]2 + [v]2)

pγp
2 . (3.2)
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In particular, when p < p̄, from (3.2) we get

Iµ1,a(u) =
1
2
[u]2 − µ1

p

∫
RN

|u|pdx ≥ 1
2
[u]2 − C1µ1

p
[u]pγp =: h([u]),

where
h(ρ) :=

1
2

ρ2 − C1µ1

p
ρpγp . (3.3)

Setting

ρ∗ := (C1µ1γp)
1

2−pγp ,

we have that h(ρ∗) < 0, h(ρ) is strictly decreasing in (0, ρ∗), and is strictly increasing in (ρ∗, ∞).

If we denote R0 = ( 2C1µ1
p )

1
2−pγp , then h(R0) = 0 and h(ρ) < 0 iff ρ ∈ (0, R0).

From [44], we have the following already known results. For the mass subcritical case:

Theorem 3.1 ([44, Theorem 1.1]). When 2s < N ≤ 4s, p ∈ (2, p̄) and µ, c > 0 in (3.1), there is
µ̂ > 0, for any µ ∈ (0, µ̂), then Iµ,c|Sc has a ground state solution uµ for some λ < 0. Moreover,

mµ(c) = inf
u∈Sc

Iµ,c(u) = Iµ,c(uµ) < 0,

and uµ is an interior local minimizer of Iµ,c on the set

B̂R0 := {u ∈ Sc : [u] < R0}.

Besides, any other normalized ground state solution is a minimizer of Iµ,c on BR0 .

Remark 3.2. We set µ̂1, µ̂2 to obtain Theorem 3.1, under µ = µ1, c = a and µ = µ2, c = b in
(3.1), respectively.

For the mass supercritical case:

Theorem 3.3 ([44, Theorem 1.3]). When 2s < N ≤ 4s, p ∈ ( p̄, 2∗s ) and µ, c > 0 in (3.1), then
Iµ,c|Sc has a ground state solution uµ for some λ < 0. Moreover uµ is a critical point of Mountain Pass
type and

mµ(c) = inf
u∈Sc

max
t∈R

Iµ,c(t ∗ u) = max
t∈R

Iµ,c(t ∗ uµ) = Iµ,c(uµ) > 0.

In order to proceed our proof, we also need the following monotonicity result which is
essential for Lemmas 4.6 and 5.7.

Lemma 3.4. mµ1(a) is non-increasing with respect to a, that is

mµ1(a) ≤ mµ1(a1), for any 0 < a1 ≤ a.

Proof. We will prove for any 0 < a1 ≤ a and an arbitrary ε > 0,

mµ1(a) ≤ mµ1(a1) + ε.

We divide this proof into two cases.

Case 1: 2 < p < p̄. For this case, from the definition of R0 in (3.3), we see R0 is increasing as a
is increasing. Hence, by Theorem 3.1 and a1 ≤ a, there exists a R̂0 with R̂0 < R0, such that

mµ1(a1) = inf
u∈B̂R̂0

Iµ1(u).
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Let u ∈ B̂R̂0
⊂ B̂R0 be such that Iµ1(u) ≤ mµ1(a1) +

ε
2 . Setting ϕ ∈ C∞

0 (RN) be a cut-off function
satisfies 0 ≤ ϕ ≤ 1 and

ϕ(x) =

{
0, if |x| ≥ 2,

1, if |x| ≤ 1.

For δ > 0, defined uδ(x) = u(x)ϕ(δx), we get uδ → u in Hs(RN) as δ → 0. Thus, for
η = ε

6 > 0, there exists δ > 0 such that

Iµ1(uδ) ≤ Iµ1(u) +
ε

6
, and [uδ] < R0 −

η

R0
. (3.4)

Taking φ ∈ C∞
0 (RN) satisfies supp(φ) ⊂ O1+ 3

δ
(0) \ O 3

δ
(0), where Om(n) means a ball in RN

with radius m and centered at n. Let

w(x) =
(a2 − |uδ|22)

1
2

|φ|2
φ,

then for t < 0,
supp(uδ) ∩ supp(t ∗ w) = ∅.

Therefore, we get uδ + t ∗ w ∈ Sa. Moreover, as t → −∞, we have

Iµ1(t ∗ w) ≤ ε

6
, and [t ∗ w] ≤ η

R0
. (3.5)

By the Hölder inequality, we obtain

[uδ + t ∗ w]2 =
∫∫

R2N

|(uδ + t ∗ w)(x)− (uδ + t ∗ w)(y)|2
|x − y|N+2s dxdy

=
∫∫

R2N

|uδ(x)− uδ(y)|2
|x − y|N+2s dxdy +

∫∫
R2N

|(t ∗ w)(x)− (t ∗ w)(y)|2
|x − y|N+2s dxdy

+ 2
∫∫

R2N

(uδ(x)− uδ(y))((t ∗ w)(x)− (t ∗ w)(y))
|x − y|N+2s dxdy

≤[uδ]
2 + [t ∗ w]2 + 2[uδ][t ∗ w]

= ([uδ] + [t ∗ w])2,

then [uδ + t ∗ w] < R0. Now from Theorem 3.1, mµ1(a) = infu∈B̂R0
Iµ1(u), by (3.4)–(3.5), we

obtain
mµ1(a) ≤ Iµ1(uδ + t ∗ w) ≤ Iµ1(uδ) + Iµ1(t ∗ w) + [uδ][t ∗ w]

≤ mµ1(a1) +
ε

2
+

ε

6
+

ε

6
+

ε

6
≤ mµ1(a1) + ε.

Case 2: p̄ < p < 2∗s . In this case, pγp > 2, and by the definition of mµ1(a1), there exists

u ∈ Pµ1,a1 , such that

Iµ1(u) ≤ mµ1(a1) +
ε

2
.

From Theorem 3.3, we have u is bounded in Hs(RN) and

[u]2 = µ1γp|u|pp.

Since (3.2) and a1 ≤ a, we get

[u] ≥
(

1

µ1γpC(N, p, s)ap(1−γp)
1

) 1
pγp−2

≥
(

1
µ1γpC(N, p, s)ap(1−γp)

) 1
pγp−2

.
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Hence there are Ĉ, C̃ > 0, which are independent with a1, such that [u] ≥ Ĉ, and |u|pp ≥ C̃.
Later we may assume ε < C̃. Same definitions as in Case 1, we have uδ → u in Hs(RN) as
δ → 0 and from Theorem 3.3, tuδ

∗ uδ → tu ∗ u in Hs(RN) as δ → 0, where tu means strict
maximum point of Ψµ1,a1(t) and the map u → tu is of C1 class. Then, for fixed δ > 0, there
exists C > 0 such that

Iµ1(tuδ
∗ uδ) ≤ Iµ1(u) +

ε

6
, [uδ] ≤ C, and |uδ|

p
p ≥ C̃ − ε

2
. (3.6)

Choose ψ ∈ C∞
0 (RN) with supp(ψ) ⊂ O1+ 3

δ
(0) \ O 3

δ
(0), where Om(n) means a ball as defined

on the previous page. Set

κ =
(a2 − |uδ|22)

1
2

|ψ|2
ψ.

Then for τ < 0, we have
supp(uδ) ∩ supp(τ ∗ κ) = ∅.

Let uτ := uδ + τ ∗ κ ∈ Sa, and as τ → −∞,∫
RN

|uτ|pdx =
∫

RN
|uδ|pdx +

∫
RN

|τ ∗ κ|pdx

=
∫

RN
|uδ|pdx + epγpsτ

∫
RN

|κ|ppdx → |uδ|
p
p.

Similarly, we obtain

[uτ]
2 ≤ [uδ]

2 + [τ ∗ κ]2 + 2[uδ][τ ∗ κ]

= [uδ]
2 + e2sτ[κ]2 + 2esτ[uδ][κ] → [uδ]

2.

From Theorem 3.3, there exists tτ such that Pµ1,a(tτ ∗ uτ) = 0, i.e.

1
e(pγp−2)stτ

[uτ]
2 = γpµ1|uτ|pp.

Then as τ → −∞,

e(pγp−2)stτ =
[uτ]2

γpµ1|uτ|pp
≤ [uδ]

2

γpµ1|uδ|
p
p

.

Combining with (3.6), we get tτ is bounded from above as τ → −∞. Hence, for τ < −1
sufficiently small, there exists C∗ > 0 such that

[tτ ∗ uδ] ≤ C∗, Iµ1((tτ + τ) ∗ κ) ≤ ε

6
, and [(tτ + τ) ∗ κ] <

ε

6C∗ . (3.7)

Thus from (3.6) and (3.7), we obtain

mµ1(a) ≤ Iµ1(tτ ∗ uτ) ≤ Iµ1(tτ ∗ uδ) + Iµ1((tτ + τ) ∗ κ) + [tτ ∗ uδ][(tτ + τ) ∗ κ]

≤ Iµ1(tuδ
∗ uδ) +

ε

6
+

ε

6

≤ Iµ1(u) +
ε

6
+

ε

6
+

ε

6
≤ mµ1(a1) + ε.

Then, we complete this proof.
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4 The case: 2 < p < p̄, p < (r1 + r2) < 2∗s

In this section, we consider the mixed exponent case. For any (u, v) ∈ S, from (2.2), the
Hölder inequality and (2.4), there are C2 = C2(N, p, b, s) > 0, C3 = C3(N, (r1 + r2), s, a, b) and
C4 = (S∗)−2∗α,s , such that∫

RN
|v|pdx ≤ C(N, p, s)|v|p(1−γp)

2 [v]pγp = C2[v]
pγp ≤ C2([v]2 + [u]2)

pγp
2 , (4.1)

∫
RN

|u|r1 |v|r2 dx ≤ |u|r1
(r1+r2)

|v|r2
(r1+r2)

≤ C(N, (r1 + r2), s)|u|
r1(1−γ(r1+r2)

)

2 [u]r1γ(r1+r2) |v|
r2(1−γ(r1+r2)

)

2 [v]r2γ(r1+r2)

≤ C3([u]2 + [v]2)
(r1+r2)γ(r1+r2)

2 ,

(4.2)

and ∫
RN

(Iα ∗ |v|2
∗
α,s)|u|2∗α,s dx ≤ (S∗)−2∗α,s([u]2 + [v]2)2∗α,s = C4([u]2 + [v]2)2∗α,s . (4.3)

Hence, substituting (3.2), (4.1)–(4.3) into J(u, v), we obtain

J(u, v) ≥ 1
2
([u]2 + [v]2)− µ1C1 + µ2C2

p
([u]2 + [v]2)

pγp
2 − βC3([u]2 + [v]2)

(r1+r2)γ(r1+r2)
2

− C4

2∗α,s
([u]2 + [v]2)2∗α,s .

(4.4)

Then we introduce the function k : R+ → R by

k(t) :=
1
2

t2 − µ1C1 + µ2C2

p
tpγp − βC3t(r1+r2)γ(r1+r2) − C4

2∗α,s
t22∗α,s , (4.5)

and k(0+) = 0−, and k(+∞) = −∞.

Lemma 4.1. There exists β∗ > 0, such that for any β ∈ (0, β∗), there exist µ1,∗ = µ1,∗(β) > 0 and
µ2,∗ = µ2,∗(β) > 0, for any µ1 ∈ (0, µ1,∗), µ2 ∈ (0, µ2,∗), the function k(t) has exactly two critical
points, one is a local strict minimum at a negative level, and the other one is a global maximum at a
positive level. Further, there exist 0 < R2 < R3 such that k(R2) = k(R3) = 0, k(t) > 0 if and only if
t ∈ (R2, R3).

Proof. Since the monotonicity of k(t) will be strongly affected by the comparison of p and
r1 + r2, we may divide this proof into 3 different situations.

Case 1: 2 < p < (r1 + r2) < p̄. In this case, we have pγp < (r1 + r2)γ(r1+r2) < 2 and

k′(t) = tpγp−1[t2−pγp − C3β(r1 + r2)γ(r1+r2)t
(r1+r2)γ(r1+r2)

−pγp − 2C4t22∗α,s−pγp − γp(µ1C1 + µ2C2)].

Denote
k̃(t) := t2−pγp − C3β(r1 + r2)γ(r1+r2)t

(r1+r2)γ(r1+r2)
−pγp − 2C4t22∗α,s−pγp ,

then

k̃′(t) = t(r1+r2)γ(r1+r2)
−pγp−1[(2 − pγp)t

2−(r1+r2)γ(r1+r2) − 2C4(22∗α,s − pγp)t
22∗α,s−(r1+r2)γ(r1+r2)

− C3β(r1 + r2)γ(r1+r2)((r1 + r2)γ(r1+r2) − pγp)].
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Let
k̂(t) := (2 − pγp)t

2−(r1+r2)γ(r1+r2) − 2C4(22∗α,s − pγp)t
22∗α,s−(r1+r2)γ(r1+r2) , (4.6)

then
k̂′(t) = t1−(r1+r2)γ(r1+r2) [(2 − pγp)(2 − (r1 + r2)γ(r1+r2))

− 2C4(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2))t
22∗α,s−2].

We see from the definition of k̂′(t) that k̂(t) has a unique critical point t0 in (0,+∞) satisfying

t22∗α,s−2
0 =

(2 − pγp)(2 − (r1 + r2)γ(r1+r2))

2C4(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2))
.

Moreover, since pγp < (r1 + r2)γ(r1+r2) < 2, we have k̃(+∞) = −∞, k̃(0+) = 0−. If

k̂(t0) > C3β(r1 + r2)γ(r1+r2)[(r1 + r2)γ(r1+r2) − pγp];

k̃(t0) > γp(µ1C1 + µ2C2), and k(t0) > 0,
(4.7)

i.e.

[
(2 − pγp)(2 − (r1 + r2)γ(r1+r2)

)

2C4(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2)
)

] 2−(r1+r2)γ(r1+r2)
22∗α,s−2 (2 − pγp)(22∗α,s − 2)

22∗α,s − (r1 + r2)γ(r1+r2)

> C3β(r1 + r2)γ(r1+r2)
((r1 + r2)γ(r1+r2)

− pγp);[
(2 − pγp)(2 − (r1 + r2)γ(r1+r2)

)

2C4(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2)
)

] pγp
22∗α,s−2

[
1 −

(2 − pγp)(2 − (r1 + r2)γ(r1+r2)
)

(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2)
)

]
> γp(µ1C1 + µ2C2) + C3β(r1 + r2)γ(r1+r2)

×
[

(2 − pγp)(2 − (r1 + r2)γ(r1+r2)
)

2C4(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2)
)

] (r1+r2)γ(r1+r2)
−pγp

22∗α,s−2
;

[
(2 − pγp)(2 − (r1 + r2)γ(r1+r2)

)

2C4(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2)
)

] 22∗α,s
22∗α,s−2

C4

[
(22∗α,s − pγp)(22∗α,s − (r1 + r2)γp)

(2 − pγp)(2 − (r1 + r2)γ(r1+r2)
)

− 1
2∗α,s

]

>
µ1C1 + µ2C2

p
×
[

(2 − pγp)(2 − (r1 + r2)γ(r1+r2)
)

2C4(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2)
)

] pγp
22∗α,s−2

+ βC3

[
(2 − pγp)(2 − (r1 + r2)γ(r1+r2)

)

2C4(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2)
)

] (r1+r2)γ(r1+r2)
22∗α,s−2

,

(4.8)
then the function k(t) has exactly two critical points, one is a local minimum at a negative
level, the other one is a global maximum at a positive level. Therefore, there exist R2, R3 with
0 < R2 < R3 such that k(R2) = k(R3) = 0, k(t) > 0 if and only if t ∈ (R2, R3).

Case 2: 2 < p < r1 + r2 = p̄. This implies pγp < (r1 + r2)γ(r1+r2) = 2. We choose β such that
C3β < 1

2 and k(t) turns to be

k(t) =
(

1
2
− C3β

)
t2 − µ1C1 + µ2C2

p
tpγp − C4

2∗α,s
t22∗α,s .

Taking a similar argument as in Case 1, first we have

k′(t) = tpγp−1[(1 − 2C3β)t2−pγp − 2C4t22∗α,s−pγp − γp(µ1C1 + µ2C2)].
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Denote
k̃(t) = (1 − 2C3β)t2−pγp − 2C4t22∗α,s−pγp ,

and
k̃′(t) = t1−pγp [(1 − 2C3β)(2 − pγp)− 2C4(22∗α,s − pγp)t22∗α,s−2].

Thus there exists t1 ∈ (0,+∞) satisfying

t22∗α,s−2
1 =

(1 − 2C3β)(2 − pγp)

2C4(22∗α,s − pγp)
,

and if
k̃(t1) > γp(µ1C1 + µ2C2), and k(t1) > 0, (4.9)

that is

(
2 − pγp

2C4

) (2−pγp)
22∗α,s−2

(22∗α,s − 2)(22∗α,s − pγp)
pγp−22∗α,s

22∗α,s−2 > γp(µ1C1 + µ2C2)(1 − 2C3β)
pγp−22∗α,s

22∗α,s−2 ;

(
22∗α,s − pγp

2 − pγp
− 1

2∗α,s

)
C4 >

µ1C1 + µ2C2

p

[
(1 − 2C3β)(2 − pγp)

2C4(22∗α,s − pγp)

] pγp−22∗α,s
22∗α,s−2

,

(4.10)
then we get the same conclusions as Case 1.

Case 3: 2 < p < p̄ < r1 + r2 < 2∗s . In this case, pγp < 2 < (r1 + r2)γ(r1+r2). Similarily, we have

k̃(t) := t2−pγp − C3β(r1 + r2)γ(r1+r2)t
(r1+r2)γ(r1+r2)

−pγp − 2C4t22∗α,s−pγp ,

and

k̃′(t) = t1−pγp [(2 − pγp)− C3β(r1 + r2)γ(r1+r2)((r1 + r2)γ(r1+r2) − pγp)t
(r1+r2)γ(r1+r2)

−2

− 2C4(22∗α,s − pγp)t22∗α,s−2].

Therefore, k̃(t) has a unique critical point t2 ∈ (0,+∞). If

k̃(t2) > γp(µ1C1 + µ2C2), and k(t2) > 0, (4.11)

we obtain the same conclusions as Case 1. Following, we get an estimate at t2. Let

t∗ =
[
(µ1C1 + µ2C2)d((r1 + r2)γ(r1+r2) − pγp)

2 − pγp

] 1
2−pγp

,

where d will be fixed later. If t2 > t∗ and d >
γp(2−pγp)

(r1+r2)γ(r1+r2)
−2 , we get

(µ1C1 + µ2C2)γptpγp
2 + C3β(r1 + r2)γ(r1+r2)t

(r1+r2)γ(r1+r2)

2 + 2C4t22∗α,s
2

≤ (µ1C1 + µ2C2)γptpγp−2
∗ t2

2 +
2 − pγp

(r1 + r2)γ(r1+r2) − pγp
t2
2 < t2

2,

and if d >
2(r1+r2)γ(r1+r2)

p[(r1+r2)γ(r1+r2)
−2] ,

µ1C1 + µ2C2

p
tpγp
2 + C3βt

(r1+r2)γ(r1+r2)

2 +
C4

2∗α,s
t22∗α,s
2

≤
2 − pγp

(r1 + r2)γ(r1+r2)[(r1 + r2)γ(r1+r2) − pγp]
t2
2 +

µ1C1 + µ2C2

p
tpγp−2
∗ t2

2 <
1
2

t2
2.
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Therefore, if we choose d >
2(r1+r2)γ(r1+r2)

p((r1+r2)γ(r1+r2)
−2) , we get (4.11). Hence we only need t2 > t∗. By

the definition of t2, we need

(2 − pγp) > C3β(r1 + r2)γ(r1+r2)((r1 + r2)γ(r1+r2) − pγp)t
(r1+r2)γ(r1+r2)

−2
∗

+ 2C4(22∗α,s − pγp)t
22∗α,s−2
∗ ,

that is,

(2 − pγp) >

[
(µ1C1 + µ2C2)d((r1 + r2)γ(r1+r2) − pγp)

2 − pγp

] (r1+r2)γ(r1+r2)
−2

2−pγp

×

C3β(r1 + r2)γ(r1+r2)((r1 + r2)γ(r1+r2) − pγp)

+ 2C4(22∗α,s − pγp)

(
(µ1C1 + µ2C2)d((r1 + r2)γ(r1+r2) − pγp)

2 − pγp

) 22∗α,s−2
2−pγp

 .

(4.12)

To sum up, there exists β∗ > 0, such that for any β ∈ (0, β∗), there exist µ1,∗ = µ1,∗(β) > 0
and µ2,∗ = µ2,∗(β) > 0, for any µ1 ∈ (0, µ1,∗), µ2 ∈ (0, µ2,∗), then (4.8), (4.10) and (4.12) are
satisfied. We complete this lemma.

We now study the structure of Pohožaev manifold. Recalling the decomposition of Pµ1,µ2 =

P+
µ1,µ2

∪ P0
µ1,µ2

∪ P−
µ1,µ2

, we have:

Lemma 4.2. There exists β̃∗ > 0, such that for any β ∈ (0, β̃∗), there exist µ̃1,∗ = µ̃1,∗(β) > 0
and µ̃2,∗ = µ̃2,∗(β) > 0, for every µ1 ∈ (0, µ̃1,∗), µ2 ∈ (0, µ̃2,∗), then P0

µ1,µ2
= ∅ and Pµ1,µ2 is a

C1-submanifold in H with codimension 3.

Proof. Firstly, assume by contradiction that there exists a (u, v) ∈ P0
µ1,µ2

satisfying

([u]2 + [v]2) = γp(µ1|u|
p
p + µ2|v|pp) + β(r1 + r2)γ(r1+r2)

∫
RN

|u|r1 |v|r2 dx

+ 2
∫

RN
(Iα ∗ |u|2

∗
α,s)|v|2∗α,s dx,

(4.13)

and

2([u]2 + [v]2) = pγ2
p(µ1|u|

p
p + µ2|v|pp) + β(r1 + r2)

2γ2
(r1+r2)

∫
RN

|u|r1 |v|r2 dx

+ 42∗α,s

∫
RN

(Iα ∗ |u|2
∗
α,s)|v|2∗α,s dx.

(4.14)

Following we define

h̄(ρ) := ρΨ′
µ1,µ2

(0)− Ψ′′
µ1,µ2

(0)

= (ρ − 2)([u]2 + [v]2)− γp(ρ − pγp)(µ1|u|
p
p + µ2|v|pp)

− 2(ρ − 22∗α,s)
∫

RN
(Iα ∗ |u|2

∗
α,s)|v|2∗α,s dx

− β(r1 + r2)γ(r1+r2)(ρ − (r1 + r2)γ(r1+r2))
∫

RN
|u|r1 |v|r2 dx = 0,

(4.15)
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and let
η := ([u]2 + [v]2)

1
2 .

Case 1: When p < r1 + r2 < p̄, we have pγp < (r1 + r2)γ(r1+r2) < 2. From (4.15) and (4.3), we
have h̄((r1 + r2)γ(r1+r2)) = 0 and

[
2 − (r1 + r2)γ(r1+r2)

]
η2 ≤ 2

[
22∗α,s − (r1 + r2)γ(r1+r2)

] ∫
RN

(Iα ∗ |u|2
∗
α,s)|v|2∗α,s dx

≤ 2C4
[
22∗α,s − (r1 + r2)γ(r1+r2)

]
η22∗α,s .

(4.16)

It follows η ≥
[ 2−(r1+r2)γ(r1+r2)

2C4(22∗α,s−(r1+r2)γ(r1+r2)
)

] 1
22∗α,s−2 . Moreover, by h̄(22∗α,s) = 0, from (3.2), (4.1) and

(4.2),we obtain

(22∗α,s − 2)η2 = γp(22∗α,s − pγp)(µ1|u|
p
p + µ2|v|pp)

+ β(r1 + r2)γ(r1+r2)

[
22∗α,s − (r1 + r2)γ(r1+r2)

] ∫
RN

|u|r1 |v|r2 dx

≤γp(22∗α,s − pγp)(µ1C1 + µ2C2)tpγp

+ C3β(r1 + r2)γ(r1+r2)

[
22∗α,s − (r1 + r2)γ(r1+r2)

]
t(r1+r2)γ(r1+r2) ,

that is

22∗α,s − 2 ≤ γp(22∗α,s − pγp)(µ1C1 + µ2C2)

[ 2 − (r1 + r2)γ(r1+r2)

2C4(22∗α,s − (r1 + r2)γ(r1+r2))

] pγp−2
22∗α,s−2

+ C3β(r1 + r2)γ(r1+r2)

[ 2 − (r1 + r2)γ(r1+r2)

2C4(22∗α,s − (r1 + r2)γ(r1+r2))

] (r1+r2)γ(r1+r2)
−2

22∗α,s−2

.

(4.17)

Hence, we can choose β̃∗ > 0, such that for any β ∈ (0, β̃∗), there exist µ̃1,∗ = µ̃1,∗(β) > 0
and µ̃2,∗ = µ̃2,∗(β) > 0, for every µ1 ∈ (0, µ̃1,∗), µ2 ∈ (0, µ̃2,∗), such that (4.17) can not happen.
Therefore, P0

µ1,µ2
= ∅.

Case 2: As in p < r1 + r2 = p̄, we get pγp < (r1 + r2)γ(r1+r2) = 2. Similarly as in Case 1, from
(4.1)–(4.3) and (4.15), we have h̄(pγp) = 0, i.e.

(2 − pγp)t2 = β(r1 + r2)γ(r1+r2)

[
(r1 + r2)γ(r1+r2) − pγp

] ∫
RN

|u|r1 |v|r2 dx

+ 2(22∗α,s − pγp)
∫

RN
(Iα ∗ |u|2

∗
α,s)|v|2∗α,s dx

≤ 2C3β(2 − pγp)η
2 + 2C4(22∗α,s − pγp)η

22∗α,s .

(4.18)

From h̄(22∗α,s) = 0 we get

(22∗α,s − 2)η2 ≤ γp(µ1C1 + µ2C2)(22∗α,s − pγp)η
pγp + 2C3β(22∗α,s − 2)η2. (4.19)

Combining with (4.18), we first suppose 1 − 2C3β > 0 and then

[
(1 − 2C3β)(2 − pγp)

2C4(22∗α,s − pγp)

] 1
22∗α,s−2

≤
[

γp(µ1C1 + µ2C2)(22∗α,s − pγp)

(22∗α,s − 2)(1 − 2C3β)

] 1
2−pγp

,
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that is (
2 − pγp

2C4

)2−pγp(22∗α,s − 2
γp

)22∗α,s−2( 1
22∗α,s − pγp

)22∗α,s−pγp

≤(µ1C1 + µ2C2)
22∗α,s−2

(
1

1 − 2C3β

)22∗α,s−pγp

.

Similar argument as in Case 1, choose appropriate β̃∗, µ̃1,∗ = µ̃1,∗(β), µ̃2,∗ = µ̃2,∗(β), such that
the last inequality may not happen. Therefore P0

µ1,µ2
= ∅.

Case 3: If p < p̄ < r1 + r2, then pγp < 2 < (r1 + r2)γ(r1+r2). Also by (3.2), (4.1)–(4.3) and (4.15),
since h̄(pγp) = 0 we have

(2 − pγp)η
2 ≤ C3β(r1 + r2)γ(r1+r2)

[
(r1 + r2)γ(r1+r2) − pγp

]
η(r1+r2)γ(r1+r2)

+ 2C4(22∗α,s − pγp)η
22∗α,s .

(4.20)

By the definition of t2 and t∗ in Lemma 4.1, we need

η ≥ t2 > t∗ :=
[
(µ1C1 + µ2C2)d((r1 + r2)γ(r1+r2) − pγp)

2 − pγp

] 1
2−pγp

.

Besides, from h̄((r1 + r2)γ(r1+r2)) = 0 we have

((r1 + r2)γ(r1+r2) − 2)η2 ≤ γp(µ1C1 + µ2C2)
[
(r1 + r2)γ(r1+r2) − pγp

]
ηpγp . (4.21)

i.e.

η ≤
[

γp(µ1C1 + µ2C2)((r1 + r2)γ(r1+r2) − pγp)

((r1 + r2)γ(r1+r2) − 2)

] 1
2−pγp

.

This is a contradiction with d >
2(r1+r2)γ(r1+r2)

p((r1+r2)γ(r1+r2)
−2) in Lemma 4.1. Hence, we can fix β̃∗ = β∗ ,

µ̃1,∗ := µ̃1,∗(β) = µ1,∗ and µ̃2,∗ := µ̃2,∗(β) = µ2,∗, to make sure t2 > t∗ and P0
µ1,µ2

= ∅, where
β∗, µ1,∗ and µ2,∗ are from Lemma 4.1.

Following, we prove Pµ1,µ2 is a C1-submanifold in H with codimension 3. For any (u, v) ∈
Pµ1,µ2 , we have Pµ1,µ2(u, v) = 0, G(u) = 0 and F(v) = 0, where

G(u) :=
∫

RN
u2 − a2dx, and F(v) :=

∫
RN

v2 − b2dx.

Then we need to prove

d(Pµ1,µ2(u, v), G(u), F(v)) : H 7→ R3 is surjective.

If not, there exist ν1, ν2 ∈ R, for every (φ, 0) and (0, ψ) in H such that

2s
∫

RN
(−∆)

s
2 u(−∆)

s
2 φdx = spγp

∫
RN

µ1|u|p−2uφdx + sβ(r1 + r2)γ(r1+r2)r1

∫
RN

|u|r1−2uφdx

+ 2s2∗α,s

∫
RN

(Iα ∗ |v|2
∗
α,s)|u|2∗α,s−2uφdx + 2ν1

∫
RN

uφdx;

and

2s
∫

RN
(−∆)

s
2 v(−∆)

s
2 ψdx = spγp

∫
RN

µ2|v|p−2vψdx + sβ(r1 + r2)γ(r1+r2)r2

∫
RN

|v|r2−2vψdx

+ 2s2∗α,s

∫
RN

(Iα ∗ |u|2
∗
α,s)|v|2∗α,s−2vψdx + 2ν2

∫
RN

vψdx.
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From which (u, v) is a weak solution of the system in RN

2s(−∆)su = 2ν1u + spγpµ1|u|p−2u + sβ(r1 + r2)γ(r1+r2)r1|u|r1−2u|v|r2

+ 2s2∗α,s(Iα ∗ |v|2
∗
α,s)|u|2∗α,s−2u,

2s(−∆)sv = 2ν2v + spγpµ2|v|p−2v + sβ(r1 + r2)γ(r1+r2)r2|v|r2−2|u|r1

+ 2s2∗α,s(Iα ∗ |u|2
∗
α,s)|v|2∗α,s−2v,∫

RN
|u|2dx = a2,

∫
RN

|v|2dx = b2.

The related Pohožaev identity of the above system is

2([u]2 + [v]2) = pγ2
p(µ1|u|

p
p + µ2|v|pp) + β(r1 + r2)

2γ2
(r1+r2)

∫
RN

|u|r1 |v|r2 dx

+ 42∗α,s

∫
RN

(Iα ∗ |u|2
∗
α,s)|v|2∗α,s dx,

thus P0
µ1,µ2

(u, v) = 0, which contradicts with P0
µ1,µ2

= ∅. We complete this lemma.

From Lemmas 4.1 and 4.2, we can have the geometry of Ψµ1,µ2 .

Lemma 4.3. For every (u, v) ∈ S, the function Ψµ1,µ2(t) has exactly two critical points su,v < tu,v ∈ R

and two zeros cu,v < du,v ∈ R with su,v < cu,v < tu,v < du,v. Moreover,

(i) su,v ∗ (u, v) ∈ P+
µ1,µ2

and tu,v ∗ (u, v) ∈ P−
µ1,µ2

, and if t ∗ (u, v) ∈ Pµ1,µ2 , then either t = su,v or
t = tu,v.

(ii) ([t ∗ u]2 + [t ∗ v]2)
1
2 ≤ R2 (R2 is from Lemma 4.1) for every t ≤ cu,v and

J(su,v ∗ (u, v)) = min{J(t ∗ (u, v)) : t ∈ R and ([t ∗ u]2 + [t ∗ v]2)
1
2 ≤ R2}.

(iii) We get J(tu,v ∗ (u, v)) = max{J(t ∗ (u, v)) : t ∈ R} > 0 and Ψµ1,µ2(t) is strictly decreasing
and concave on (tu,v, ∞). In particular, if tu,v < 0, then Pµ1,µ2(u, v) < 0.

(iv) The maps (u, v) 7→ su,v, and (u, v) 7→ tu,v for any (u, v) ∈ S are of class C1.

Proof. Let (u, v) ∈ S, then t ∗ (u, v) ∈ Pµ1,µ2 if and only if Ψ′
µ1,µ2

(t) = 0. By (4.4)-(4.5),

Ψµ1,µ2(t) = J(t ∗ (u, v)) ≥ k(est([u]2 + [v]2)
1
2 ),

thus from Lemma 4.1, Ψµ1,µ2(t) is positive on(
s−1 ln

R2

([u]2 + [v]2)
1
2

, s−1 ln
R3

([u]2 + [v]2)
1
2

)
.

Since pγp < 2, we see Ψµ1,µ2(−∞) = 0− and Ψµ1,µ2(+∞) = −∞. Then Ψµ1,µ2(t) has at
least two critical points. Therefore, Ψµ1,µ2(t) has a local minimum point su,v at a negative
level in

(
− ∞, s−1 ln R2

([u]2+[v]2)
1
2

)
, and has a global maximum point tu,v at a positive level in(

s−1 ln R2

([u]2+[v]2)
1
2

, s−1 ln R3

([u]2+[v]2)
1
2

)
. We claim Ψµ1,µ2(t) has exactly two critical points. Let

Ψ′
µ1,µ2

(t) = 0, namely

Ψ′
µ1,µ2

(t) = se2st([u]2 + [v]2)− sγpespγpt(µ1|u|
p
p + µ2|v|pp)− 2se22∗α,sst

∫
RN

(Iα ∗ |u|2
∗
α,s)|v|2∗α,s dx

− sβ(r1 + r2)γ(r1+r2)e
s(r1+r2)γ(r1+r2)

t
∫

RN
|u|r1 |v|r2 dx. (4.22)
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Case 1: 2 < p < r1 + r2 < p̄. From (4.22) we have

Ψ′
µ1,µ2

(t) = espγpt[se(2−pγp)st([u]2 + [v]2)− sβ(r1 + r2)γ(r1+r2)e
s[(r1+r2)γ(r1+r2)

−pγp]t
∫

RN
|u|r1 |v|r2 dx

− 2se(22∗α,s−pγp)st
∫

RN
(Iα ∗ |u|2

∗
α,s)|v|2∗α,s dx − sγp(µ1|u|

p
p + µ2|v|pp)

]
.

Denote
g1(t) := se(2−pγp)st([u]2 + [v]2)− 2se(22∗α,s−pγp)st

∫
RN

(Iα ∗ |u|2
∗
α,s)|v|2∗α,s dx

− sβ(r1 + r2)γ(r1+r2)e
s[(r1+r2)γ(r1+r2)

−pγp]t
∫

RN
|u|r1 |v|r2 dx,

then

g′1(t) = e[(r1+r2)γ(r1+r2)
−pγp]st

[
(2 − pγp)s2e(2−(r1+r2)γ(r1+r2)

)st([u]2 + [v]2)

− 2(22∗α,s − pγp)s2e(22∗α,s−(r1+r2)γ(r1+r2)
)st
∫

RN
(Iα ∗ |u|2

∗
α,s)|v|2∗α,s dx

− [(r1 + r2)γ(r1+r2) − pγp]s2(r1 + r2)γ(r1+r2)β
∫

RN
|u|r1 |v|r2 dx

]
.

Now define

f1(t) := (2 − pγp)s2e[2−(r1+r2)γ(r1+r2)
]st([u]2 + [v]2)

− 2(22∗α,s − pγp)s2e(22∗α,s−(r1+r2)γ(r1+r2)
)st
∫

RN
(Iα ∗ |u|2

∗
α,s)|v|2∗α,s dx,

thus

f ′1(t) = e(2−(r1+r2)γ(r1+r2)
)st
[
(2 − pγp)(2 − (r1 + r2)γ(r1+r2))s

3([u]2 + [v]2)

− 2(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2))s
3e(22∗α,s−2)st

∫
RN

(Iα ∗ |u|2
∗
α,s)|v|2∗α,s dx

]
.

We see f1(t) has only one critical point t̄, which is also a maximum point. Therefore if

f1(t̄) ≤ [(r1 + r2)γ(r1+r2) − pγp]s2(r1 + r2)γ(r1+r2)β
∫

RN
|u|r1 |v|r2 dx,

we have g′1(t) < 0 and g1(t) is strictly decreasing in R \ {t̄}. Since g1(−∞) = 0− and
g1(+∞) = −∞, we get

g1(t) < 0 < sγp(µ1|u|
p
p + µ2|v|pp),

and hence Ψ′
µ1,µ2

(t) < 0, which means Ψµ1,µ2(t) has no critical points. On the other hand, if

f1(t̄) > [(r1 + r2)γ(r1+r2) − pγp]s2(r1 + r2)γ(r1+r2)β
∫

RN
|u|r1 |v|r2 dx,

then by f1(−∞) = 0+ , f1(+∞) = −∞, there exist two constants t̄1 < t̄ < t̄2, such that

f1(t̄1) = f1(t̄2) = [(r1 + r2)γ(r1+r2) − pγp]s2(r1 + r2)γ(r1+r2)β
∫

RN
|u|r1 |v|r2 dx.

Therefore, we find from the definitions of g1(t) and Ψµ1,µ2(t) that

g1(t) = sγp(µ1|u|
p
p + µ2|v|pp),
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has at most two critical points, which implies Ψµ1,µ2(t) has at most two critical points.

Case 2: 2 < p < (r1 + r2) = p̄. In this case, (4.22) becomes

Ψ′
µ1,µ2

(t) = s
(
[u]2 + [v]2 − 2β

∫
RN

|u|r1 |v|r2 dx
)

e2st − sγpespγpt(µ1|u|
p
p + µ2|v|pp)

− 2se22∗α,sst
∫

RN
(Iα ∗ |u|2

∗
α,s)|v|2∗α,s dx.

(4.23)

If
[u]2 + [v]2 − 2β

∫
RN

|u|r1 |v|r2 dx ≤ 0,

we see Ψ′
µ1,µ2

(t) < 0 and Ψµ1,µ2(t) has no critical points. Now we suppose

[u]2 + [v]2 − 2β
∫

RN
|u|r1 |v|r2 dx > 0.

Then similarly as in Case 1, we conclude Ψµ1,µ2(t) has at most two critical points.

Case 3: 2 < p < p̄ < r1 + r2. From the definition of g1(t), we have

g′1(t) = e(2−pγp)st
[
(2 − pγp)s2([u]2 + [v]2)− 2s2(22∗α,s − pγp)e(22∗α,s−2)st

∫
RN

(Iα ∗ |u|2
∗
α,s)|v|2∗α,s dx

− s2β(r1 + r2)γ(r1+r2)[(r1 + r2)γ(r1+r2) − pγp]e
((r1+r2)γ(r1+r2)

−2)st
∫

RN
|u|r1 |v|r2 dx

]
=: e(2−pγp)st[(2 − pγp)s2([u]2 + [v]2)− Q(t)],

where

Q(t) = 2s2(22∗α,s − pγp)e(22∗α,s−2)st
∫

RN
(Iα ∗ |u|2

∗
α,s)|v|2∗α,s dx

+ s2β(r1 + r2)γ(r1+r2)[(r1 + r2)γ(r1+r2) − pγp]e
((r1+r2)γ(r1+r2)

−2)st
∫

RN
|u|r1 |v|r2 dx.

Moreover by
pγp < 2 < min{(r1 + r2)γ(r1+r2), 22∗α,s},

we see Q(t) is strictly increasing in R. Therefore g1(t) has a unique critical point t̂, which is
also a maximum point and g1(t) is strictly increasing in (−∞, t̂), strictly decreasing in (t̂,+∞).
On one hand, if

g1(t̂) ≤ sγp(µ1|u|
p
p + µ2|v|pp),

we have Ψµ1,µ2(t) has no critical points. Besides, if

g1(t̂) > sγp(µ1|u|
p
p + µ2|v|pp),

then Ψ′
µ1,µ2

(t) = 0 has at most two solutions, that is Ψµ1,µ2(t) has at most two critical points.
Hence, Ψµ1,µ2(t) has exactly two critical points su,v < tu,v.

By the definitions of Pµ1,µ2(u, v) in (2.6) and Ψµ1,µ2(t) in (2.7), we find Ψ′
µ1,µ2

(t) = Pµ1,µ2(t ∗
u, t ∗ v). Therefore we know Pµ1,µ2(t ∗ u, t ∗ v) = 0 if and only if t is a critical point of Ψµ1,µ2(t).
From above we find Ψµ1,µ2(t) has exactly two critical points su,v, tu,v, then we have Pµ1,µ2(t ∗
u, t ∗ v) = 0 if and only if t = su,v or t = tu,v. Moreover from Lemma 2.5 the definition of
Pµ1,µ2 here, by (t ∗ u, t ∗ v) ∈ S we see that (t ∗ u, t ∗ v) ∈ Pµ1,µ2 if and only if t = su,v or
t = tu,v. Noticing Ψ′′

µ1,µ2
(su,v) ≥ 0 , Ψ′′

µ1,µ2
(tu,v) ≤ 0 and P0

µ1,µ2
= ∅, we obtain su,v ∗ (u, v) ∈
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P+
µ1,µ2

and tu,v ∗ (u, v) ∈ P−
µ1,µ2

. By the monotonicity and the behavior of Ψµ1,µ2(t), we see
Ψµ1,µ2(t) has exactly two zeros cu,v < du,v ∈ R with su,v < cu,v < tu,v < du,v, and Ψµ1,µ2(t) has
exactly two inflection points. Moreover, Ψµ1,µ2(t) is concave on [tu,v, ∞), and if tu,v < 0, then
Pµ1,µ2(u, v) = Ψ′

µ1,µ2
(0) < 0. Finally, we apply implicit function theorem on the C1 function

Φ(t, u, v) = Ψ′
µ1,µ2

(t), then Φ(su,v, u, v) = Ψ′
µ1,µ2

(su,v) = 0, ∂tΦ(su,v, u, v) = Ψ′′
µ1,µ2

(su,v) > 0.
Therefore we know (u, v) → su,v is of class C1. Similarly, (u, v) → tu,v is also of class C1.

For r > 0, define

Br(a, b) := {(u, v) ∈ S : ([u]2 + [v]2)
1
2 < r}, and m̂(a, b) := inf

(u,v)∈BR2 (a,b)
J(u, v).

From Lemma 4.3, we can deduce the following conclusion directly.

Corollary 4.4. The set P+
µ1,µ2

⊂ BR2(a, b), and

sup
(u,v)∈P+

µ1,µ2

J(u, v) ≤ 0 ≤ inf
(u,v)∈P−

µ1,µ2

J(u, v).

Lemma 4.5. We have m̂(a, b) ∈ (−∞, 0), moreover

m̂(a, b) = m(a, b) = m+(a, b) and m̂(a, b) < inf
BR2 (a,b)\BR2−δ(a,b)

J(u, v),

for δ > 0 small enough.

Proof. For any (u, v) ∈ BR2(a, b), by (4.4) and (4.5), we get

J(u, v) ≥ k(([u]2 + [v]2)
1
2 ) ≥ min

t∈[0,R2]
k(t) > −∞.

Hence m̂(a, b) > −∞. Moreover, for any (u, v) ∈ S, when t ≪ −1, we have ([t ∗ u]2+
[t ∗ v]2)

1
2 < R2 and J(t ∗ (u, v)) < 0. Hence m̂(a, b) < 0. From Corollary 4.4, P+

µ1,µ2
⊂ BR2(a, b),

then m̂(a, b) ≤ m+(a, b). On the other hand, for any (u, v) ∈ BR2(a, b), from Lemma 4.3 we get

m+(a, b) ≤ J(su,v ∗ (u, v)) ≤ J(u, v).

Thus m+(a, b) = m̂(a, b). Since J(u, v) > 0 on P−
µ1,µ2

, we know m(a, b) = m+(a, b). Finally,
by the continuity of k(t) and k(R2) = 0, we see from −∞ < m̂(a, b) < 0 that there is δ > 0
satisfying k(t) ≥ m̂(a,b)

2 if t ∈ [R2 − δ, R2]. Thus

J(u, v) ≥ k(([u]2 + [v]2)
1
2 ) ≥ m̂(a, b)

2
≥ m̂(a, b),

for any (u, v) ∈ S with R2 − δ ≤ ([u]2 + [v]2)
1
2 ≤ R2. This completes the proof.

Similarly from Case 1 in Lemma 3.4, we obtain the monotonicity for this problem (1.1)–
(1.2).

Lemma 4.6. There exists β̂∗ > 0, for β ∈ (0, β̂∗), there are µ̂1,∗ := µ̂1,∗(β), µ̂2,∗ := µ̂2,∗(β) > 0,
for any µ1 ∈ (0, µ̂1,∗) and µ2 ∈ (0, µ̂2,∗), the level satisfies m(a, b) ≤ m(a1, b1) for any 0 < a1 ≤ a,
0 < b1 ≤ b.
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Proof. We also divide this proof into 3 cases.

Case 1: 2 < p < r1 + r2 < p̄. From Lemmas 4.1 and 4.3, we have m(a, b) = infBt0 (a,b) J(u, v) and

t0 =

[
(2 − pγp)(2 − (r1 + r2)γ(r1+r2))

2C4(22∗α,s − pγp)(22∗α,s − (r1 + r2)γ(r1+r2))

] 1
22∗α,s−2

,

which is independent with a, b. Besides, from (3.2), (4.1) and (4.2), we get C1, C2 and C3

are increasing when a, b are increasing. Hence, we can choose β̂∗ = min{β∗, β̃∗}, µ̂1,∗ =

min{µ1,∗, µ̃1,∗} and µ̂2,∗ = min{µ1,∗, µ̃1,∗}, such that there is (u, v) ∈ Bt0(a1, b1) with J(u, v) ≤
m(a1, b1) +

ε
2 , for ε is arbitrarily small. Using the same argument as Case 1 in Lemma 3.4, we

get this result.

Case 2: 2 < p < r1 + r2 = p̄. Similarly, we have m(a, b) = infBt1 (a,b) J(u, v) with

t1 =

[
(1 − 2C3β)(2 − pγp)

2C4(22∗α,s − pγp)

] 1
22∗α,s−2

≤
[

(2 − pγp)

2C4(22∗α,s − pγp)

] 1
22∗α,s−2

:= t1,∗,

which is independent with a, b. If there exists β̆∗ > 0. Then for any β ∈ (0, β̆∗), there are
µ̆1,∗ = µ̆1,∗(β), µ̆2,∗ = µ̆2,∗(β) > 0, for any µ1 ∈ (0, µ̆1,∗) and µ2 ∈ (0, µ̆2,∗), such that k(t1,∗) ≥ 0,
that is

1
2
−

2 − pγp

22∗α,s(22∗α,s − pγp)
≥ C3β +

µ1C1 + µ2C2

p

[
(2 − pγp)

2C4(22∗α,s − pγp)

] pγp−2
22∗α,s−2

. (4.24)

Then from Lemmas 4.1 and 4.3, we can have m(a, b) = infBt1,∗ (a,b) J(u, v). Hence, there ex-
ists β̂∗ = min{β∗, β̃∗, β̆∗}, for β ∈ (0, β̂∗), there are µ̂1,∗(β) = min{µ1,∗, µ̃1,∗, µ̆1,∗}, µ̂2,∗(β) =

min{µ2,∗, µ̃2,∗, µ̆2,∗}, for any µ1 ∈ (0, µ̂1,∗) and µ2 ∈ (0, µ̂2,∗), there is (u, v) ∈ Bt1,∗(a1, b1) with
J(u, v) ≤ m(a1, b1) +

ε
2 . The remainder of the proof is similar to Lemma 3.4, and so we omit

the details here.

Case 3: 2 < p < p̄ < (r1 + r2) < 2∗s . First we have m(a, b) = infBt2 (a,b) J(u, v) and

2 − pγp = C3β(r1 + r2)γ(r1+r2)[(r1 + r2)γ(r1+r2) − pγp]t
(r1+r2)γ(r1+r2)

−2
2 + 2C4(22∗α,s − pγp)t

22∗α,s−2
2 .

If we choose

t2,∗ =

[
2 − pγp

2C4(22∗α,s − pγp)

] 1
22∗α,s−2

,

which is independent with a, b and satisfies

2 − pγp < C3β(r1 + r2)γ(r1+r2)[(r1 + r2)γ(r1+r2) − pγp]t
(r1+r2)γ(r1+r2)

−2
2,∗ + 2C4(22∗α,s − pγp)t

22∗α,s−2
2,∗ ,

then t2 ≤ t2,∗. Furthermore, if k(t2,∗) ≥ 0, that is

1
2
−

2 − pγp

22∗α,s(22∗α,s − pγp)
≥ µ1C1 + µ2C2

p

[
(2 − pγp)

2C4(22∗α,s − pγp)

] pγp−2
22∗α,s−2

+ C3β

[
(2 − pγp)

2C4(22∗α,s − pγp)

] pγp−2
(r1+r2)γ(r1+r2)

−2

.

Hence m(a, b) = infBt2,∗ (a,b) J(u, v). Like the same argument as before, choosing appropriate

β̂∗, µ̂1,∗, µ̂2,∗, using the same techniques in Lemma 3.4, we finish this problem.
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Lemma 4.7. We have
m(a, b) < min{m(a, 0), m(0, b)}.

Proof. From Theorem 3.1, we get m(a, 0) can be achieved by û ∈ Sa. We choose a proper
test function v̂ ∈ Sb such that (û, t ∗ v̂) ∈ S. By (3.3) and (4.5), we obtain h(t) > k(t) for
t ∈ (0,+∞). Hence, from Lemma 4.1, we have R0 < R2. By Theorem 3.1, we get

m(a, 0) = inf
Pµ1,a

Iµ1,a(u) = inf
BR0

Iµ1,a(u).

Therefore [û] ≤ R0 < R2. Thus, for t ≪ −1, we have (û, t ∗ v̂) ∈ BR2(a, b) and

m(a, b) = inf
(u,v)∈BR2 (a,b)

J(u, v) ≤ J(û, t ∗ v̂)

=
1
2
[û]2 − µ1

p

∫
RN

|û|pdx +

(
e2st

2
[v̂]2 − µ2epγpst

p

∫
RN

|v̂|pdx

− β
∫

RN
|û|r1 |t ∗ v̂|r2 dx − 1

2∗α,s

∫
RN

(Iα ∗ |û|2
∗
α,s)|t ∗ v̂|2∗α,s dx

)
<

1
2
[û]2 − µ1

p

∫
RN

|û|pdx = m(a, 0).

Analogously, we have m(a, b) < m(0, b). Hence, the proof is completed.

To obtain the compact result, we prove the boundedness first.

Lemma 4.8. Let 2 < p < p̄, p < r1 + r2 < 2∗s and µ1, µ2, a, b > 0. Let {(un, vn)} ⊂ Sr be a
Palais–Smale sequence, such that

J(un, vn) → c; J′(un, vn)|S → 0 and Pµ1,µ2(un, vn) → 0,

where Sr = S ∩ Hr and Hr is the space of radially symmetric functions in H. Then {(un, vn)} is
bounded in H.

Proof. We divide this proof into two cases. Case 1: 2 < p < r1 + r2 < p̄. This implies
pγp < (r1 + r2)γ(r1+r2) < 2. Since (3.2), (4.1)–(4.3),

c + on(1) = J(un, vn)−
1

22∗α,s
Pµ1,µ2(un, vn)

=
N + 2s − α

2(2N − α)
([un]

2 + [vn]
2)−

(
1
p
−

γp

22∗α,s

)
(µ1|un|pp + µ2|vn|pp)

− β

[
1 −

(r1 + r2)γ(r1+r2)

22∗α,s

] ∫
RN

|un|r1 |vn|r2 dx

≥ N + 2s − α

2(2N − α)
([un]

2 + [vn]
2)−

(
1
p
−

γp

22∗α,s

)
(µ1C1 + µ2C2)([un]

2 + [vn]
2)

pγp
2

− β

[
1 −

(r1 + r2)γ(r1+r2)

22∗α,s

]
C3([un]

2 + [vn]
2)

(r1+r2)γ(r1+r2)
2 .

Then, {(un, vn)} is bounded in H.
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Case 2: 2 < p < p̄ ≤ r1 + r2 < 2∗s . From (3.2), (4.1)–(4.3) and α < N, we can obtain

c + on(1) = J(un, vn)−
1

(r1 + r2)γ(r1+r2)
Pµ1,µ2(un, vn)

=

[
1
2
− 1

(r1 + r2)γ(r1+r2)

]
([un]

2 + [vn]
2)−

[
1
p
−

γp

(r1 + r2)γ(r1+r2)

]
(µ1|un|pp + µ2|vn|pp)

−
[

1
2∗α,s

− 2
(r1 + r2)γ(r1+r2)

] ∫
RN

(Iα ∗ |un|2
∗
α,s)|vn|2

∗
α,s dx

≥
[

1
2
− 1

(r1 + r2)γ(r1+r2)

]
([un]

2 + [vn]
2)

−
[

1
p
−

γp

(r1 + r2)γ(r1+r2)

]
(µ1C1 + µ2C2)([un]

2 + [vn]
2)

pγp
2 .

From this, we have {(un, vn)} is bounded in H.

In what follows, we discuss the convergence of a special Palais–Smale sequence, satisfying
suitable additional conditions.

Proposition 4.9. Let {(un, vn)} ⊂ Sr such that as n → ∞,

J′(un, vn)− λ1,nun − λ2,nvn → 0, for some λ1,n, λ2,n ∈ R;

J(un, vn) → m(a, b), Pµ1,µ2(un, vn) → 0;

u−
n , v−n → 0, a.e. in RN ,

(4.25)

with

m(a, b) ̸= 0, and m(a, b) <
N + 2s − α

2N − α

(
S∗

2

) 2N−α
N+2s−α

.

Then there exist (u, v) ∈ Hr with u, v > 0 and λ1, λ2 < 0, such that up to a subsequence, (un, vn) →
(u, v) in H and (λ1,n, λ2,n) → (λ1, λ2) in R2.

Proof. From Lemma 4.8, we get {(un, vn)} is bounded in Hr. Moreover, by (4.25) we get

λ1,n =
1
a2 J′(un, vn)(un, 0) + on(1), and λ2,n =

1
b2 J′(un, vn)(0, vn) + on(1),

thus {λ1,n} and {λ2,n} are bounded in R. Therefore, there exist (u, v) ∈ Hr and λ1, λ2 ∈ R

such that up to a subsequence,

(un, vn) ⇀ (u, v), in Hr,

(un, vn) → (u, v), in Lq(RN)× Lq(RN), for 2 < q < 2∗s ,

(un, vn) → (u, v), a.e. in RN ,

(λ1,n, λ2,n) → (λ1, λ2), in R2.

Since
|vn|2

∗
α,s ⇀ |v|2∗α,s , in L

2N
2N−α (RN),

and the map T : L
2N

2N−α (RN) 7→ L
2N
α (RN) defined by T(w) = Iα ∗ w is well defined , linear and

continuous, we have
Iα ∗ |vn|2

∗
α,s ⇀ Iα ∗ |v|2

∗
α,s , in L

2N
α (RN).
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Besides, by
|un|2

∗
α,s−2un ⇀ |u|2∗α,s−2u, in L

2N
N+2s−α (RN),

we get
(Iα ∗ |vn|2

∗
α,s)|un|2

∗
α,s−2un ⇀ (Iα ∗ |v|2

∗
α,s)|u|2∗α,s−2u, in L

2N
N+2s (RN).

Hence for any ϕ, ψ ∈ C∞
0 (RN), we get∫

RN
(Iα ∗ |vn|2

∗
α,s)|un|2

∗
α,s−2unϕdx →

∫
RN

(Iα ∗ |v|2
∗
α,s)|u|2∗α,s−2uϕdx,

and ∫
RN

(Iα ∗ |un|2
∗
α,s)|vn|2

∗
α,s−2vnψdx →

∫
RN

(Iα ∗ |u|2
∗
α,s)|v|2∗α,s−2vψdx.

Therefore from (4.25), (u, v) satisfies
(−∆)su = λ1u + µ1|u|p−2u + βr1|u|r1−2u|v|r2 + (Iα ∗ |v|2

∗
α,s)|u|2∗α,s−2u, in RN ,

(−∆)sv = λ2v + µ2|v|p−2v + βr2|u|r1 |v|r2−2v + (Iα ∗ |u|2
∗
α,s)|v|2∗α,s−2v, in RN ,

u ≥ 0, v ≥ 0,

(4.26)

and Pµ1,µ2(u, v) = 0.
Next, we will show u ̸≡ 0 and v ̸≡ 0. If not, we assume u ≡ 0. We claim v ̸≡ 0. Otherwise,

from Pµ1,µ2(un, vn) → 0 and un, vn → 0 in Lq(RN) for any q ∈ (2, 2∗s ), we get

[un]
2 + [vn]

2 = 2
∫

RN
(Iα ∗ |un|2

∗
α,s)|vn|2

∗
α,s dx + on(1).

Since {(un, vn)} is bounded in H, we may assume [un]2 + [vn]2 → l ∈ R. Then from (2.2), we
have

l = 0 or l ≥ 2
(

S∗

2

) 2N−α
N+2s−α

.

On one hand, if l = 0, we have (un, vn) → (0, 0) in Ds(RN) × Ds(RN). Consequently
J(un, vn) → 0 which gives a contradiction with m(a, b) ̸= 0. On the other hand, if l ≥
2( S∗

2 )
2N−α

N+2s−α , from Pµ1,µ2(un, vn) → 0, we obtain

m(a, b) = J(un, vn) + on(1) = J(un, vn)−
1
2

Pµ1,µ2(un, vn) + on(1) ≥
N + 2s − α

2N − α

(
S∗

2

) 2N−α
N+2s−α

,

which can not happen since m(a, b) < N+2s−α
2N−α ( S∗

2 )
2N−α

N+2s−α . Therefore v ̸≡ 0. From (4.26) and
u ≡ 0, we have v satisfies {

(−∆)sv = λ2v + µ2|v|p−2v, in RN ,

v ≥ 0.

Then we obtain from |v|2 ≤ b and Lemma 3.4,

m(a, b) = J(un, vn)−
1
2

Pµ1,µ2(un, vn) + on(1)

=

(
γp

2
− 1

p

)
µ2|v|pp + (1 − 1

2∗α,s
)
∫

RN
(Iα ∗ |un|2

∗
α,s)|vn|2

∗
α,s dx + on(1)

≥
(

γp

2
− 1

p

)
µ2|v|pp ≥ m(0, |v|2) ≥ m(0, b).
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From Lemma 4.7, which contradicts with m(a, b) < m(0, b). Similar to [45, Lemma 3.7] and
[32, Section 3], by the strong maximum principle [37, Proposition 2.17], we have u > 0. Anal-
ogously v > 0.

We claim (un, vn)→ (u, v) in Ds(RN)×Ds(RN). Indeed, if we let (ûn, v̂n) := (un−u, vn−v),
by [12, Lemma 2.2],

∫
RN

(Iα ∗ |un|2
∗
α,s)|vn|2

∗
α,s dx −

∫
RN

(Iα ∗ |ûn|2
∗
α,s)|v̂n|2

∗
α,s dx + on(1) =

∫
RN

(Iα ∗ |u|2
∗
α,s)|v|2∗α,s dx,

and [45, Lemma 2.4],

∫
RN

|un|r1 |vn|r2 − |ûn|r1 |v̂n|r2 − |u|r1 |v|r2 dx = on(1).

Therefore by the Brézis–Lieb Lemma [9], we have

Pµ1,µ2(ûn, v̂n) = Pµ1,µ2(un, vn)− Pµ1,µ2(u, v) + on(1) = on(1).

We deduce by the strong embedding in Lq(RN) for q ∈ (2, 2∗s ) that,

lim
n→∞

([ûn]
2 + [v̂n]

2) = lim
n→∞

2
∫

RN
(Iµ ∗ |ûn|2

∗
α,s)|v̂n|2

∗
α,s .

Same argument as before, from (2.2) we can have

([ûn]
2 + [v̂n]

2) → 0,

or

([ûn]
2 + [v̂n]

2) ≥ 2
(

S∗

2

) 2N−α
N+2s−α

.

If the latter happens, we obtain from |u|2 ≤ a, |v|2 ≤ b and Lemma 4.6,

m(a, b) + on(1) = J(u, v) + J(ûn, v̂n) = J(u, v) + J(ûn, v̂n)−
1

22∗α,s
Pµ1,µ2(ûn, v̂n)

≥ m(|u|2, |v|2) +
N + 2s − α

2N − α

(
S∗

2

) 2N−α
N+2s−α

≥ m(a, b) +
N + 2s − α

2N − α

(
S∗

2

) 2N−α
N+2s−α

,

this can not happen. Therefore we have ([ûn]2 + [v̂n]2) → 0, and we finish this claim.
Following, we claim λ1, λ2 < 0. If not, we may assume λ1 ≥ 0. From u ≥ 0 we have

(−∆)su = λ1u + µ1|u|p−2u + βr1|u|r1−2u|v|r2 + (Iα ∗ |v|2
∗
α,s)|u|2∗α,s−2u ≥ 0.

From [29, Lemma 2.3] and 2s < N ≤ 4s, we have u ≡ 0, which is a contradiction. Hence, we
obtain λ1 < 0, and analogously λ2 < 0. Then we deduce from taking (un − u, vn − v) into
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(4.26) and the first formula of (4.25),

[un − u]2 + [vn − v]2 + on(1)

=
∫

RN
(λ1,nun − λ1u)(un − u) + (λ2,nvn − λ2v)(vn − v)dx

+ µ1

∫
RN

(|un|p−2un − |u|p−2u)(un − u)dx

+ µ2

∫
RN

(|vn|p−2vn − |v|p−2v)(vn − v)dx

+ βr1

∫
RN

(|un|r1−2un|vn|r2 − |u|r1−2u|v|r2)(un − u)dx

+ βr2

∫
RN

(|un|r1 |vn|r2−2vn − |u|r1 |v|r2−2v)(vn − v)dx

+
∫

RN
[(Iα ∗ |vn|2

∗
α,s)|un|2

∗
α,s−2un − (Iα ∗ |v|2

∗
α,s)|u|2∗α,s−2u](un − u)dx

+
∫

RN
[(Iα ∗ |un|2

∗
α,s)|vn|2

∗
α,s−2vn − (Iα ∗ |u|2

∗
α,s)|v|2∗α,s−2v](vn − v)dx.

Since (un, vn) → (u, v) in Ds(RN) × Ds(RN) and the embedding Ds(RN) ↪→ L2∗s (RN) is
continuous, we have

0 = lim
n→∞

∫
RN

(λ1,nun − λ1u)(un − u) + (λ2,nvn − λ2v)(vn − v)dx

= lim
n→∞

∫
RN

λ1(un − u)2 + λ2(vn − v)2dx,

by λ1, λ2 < 0, then (un, vn) → (u, v) in H and we complete this proof.

Proof of Theorem 1.1. Taking β∗ = β̂∗, there exist µ∗
1(β) = min{µ̂1,∗, µ̂1} and µ∗

2(β) =

min{µ̂2,∗, µ̂2}, for any µ1 ∈ (0, µ∗
1) and µ2 ∈ (0, µ∗

2), such that Lemmas 4.1, 4.2 and 4.7 are
satisfied. Then, from Proposition 4.9, to finish this proof, it is sufficient to prove the existence
of a sequence which satisfies Proposition 4.9. Let {(un, vn)} be a minimizing sequence for
m(a, b) = infBR2 (a,b) J(u, v), and assume that {(un, vn)} ⊂ Sr is radially decreasing, symme-

try and non-negative for every n ∈ N (Firstly, due to |(−∆)
s
2 |u|| ≤ |(−∆)

s
2 u|, we can have

(un, vn) is non-negative. Secondly, we replace |un| with |un|∗ and |vn| with |vn|∗, where | · |∗ is
the Schwarz symmetrization rearrangement, then we can obtain another function in BR2(a, b)
with J(|un|∗, |vn|∗) ≤ J(un, vn)). Moreover by Lemma 4.3, sun,vn ∗ (un, vn) ∈ P+

µ1,µ2
such that

([un]
2 + [vn]

2)
1
2 < R2,

and

J(sun,vn ∗ (un, vn)) = min{J(t ∗ (un, vn)) : t ∈ R and ([t ∗ un]
2 + [t ∗ vn]

2)
1
2 < R2}

≤ J(un, vn).

Thus, we get another minimizing sequence {ũn := sun,vn ∗ un, ṽn := sun,vn ∗ vn} with
{(ũn, ṽn)} ⊂ Sr. By Lemma 4.5, we have ([ũn]2 + [ṽn]2)

1
2 ≤ R2 − δ. Then, from Ekeland’s

Variational Principle [17], we know there exists a radially Palais–Smale sequence {(wn, zn)}
for J|S satisfying ∥(wn, zn)− (ũn, ṽn)∥H → 0 as n → ∞. Following, we claim Pµ1,µ2(wn, zn) =

P(ũn, ṽn) + on(1) = on(1). Firstly, by the Brézis–Lieb Lemma and Sobolev’s embedding Theo-
rem, we have

[wn]
2 = [wn − ũn]

2 + [ũn]
2 + on(1) = [ũn]

2 + on(1),
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and ∫
RN

|wn|pdx =
∫

RN
|wn − ũn|pdx +

∫
RN

|ũn|pdx + on(1) =
∫

RN
|ũn|pdx + on(1).

Moreover, by the Hölder inequality and Lemma 2.1, we get∫
RN

|wn|r1 |zn|r2 dx =
∫

RN
|ũn|r1 |ṽn|r2 dx + on(1),

and ∫
RN

(Iα ∗ |wn|2
∗
α,s)|zn|2

∗
α,s dx =

∫
RN

(Iα ∗ |ũn|2
∗
α,s)|ṽn|2

∗
α,s dx + on(1).

The same relationship happen to zn and ṽn. Therefore, we obtain

Pµ1,µ2(wn, zn) = Pµ1,µ2(ũn, ṽn) + on(1) = on(1), and w−
n , z−n → 0, a.e. in RN .

Thus from Proposition 4.9, we obtain there is (u, v) ∈ Hr and (λ1, λ2) ∈ R2 with λ1, λ2 < 0,
such that (wn, zn) → (u, v) in H and (λ1,n, λ2,n) → (λ1, λ2) in R2. Hence, (u, v) ∈ Pµ1,µ2 is a
solution for (1.1)–(1.2), which is a normalized ground state with J(u, v) = m(a, b). Moreover,
for any ground state solution (u, v), from m(a, b) < 0 and Lemma 4.2, we have

J(u, v) = m(a, b) = inf
BR2 (a,b)

J(u, v), and ([u]2 + [v]2)
1
2 < R2,

i.e. (u, v) is a local minimizer for J(u, v) on BR2(a, b).

5 The case: p̄ < p < r1 + r2 < 2∗s

Firstly, we show the boundedness result for this case.

Lemma 5.1. Let p̄ < p < r1 + r2 < 2∗s and µ1, µ2, a, b > 0. Let {(un, vn)} ⊂ Sr be a Palais–Smale
sequence such that

J(un, vn) → c; J′(un, vn)|S → 0, and Pµ1,µ2(un, vn) → 0.

Then {(un, vn)} is bounded in H.

Proof. In this case, we have 2 < pγp < (r1 + r2)γ(r1+r2). Then

c + on(1) = Jµ1,µ2(un, vn)−
1
2

Pµ1,µ2(un, vn)

=

(
γp

2
− 1

p

)
(µ1|un|pp + µ2|vn|pp) + β

[
(r1 + r2)γ(r1+r2)

2
− 1
] ∫

RN
|un|r1 |vn|r2 dx

+

(
1 − 1

2∗α,s

) ∫
RN

(Iα ∗ |un|2
∗
α,s)|vn|2

∗
α,s dx,

by each coefficient is positive, we get {(un, vn)} is bounded in H. The proof is completed.

Recalling the decomposition of Pµ1,µ2 = P+
µ1,µ2

∪ P0
µ1,µ2

∪ P−
µ1,µ2

, we have

Lemma 5.2. P0
µ1,µ2

= ∅ and Pµ1,µ2 is a C1-submanifold in H with codimension 3.
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Proof. If there is (u, v) ∈ P0
µ1,µ2

, then

[u]2 + [v]2 = γp(µ1|u|
p
p + µ2|v|pp) + β(r1 + r2)γ(r1+r2)

∫
RN

|u|r1 |v|r2 dx + 2
∫

RN
(Iα ∗ |u|2

∗
α,s)|v|2∗α,s dx,

and
2([u]2 + [v]2) = pγ2

p(µ1|u|
p
p + µ2|v|pp) + β(r1 + r2)

2γ2
(r1+r2)

∫
RN

|u|r1 |v|r2 dx

+ 4 · 2∗α,s

∫
RN

(Iα ∗ |u|2
∗
α,s)|v|2∗α,s dx.

From above, we obtain

(2 − pγp)([u]2 + [v]2) = β(r1 + r2)γ(r1+r2)[(r1 + r2)γ(r1+r2) − pγp]
∫

RN
|u|r1 |v|r2 dx

+ 2(22∗α,s − pγp)
∫

RN
(Iα ∗ |u|2

∗
α,s)|v|2∗α,s dx.

Since 2 − pγp < 0, (r1 + r2)γ(r1+r2) − pγp > 0 and 22∗α,s − pγp > 0, we have (u, v) = (0, 0),
which contradicts with (u, v) ∈ S. The remainder parts of this proof is similar with Lemma 4.2,
and we omit the details here.

Following, we show the geometry for this mass supercritical case.

Lemma 5.3. For every (u, v) ∈ S, the function Ψµ1,µ2(t) has exactly one critical point tu,v ∈ R such
that tu,v ∗ (u, v) ∈ Pµ1,µ2 . Moreover:

(i) Pµ1,µ2 = P−
µ1,µ2

;

(ii) Ψµ1,µ2(t) is strictly decreasing and concave on (tu,v,+∞), and Ψµ1,µ2(tu,v)=maxt∈RΨµ1,µ2(t)>
0;

(iii) The map (u, v) 7→ tu,v is of class C1;

(iv) If Pµ1,µ2(u, v) < 0, then tu,v < 0.

Proof. From the definition of Ψµ1,µ2(t), we have

Ψ′
µ1,µ2

(t)

= e2st
[

s([u]2 + [v]2)− sγpe(pγp−2)st(µ1|u|
p
p + µ2|v|pp)− 2se(22∗α,s−2)st

∫
RN

(Iα ∗ |u|2
∗
α,s)|v|2∗α,s dx

− sβ(r1 + r2)γ(r1+r2)e
[(r1+r2)γ(r1+r2)

−2]st
∫

RN
|u|r1 |v|r2 dx

]
,

which implies Ψµ1,µ2(t) has exactly one critical point tu,v. Since

Ψµ1,µ2(−∞) = 0+, and Ψµ1,µ2(+∞) = −∞,

we get tu,v is a strict maximum point at a positive level and tu,v ∗ (u, v) ∈ Pµ1,µ2 . From
Ψ′′

µ1,µ2
(tu,v) ≤ 0 and P0

µ1,µ2
= ∅, we have Ψ′′

µ1,µ2
(tu,v) < 0, this implies tu,v ∗ (u, v) ∈ P−

µ1,µ2
and

Pµ1,µ2 = P−
µ1,µ2

. To see (iii), we use the implicit function theorem as in Lemma 4.3. Finally,
since Ψ′

µ1,µ2
(t) < 0 if and only if t > tu,v, we get Pµ1,µ2(u, v) = Ψ′

µ1,µ2
(0) < 0 if and only if

tu,v < 0.

Remark 5.4. From Lemma 5.3, we see m(a, b) = m−(a, b).
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Lemma 5.5. m(a, b) = infPµ1,µ2
J(u, v) > 0.

Proof. For (u, v) ∈ Pµ1,µ2 , then from (3.2), (4.1)-(4.3), we get

([u]2 + [v]2) ≤ γp(C1µ1 + C2µ2)([u]2 + [v]2)
pγp

2 + 2C4([u]2 + [v]2)2∗α,s

+ C3β(r1 + r2)γ(r1+r2)([u]
2 + [v]2)

(r1+r2)γ(r1+r2)
2 .

Since pγp > 2, we obtain infPµ1,µ2
([u]2 + [v]2) > 0 and so

inf
Pµ1,µ2

J(u, v) = inf
Pµ1,µ2

[
J(u, v)− 1

2
Pµ1,µ2(u, v)

]
= inf

Pµ1,µ2

[(
γp

2
− 1

p

)
(µ1|u|

p
p + µ2|v|pp) + β

(
(r1 + r2)γ(r1+r2)

2
− 1
) ∫

RN
|u|r1 |v|r2 dx

+

(
1 − 1

2∗α,s

) ∫
RN

(Iα ∗ |u|2
∗
α,s)|v|2∗α,s dx

]
> 0.

Therefore we have m(a, b) > 0.

Lemma 5.6. For any δ > 0 sufficiently small, we have 0 < supBδ
J(u, v) < m(a, b) and

u ∈ Bδ ⇒ J(u, v), Pµ1,µ2(u, v) > 0,

where Bδ := {(u, v) ∈ S : ([u]2 + [v]2)
1
2 < δ}.

Proof. Since (3.2), (4.1)–(4.3), we get

J(u, v) ≥ 1
2
([u]2 + [v]2)− (µ1C1 + µ2C2)

p
([u]2 + [v]2)

pγp
2 − βC3([u]2 + [v]2)

(r1+r2)γ(r1+r2)
2

− C4

2∗α,s
([u]2 + [v]2)2∗α,s ,

and

Pµ1,µ2(u, v) ≥ s([u]2 + [v]2)− sγp(µ1C1 + µ2C2)([u]2 + [v]2)
pγp

2 − 2sC4([u]2 + [v]2)2∗α,s

− sβ(r1 + r2)γ(r1+r2)C3([u]2 + [v]2)
(r1+r2)γ(r1+r2)

2 .

Thus for δ > 0 small enough, we have J(u, v) > 0 and Pµ1,µ2(u, v) > 0. Moreover, by
Lemma 5.5, we can choose δ with smaller quantity, such that

J(u, v) ≤ ([u]2 + [v]2) < m(a, b).

To use the Proposition 4.9, we need some properties about m(a, b). Firstly, we get the
monotonicity of m(a, b). The proof is similar with Case 2 in Lemma 3.4 and we omit this
process here.

Lemma 5.7. m(a, b) ≤ m(a1, b1) for any 0 < a1 ≤ a, 0 < b1 ≤ b.

Lemma 5.8. For a, b > 0 fixed, we have limβ→+∞ m(a, b) = 0+.
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Proof. This lemma is equivalent to prove, for any ε > 0, there exists β̄ > 0 such that

m(a, b) < ε for any β ≥ β̄.

Firstly, from Lemma 5.6, for any β > 0, we have m(a, b) > 0. If we choose φ ∈ C∞
0 (RN) with

|φ|2 ≤ min{a, b}, by Lemmas 5.3 and 5.7 we obtain,

m(a, b) ≤ m(|φ|2, |φ|2) ≤ max
t∈R

J(t ∗ (φ, φ)) = max
t∈R

[
E(t)− βes(r1+r2)γ(r1+r2)

t
∫

RN
|φ|(r1+r2)dx

]
,

where

E(t) := e2ts[φ]2 − epγpst

p
(µ1 + µ2)|φ|pp −

e22∗α,sst

2∗α,s

∫
RN

(Iα ∗ |φ|2
∗
α,s)|φ|2∗α,s dx.

From pγp − 2 > 0 and 22∗α,s − 2 > 0 we see

E(t) = e2ts
(
[φ]2 − e(pγp−2)st

p
(µ1 + µ2)|φ|pp −

e(22∗α,s−2)st

2∗α,s

∫
RN

(Iα ∗ |φ|2
∗
α,s)|φ|2∗α,s dx

)
= e2ts([φ]2 + o(1)) → 0+, as t → −∞.

And there exists t̃ > 0 such that E(t) < ε
4 for t < −t̃. Moreover, there exists β̄ > 0, such that

for any β ≥ β̄,

max
t≥−t̃

[
E(t)− βes(r1+r2)γ(r1+r2)

t|φ|r1+r2
r1+r2

]
≤max

t≥−t̃

[
e2ts[φ]2 − βes(r1+r2)γ(r1+r2)

t|φ|(r1+r2)
(r1+r2)

− e22∗α,sst

2∗α,s

∫
RN

(Iα ∗ |φ|2
∗
α,s)|φ|2∗α,s dx

]
≤max

t∈R

[
e2ts[φ]2 − e22∗α,sst

2∗α,s

∫
RN

(Iα ∗ |φ|2
∗
α,s)|φ|2∗α,s dx

]
− βe−s(r1+r2)γ(r1+r2)

t̃|φ|r1+r2
r1+r2

≤
(

1 − 1
2∗α,s

)
[φ]

22∗α,s
2∗α,s−1

( ∫
RN

(Iα ∗ |φ|2
∗
α,s)|φ|2∗α,s dx

) −1
2∗α,s−1

− βe−s(r1+r2)γ(r1+r2)
t̃|φ|r1+r2

r1+r2
.

Hence, we have maxt∈R

[
E(t)− βes(r1+r2)γ(r1+r2)

t|φ|r1+r2
r1+r2

]
< ε for β ≥ β̄, and m(a, b) < ε.

Thus by the above lemma, we have the following conclusion:

Lemma 5.9. There exists β̂1 > 0, we get m(a, b) < N+2s−α
2N−α ( S∗

2 )
2N−α

N+2s−α for any β > β̂1.

Lemma 5.10. There exists β̂2 > 0 such that for any β > β̂2, the level satisfies

m(a, b) < min{m(a, 0), m(0, b)}.

Proof. From Theorem 3.3, m(a, 0) > 0 can be achieved by u∗ ∈ Sa. Similarly, m(0, b) > 0 can
be achieved by v∗ ∈ Sb. Since

Iµ1,a(t ∗ u∗) → 0, and Iµ2,b(t ∗ v∗) → 0, as t → −∞,

there is t∗ ≪ −1 which is independent of β, such that

max
t<t∗

J(u∗, v∗) < max
t<t∗

Iµ1,a(t ∗ u∗) + max
t<t∗

Iµ2,b(t ∗ v∗) < min{m(a, 0), m(0, b)}.
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On the other hand, for t > t∗, firstly we have∫
RN

|t ∗ u∗|r1 |t ∗ v∗|r2 dx = est(r1+r2)γ(r1+r2)

∫
RN

|u∗|r1 |v∗|r2 dx ≥ Cest∗(r1+r2)γ(r1+r2) ,

for some C > 0. Then by Theorem 3.3, we get

max
t≥t∗

J(t ∗ (u∗, v∗)) ≤ max
t≥t∗

Iµ1,a(t ∗ u∗) + max
t≥t∗

Iµ2,b(t ∗ v∗)− Cβest∗(r1+r2)γ(r1+r2)

≤ m(a, 0) + m(0, b)− Cβest∗(r1+r2)γ(r1+r2) .

Hence, there is β̂2 > 0, for any β > β̂2 such that m(a, b) < min{m(a, 0), m(0, b)}.

To prove Theorem 1.2, we give the following minimax theorem to establish the existence
of Palais–Smale sequence. At first, we show some definitions.

Definition 5.11 ([21, Definition 3.1]). Let Θ be a closed subset of a metric space X ⊂ H. We
say that a class F of compact subsets of X is a homotopy-stable family with closed boundary
Θ provided

(i) every set in F contains Θ;

(ii) for any set Υ ∈ F and any η ∈ C([0, 1] × X, X) satisfying η(t, x) = x for all (t, x) ∈
({0} × X) ∪ ([0, 1]× Θ), we have that η({1} × Υ) ∈ F .

Definition 5.12. [33] Let M be a C∞ m-dimensional manifold and T̃M = TM \ {0}, where TM
is a tangent bundle. A function F : TM → [0, ∞) is called a Finsler structure on M if F has the
following properties:

(i) F(tY) = tF(Y), ∀t ∈ R+;

(ii) F is C∞ on T̃M;

(iii) for every non-zero Y ∈ Tx M, the induced quadratic form gY is an inner product in Tx M,
where

gY(U, V) :=
1
2

∂2

∂s∂t
(F2(Y + sU + tV))|s=t=0,

and Tx M is the tangent space at the point x. A Finsler manifold is a C∞-manifold M with its
Finsler structure F.

Remark 5.13. From [14], we know Riemannian manifolds are special cases of Finsler mani-
folds. Denote X := R × Sr. Since R is a Banach space and Sr ⊂ Hs(RN , R)× Hs(RN , R) is a
Banach manifold, similar to [24] (see (7.2) there), [26, Lemma 4.8] and [32, Theorem 6.12], we
know X is a para-compact space with satisfying the requirement of locally limited refinement
for each open coverage. Moreover, by [41, Section 3], we can assign X a Finsler structure and
we know X is a Finsler manifold.

Proposition 5.14 ([21, Theorem 3.2]). Let φ be a C1-functional on a complete connected C1-Finsler
manifold X (without boundary) and consider a homotopy stable family F of compact subsets of X with
a closed boundary B.

c = c(φ,F ) = inf
Υ∈F

max
u∈Υ

φ(u),
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and suppose that sup φ(Θ) < c. Then for any sequence of sets {Υn} in F such that limn→∞ supΥn
φ =

c, there exists a sequence {un} in X such that

lim
n→∞

φ(un) = c; lim
n→∞

∥dφ(un)∥ = 0; and lim
n→∞

dist(un, Υn) = 0.

Furthermore, if dφ is uniformly continuous, then un can be chosen to be in Υn for each n.

Proof of Theorem 1.2. Using the strategy from [25], for δ > 0 be defined by Lemma 5.6, let the
function J̃ : R × H 7→ R as

J̃(t, (u, v)) := J(t ∗ (u, v)) =
e2st

2
([u]2 + [v]2)− espγpt

p
(µ1|u|

p
p + µ2|v|pp)

− βes(r1+r2)γ(r1+r2)
t
∫

RN
|u|r1 |v|r2 dx

− e22∗α,sst

2∗α,s

∫
RN

(Iα ∗ |u|2
∗
α,s)|v|2∗α,s dx,

then J̃ ∈ C1 and a Palais–Smale sequence for J̃|R×Sr is a Palais–Smale sequence for J̃|R×S.
Setting Jc := {(u, v) ∈ S, J(u, v) ≤ c}, we introduce the minimax class

Γ := {γ = (α, β) ∈ C([0, 1], R × Sr) : γ(0) ∈ (0, Bδ), γ(1) ∈ (0, J0)},

with the minimax level
σ(a, b) := inf

γ∈Γ
max

(t,(u,v))∈γ([0,1])
J̃(t, (u, v)).

Let (u, v) ∈ Sr. From [t ∗ u]2 + [t ∗ v]2 → 0+ as t → −∞ and J(t ∗ (u, v)) → −∞ as t → +∞,
there is t0 ≪ −1 and t1 ≫ 1 such that

γ(u,v) : τ ∈ [0, 1] 7→ (0, ((1 − τ)t0 + τt1) ∗ (u, v)) ∈ R × Sr, (5.1)

which is a path in Γ and σ(a, b) is a real number. For any γ = (α, β) ∈ Γ, we study the function

Πγ : τ ∈ [0, 1] 7→ Pµ1,µ2(α(τ) ∗ β(τ)) ∈ R.

From Lemma 5.6, we find Πγ(0) = Pµ1,µ2(β(0)) > 0. Besides, from Lemma 5.3, Ψµ1,µ2(t) > 0
for any t ∈ (−∞, tu,v). If (u, v) = β(1), we have Ψµ1,µ2(0) = J(β(1)) ≤ 0. Hence, we obtain
tβ(1) < 0 and Πγ(1) = Pµ1,µ2(0 ∗ β(1)) < 0. Since the map τ 7→ α(τ) ∗ β(τ) is continuous
from [0, 1] to H, there exists τγ ∈ (0, 1) such that Πγ(τγ) = 0, which implies α(τγ) ∗ β(τγ) ∈
Pµ1,µ2 ∩ Sr and

max
γ([0,1])

J̃ ≥ J̃(γ(τγ)) = J(α(τγ) ∗ β(τγ)) ≥ inf
Pµ1,µ2∩Sr

J(u, v) = mr(a, b).

Therefore, σ(a, b) ≥ mr(a, b). On the other hand, for any (u, v) ∈ Pµ1,µ2 ∩ Sr, from (5.1), γ(u,v)
is a path in Γ and by Lemma 5.3,

J(u, v) = max
γ(u,v)([0,1])

J̃ ≥ σ(a, b),

then mr(a, b) ≥ σ(a, b). Combining this with (5.6), we get

σ(a, b) = mr(a, b) > sup
(Bδ∪J0)∩Sr

J(u, v) = sup
((0,Bδ)∪(0,J0))∩(R×Sr)

J̃.



36 S. Deng and W. Luo

From Definition 5.11, the set {γ([0, 1]) : γ ∈ Γ} is a homotopy stable family of compact subsets
of R × Sr with closed boundary (0, Bδ)∪ (0, J0). By Proposition 5.14, similar to [24,32], taking
any minimizing sequence {γn = (αn, βn)} ⊂ Γn for σ(a, b) with αn ≡ 0, and βn(τ) ≥ 0 a.e. in
R, for every τ ∈ [0, 1], there exists a Palais–Smale sequence {tn, wn} ⊂ R× Sr for J̃|R×Sr at the
level σ(a, b), where wn = (un, vn), such that,

∂t J̃(tn, wn) → 0, ∥∂wJ̃(tn, wn)∥(Twn Sr)∗ → 0, as n → ∞, (5.2)

with an additional property

|tn|+ distH(wn, βn([0, 1])) → 0, as n → ∞. (5.3)

From (5.3), we have tn is bounded in both side. Besides, from the first formula of (5.2), we
have Pµ1,µ2(tn ∗ (un, vn)) → 0, and from the second formula of (5.2) with the boundedness of
tn, for any φ ∈ Twn Sr,

dJ(tn ∗ wn)[tn ∗ φ] = on(1)∥φ∥ = on(1)∥tn ∗ φ∥, as n → ∞.

Following, we define ŵn := tn ∗ wn with ŵn = (ûn, v̂n). Therefore, {(ûn, v̂n)} is a Palais–Smale
sequence for J(u, v)|Sr at the level σ(a, b) with an additional condition Pµ1,µ2(ûn, v̂n) → 0. From
Lemma 5.8, there exists β̂1 > 0, mr(a, b) ∈

(
0, N+2s−α

2N−α ( S∗

2 )
2N−α

N+2s−α
)

for any β > β̂1. Besides, from
Lemma 5.10, there exists β̂2 > 0 such that mr(a, b) < min{m(a, 0), m(0, b)}. Following, we
may require β0 = max{β̂1, β̂2}. Then for β ∈ (β0,+∞), by Proposition 4.9, we know there is
(u, v) ∈ H with u, v > 0 a.e. in R, such that (ûn, v̂n) → (u, v) in H and J(u, v) = mr(a, b).
Hence, we need to show

inf
Pµ1,µ2∩Sr

J(u, v) = inf
Pµ1,µ2

J(u, v) = m(a, b).

If this does not happen, there is (ū, v̄) ∈ Pµ1,µ2 \ Sr such that J(ū, v̄) < mr(a, b). Denote
(ũ, ṽ) := (|ū|∗, |v̄|∗) as the symmetric decreasing rearrangement of (ū, v̄) such that

[ũ]2 + [ṽ]2 ≤ [û]2 + [v̂]2, J(ũ, ṽ) ≤ J(ū, v̄), and Pµ1,µ2(ũ, ṽ) ≤ Pµ1,µ2(ū, v̄) = 0.

If Pµ1,µ2(ũ, ṽ) = 0, which (ũ, ṽ) ∈ Pµ1,µ2 ∩ Sr, there is a contradiction. On the other hand, if
Pµ1,µ2(ũ, ṽ) < 0, from Lemma 5.3, we get tũ,ṽ < 0. Therefore, by tũ,ṽ ∗ (ũ, ṽ) ∈ Pµ1,µ2 , we have

J(ū, v̄) ≤ J(tũ,ṽ ∗ (ũ, ṽ))− 1
2

Pµ1,µ2(tũ,ṽ ∗ (ũ, ṽ))

=

(
γp

2
− 1

p

)
epγpstũ,ṽ(µ1|ũ|

p
p + µ2|ṽ|pp)

+ β

[
(r1 + r2)γ(r1+r2)

2
− 1
]

e(r1+r2)γ(r1+r2)
stũ,ṽ

∫
RN

|ũ|r1 |ṽ|r2 dx

+

(
1 − 1

2∗α,s

)
e22∗α,sstũ,ṽ

∫
RN

(Iα ∗ |ũ|2
∗
α,s)|ṽ|2∗α,s dx

< J(ū, v̄),

which is a contradiction. Thus, we have mr(a, b) = m(a, b) and (u, v) is a ground state solution.
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6 The case: p = r1 + r2 = 2∗s

Lemma 6.1. Assume s ∈ (0, 1), 2s < N ≤ 4s, p = r1 + r2 = 2∗s and a, b, µ1, µ2, β > 0. Then the
following system

(−∆)su = λ1u + µ1|u|p−2u + βr1|u|r1−2u|v|r2 + (Iα ∗ |v|2
∗
α,s)|u|2∗α,s−2u,

(−∆)sv = λ2v + µ2|v|p−2v + βr2|v|r2−2v|u|r1 + (Iα ∗ |u|2
∗
α,s)|v|2∗α,s−2v,∫

RN u2dx = a2,
∫

RN v2dx = b2, u, v ∈ Hs(RN),

(6.1)

has no positive solution.

Proof. Assume by contradiction that there is a positive solution (u, v) of (6.1) for some λ1, λ2 ∈
R. On one hand, from Proposition 4.9 and [29, Lemma 2.3], we see that λ1, λ2 < 0 for
2s < N ≤ 4s. On the other hand, by Proposition 2.4 we know (u, v) satisfies the Pohožaev
identity such that

[u]2 + [v]2 = (µ1|u|2
∗
s

2∗s
+ µ2|v|2

∗
s

2∗s
) + β2∗s

∫
RN

|u|r1 |v|r2 dx + 2
∫

RN
(Iα ∗ |u|2

∗
α,s)|v|2∗α,s dx. (6.2)

Moreover since (u, v) is a weak solution to (1.1)-(1.2), it satisfies

[u]2 + [v]2 =
∫

RN
(λ1|u|2 + λ2|v|2)dx + (µ1|u|2

∗
s

2∗s
+ µ2|v|2

∗
s

2∗s
) + β2∗s

∫
RN

|u|r1 |v|r2 dx

+ 2
∫

RN
(Iα ∗ |u|2

∗
α,s)|v|2∗α,s dx.

(6.3)

Combining (6.2)–(6.3), we show∫
RN

λ1|u|2 + λ2|v|2dx = λ1a2 + λ2b2 = 0.

From which we obtain λ1 = λ2 = 0. This is clearly a contradiction with λ1, λ2 < 0. The proof
is complete.

Proof of Theorem 1.3. Theorem 1.3 follows from Lemma 6.1, then we finish the proof.

Acknowledgements

The authors were supported by National Natural Science Foundation of China 11971392.

Declarations

We would like to thank you for following the above instructions. This will definitely speed up
the publication process of your paper.

Data Availability

Date sharing is not applicable to this article as no new data were created and analyzed in this
study.



38 S. Deng and W. Luo

References

[1] C. O. Alves, F. Gao, M. Squassina, M. Yang, Singularly perturbed critical Choquard
equations, J. Differential Equations 263(2017), No. 7, 3943–3988. https://doi.org/10.
1016/j.jde.2017.05.009; MR3670042; Zbl 1378.35113

[2] V. Ambrosio, Nonlinear fractional Schrödinger equations in RN , Frontiers in Elliptic and
Parabolic Problems, Birkhäuser Springer, Cham, 2021. https://doi.org/10.1007/978-
3-030-60220-8; MR4264520; Zbl 1472.35003

[3] B. Barrios, E. Colorado, A. de Pablo, U. Sánchez, On some critical problems for
the fractional Laplacian operator, J. Differential Equations 252(2012), No. 11, 6133–6162.
https://doi.org/10.1016/j.jde.2012.02.023; MR2911424; Zbl 1245.35034

[4] T. Bartsch, L. Jeanjean, N. Soave, Normalized solutions for a system of coupled cubic
Schrödinger equations on R3, J. Math. Pures Appl. 106(2016), No. 4, 583–614. https://
doi.org/10.1016/j.matpur.2016.03.004; MR3539467; Zbl 1347.35107

[5] T. Bartsch, H. Li, W. Zou, Existence and asymptotic behavior of normalized ground
states for Sobolev critical Schrödinger systems, Calc. Var. Partial Differential Equa-
tions 62(2023), No. 1. https://doi.org/10.1007/s00526-022-02355-9; MR4505152;
Zbl 1519.35107

[6] T. Bartsch, N. Soave, A natural constraint approach to normalized solutions of nonlinear
Schrödinger equations and systems, J. Funct. Anal. 272(2017), No. 2, 4998–5037. https:
//doi.org/10.1016/j.jfa.2017.01.025; MR3639521; Zbl 1485.35173

[7] L. Bergé, A. Couairon, Nonlinear propagation of self-guided ultra-short pulses in ion-
ized gases, Phys. Plasmas 7(2000), 210–230. https://doi.org/10.1063/1.873816

[8] M. Bhakta, D. Mukherjee, Semilinear nonlocal elliptic equations with critical and
supercritical exponents, Commun. Pure Appl. Anal. 16(2017), No. 5, 1741–1766. https:
//doi.org/10.3934/cpaa.2017085; MR3661801; Zbl 1364.35023

[9] H. Brézis, E. Lieb, A relation between pointwise convergence of functions and conver-
gence of functionals, Proc. Amer. Math. Soc. 88(1983), No. 3, 486–490. https://doi.org/
10.1007/978-3-642-55925-942; MR0699419; Zbl 0526.46037

[10] H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving
critical Sobolev exponents, Comm. Pure Appl. Math. 36(1983), No. 4, 437–477. https:
//doi.org/10.1002/cpa.3160360405; MR0709644; Zbl 0541.35029

[11] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian,
Comm. Partial Differential Equations 32(2007), No. 7–9, 1245–1260. https://doi.org/10.
1016/j.anihpc.2007.10.002; MR2354493; Zbl 1143.26002

[12] D. Cassani, J. Zhang, Ground states and semiclassical states of nonlinear
Choquard equations involving Hardy–Littlewood–Sobolev critical growth, preprint at
arXiv:1611.02919. https://doi.org/10.48550/arXiv.1611.02919

[13] X. Chang, Z. Wang, Ground state of scalar field equations involving a fractional
Laplacian with general nonlinearity, Nonlinearity 26(2013), No. 2, 479–494. https://doi.
org/10.1088/0951-7715/26/2/479; MR3007900; Zbl 1276.35080

https://doi.org/10.1016/j.jde.2017.05.009
https://doi.org/10.1016/j.jde.2017.05.009
https://www.ams.org/mathscinet-getitem?mr=3670042
https://zbmath.org/?q=an:1378.35113
https://doi.org/10.1007/978-3-030-60220-8
https://doi.org/10.1007/978-3-030-60220-8
https://www.ams.org/mathscinet-getitem?mr=4264520
https://zbmath.org/?q=an:1472.35003
https://doi.org/10.1016/j.jde.2012.02.023
https://www.ams.org/mathscinet-getitem?mr=2911424
https://zbmath.org/?q=an:1245.35034
https://doi.org/10.1016/j.matpur.2016.03.004 
https://doi.org/10.1016/j.matpur.2016.03.004 
https://www.ams.org/mathscinet-getitem?mr=3539467
https://zbmath.org/?q=an:1347.35107
https://doi.org/10.1007/s00526-022-02355-9
https://www.ams.org/mathscinet-getitem?mr=4505152
https://zbmath.org/?q=an:1519.35107
https://doi.org/10.1016/j.jfa.2017.01.025
https://doi.org/10.1016/j.jfa.2017.01.025
https://www.ams.org/mathscinet-getitem?mr=3639521
https://zbmath.org/?q=an:1485.35173
https://doi.org/10.1063/1.873816
https://doi.org/10.3934/cpaa.2017085
https://doi.org/10.3934/cpaa.2017085
https://www.ams.org/mathscinet-getitem?mr=3661801
https://zbmath.org/?q=an:1364.35023
https://doi.org/10.1007/978-3-642-55925-942 
https://doi.org/10.1007/978-3-642-55925-942 
https://www.ams.org/mathscinet-getitem?mr=0699419
https://zbmath.org/?q=an:0526.46037
https://doi.org/10.1002/cpa.3160360405
https://doi.org/10.1002/cpa.3160360405
https://www.ams.org/mathscinet-getitem?mr=0709644
https://zbmath.org/?q=an:0541.35029
https://doi.org/10.1016/j.anihpc.2007.10.002
https://doi.org/10.1016/j.anihpc.2007.10.002
https://www.ams.org/mathscinet-getitem?mr=2354493
https://zbmath.org/?q=an:1143.26002
https://doi.org/10.48550/arXiv.1611.02919
https://doi.org/10.1088/0951-7715/26/2/479
https://doi.org/10.1088/0951-7715/26/2/479
https://www.ams.org/mathscinet-getitem?mr=3007900
https://zbmath.org/?q=an:1276.35080


Normalized solutions for a fractional Hartree system 39

[14] S. Chern, Riemannian geometry as a special case of Finsler geometry, Contemp. Math.
196(1996), 51–58. MR1403576; Zbl 0868.53051

[15] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, Theory of Bose–Einstein condensa-
tion in trapped gases, Rev. Mod. Phys. 71(1999), 463–512. https://doi.org/10.1103/
RevModPhys.71.463

[16] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev
spaces, Bull. Sci. Math. 136(2012), No. 5, 521–573. https://doi.org/10.1016/j.bulsci.
2011.12.004; MR2944369; Zbl 1252.46023

[17] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47(1974), 324–353. https:
//doi.org/10.1016/0022-247X(74)90025-0; MR0346619; Zbl 0286.49015

[18] A. Elgart, B. Schlein, Mean field dynamics of boson stars, Comm. Pure Appl.
Math. 60(2007), No. 4, 500–545. https://doi.org/10.1002/cpa.20134; MR2290709;
Zbl 1113.81032

[19] R. L. Frank, E. Lenzmann, L. Silvestre, Uniqueness of radial solutions for the frac-
tional Laplacian, Comm. Pure Appl. Math. 69(2016), No. 9, 1671–1726. https://doi.org/
10.1002/cpa.21591; MR3530361; Zbl 1365.35206

[20] Q. Geng, Y. Dong, J. Wang, Existence and multiplicity of nontrivial solutions of weakly
coupled nonlinear Hartree type elliptic system, Z. Angew. Math. Phys. 73(2022), No. 2.
https://doi.org/10.1007/s00033-022-01707-x; MR4393067; Zbl 1486.35178

[21] N. Ghoussoub, Duality and perturbation methods in critical point theory, Cambridge Tracts
in Mathematics, Vol. 107, Cambridge University Press, Cambridge 1993. https://doi.
org/10.1090/S0273-0979-1995-00567-7; MR1251958; Zbl 0790.58002

[22] L. Guo, T. Hu, S. Peng, W. Shuai, Existence and uniqueness of solutions for Choquard
equation involving Hardy–Littlewood–Sobolev critical exponent, Calc. Var. Partial Differ-
ential Equations 58(2019), No. 4, Paper No. 128, 34 pp. https://doi.org/10.1007/s00526-
019-1585-1; MR3978520; Zbl 1422.35077
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