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Abstract. We are interested in the existence of multiple solutions for a class of p(x)-curl
systems arising in electromagnetism. We work on variable exponent Sobolev spaces and
by using critical point theory and the variational method, we investigate the existence
of at least one, two, and three solutions to the problem.
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1 Introduction

The study of partial differential equations or systems with variable exponents is a recent re-
search topic that developed quickly. It started when it was understood that variable exponents
give better descriptions of the behavior of certain materials or phenomena.

Let Ω ⊂ R3, is a bounded simply connected domain with a C1,1 boundary denoted by ∂Ω.
In what follows, vector functions and spaces of vector functions will be denoted by boldface
symbols. We will use n to denote the outward unitary normal vector to ∂Ω and ∂x to denote
the partial derivative of a function with respect to the variable x.

The divergence of a vector function v = (v1, v2, v3) is denoted by

∇.v = ∂x1 v1 + ∂x2 v2 + ∂x3 v3

and the curl of v by

∇× v = (∂x2 v3 − ∂x3 v2, ∂x3 v1 − ∂x1 v3, ∂x1 v2 − ∂x2 v1).

We recall the identity
−∆v = ∇× (∇× v)−∇.(∇.v),

where ∆v = (∆v1, ∆v2, ∆v3) and ∆vi = ∇.(∇vi), i = 1, 2, 3.
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In this article, We are interested in the existence of multiple solutions for the following
intriguing system{

∇× (|∇ × u|p(x)−2∇× u) + a(x)|u|p(x)−2u = λ f (x, u), ∇.u = 0 in Ω,

|∇ × u|p(x)−2∇× u × n = 0, u.n = 0 on ∂Ω,
(1.1)

where λ ∈ (0,+∞), Ω ⊂ R3, is a bounded simply connected domain with a C1,1 boundary
denoted by ∂Ω. We will use n to denote the outward unitary normal vector to ∂Ω. a is a
functional in L∞ and there exist a0, a1 > 0 such that

a0 < a(x) < a1, ∀x ∈ Ω.

p ∈ C(Ω̄), with
3 < p− = min

x∈Ω
p(x) ≤ p+ = max

x∈Ω
p(x) < ∞,

and p(x) satisfies logarithmic continuity: there exists a function ω : R+
0 → R+

0 such that

∀x, y ∈ Ω̄, |x − y| < 1, |p(x)− p(y)| ≤ ω(|x − y|), and lim
τ→0+

ω(τ) log
1
τ
= C < ∞. (1.2)

The interest in transposing the problems into new problems with variable exponents is linked
to a large scale of applications that are involving some nonhomogeneous materials. It was
established that for appropriate treatment of these materials, we can not rely on the classical
Sobolev space and that we have to allow the exponent to vary instead. Working with variable
exponents, hence working in the framework of variable exponent spaces, opens the door for
multiple applications. The variable exponent problems arise in many different applications,
such as nonlinear elastic [26], electrorheological fluids [22], image processing [13] and other
physics phenomena [2, 27]. The literature on variable exponent Sobolev spaces and their
applications is quite large, here we just quote a few, see [5,6,12,13,19,20,23] and the references
therein. For the basic properties of variable exponent Sobolev spaces and their applications to
partial differential equations, we refer the readers to [14, 21].

In [4], Antontsev, Miranda, and Santos studied the qualitative properties of solutions for
the following p(x, t)-curl systems:

∂tu +∇× (|∇ × u|p(x,t)−2∇× u) = λ f (u), ∇.u = 0 in Ω × (0, T),

|∇ × u|p(x,t)−2∇× u × n = 0, u.n = 0 on ∂Ω × (0, T),

u(x, 0) = u0(x) in Ω,

(1.3)

where ∇× (|∇ × u|p(x,t)−2∇× u) is the p(x, t)-curl operator, f (u) = λu(
∫

Ω |u|2dx)
ρ−2

2 with
λ ∈ {−1, 0, 1} and ρ > 0 is constant. The authors introduced a suitable variable exponent
Sobolev space and obtained the existence of local or global weak solutions for system (1.3)
by using Galerkin’s method. The authors also studied the blow-up and finite-time extinction
properties of solutions. When p(x, t) ≡ p, then problem (1.3) turns into a model from the
generalized Maxwell’s equations in the electromagnetic field theory. More precisely, u denotes
the magnetic field, ∇ × u denotes the total current density, f denotes an internalmagnetic
current, and ∇× (|∇ × u|p−2∇× u) denotes the electric field.

Motivated by the above works, we study the existence and multiplicity of solutions for
systems (1.1) with general nonlinearities. To the best of our knowledge, this is the first time
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to deal with the existence of steady-state solutions for systems (1.1) involving the p(x)-curl
operator by applying variational methods different from that used in [24].

Xianga, Wanga, and Zhangc [24] investigated the existence and multiplicity of solutions
to problem (1.1) in the case λ = 1. They studied the existence of ground state solutions
and infinitely many solutions for (1.1) in the case λ = 1 with the nonlinearity f satisfying
superlinear growth conditions is obtained by combining the mountain pass theorem with the
Nehari manifold method, and a variant of the mountain pass theorem.

In this paper, we obtain three different results about the existence of weak solutions to
the problem (1.1) by using critical point theorems established in [8, 9, 11]. The first aim of
this paper is to provide an estimate of the positive interval for the parameter λ in which the
problem (1.1) possesses at least one nontrivial weak solution. We also wish to consider the
existence of two solutions to our problem by using a result of Bonanno [9, Theorem 3.2]. In
a recent paper, Bonanno and Chinnì [10] studied the existence of at least two distinct weak
solutions to a problem involving a p(x)-Laplacian by applying critical point theory. Our first
main result will require the (P.S.)[r] condition, while in our second one, we will ask that the
(AR)-condition holds and use it to ensure that the (usual) (PS)-condition is satisfied. We refer
the reader to the papers [7, 10, 17, 18] where this approach was applied successfully. Finally,
our third goal is to obtain the existence of three solutions to (1.1); this problem is less studied
by researchers. In this case, we consider problem (1.1) where the nonlinearity f has subcritical
growth, and we apply variational methods and critical point theory. The main tool used is the
critical point theorem of Bonanno and Marano [11, Theorem 3.6].

The remainder of this paper is organized as follows. First, in Section 2, we recall briefly
some basic results for fractional Sobolev spaces. In Section 3, we obtain the existence of at
least one, two, or three nontrivial weak solutions to the problem (1.1) provided the parameter
λ belongs to a positive interval to be determined.

2 Preliminaries

In this section, we introduce some definitions and results of Sobolev spaces with variable
exponents.

Let Ω ⊂ R3 be a bounded simply connected domain with a C1,1 boundary denoted by ∂Ω.
Let p ∈ C(Ω̄). Set

p− = min
x∈Ω̄

p(x), and p+ = max
x∈Ω̄

p(x), with 1 < p− ≤ p+ < ∞.

We define the variable exponent Lebesgue space Lp(·)(Ω) as the set of all measurable functions
u : Ω → R for which the convex modular

ρp(x)(u) =
∫

Ω
|u|p(x)dx,

is finite. We define a norm, the so-called Luxemburg norm, on this space by the formula

∥u∥p(·) = inf
{

γ > 0 : ρp(·)

(u
γ

)
≤ 1

}
.

The space (Lp(·)(Ω), ∥.∥Lp(·)(Ω)) is a separable and reflexive Banach space. Moreover, the space

Lp(·)(Ω) is uniformly convex, hence reflexive, and its dual space is isomorphic to Lp′(·)(Ω),
where 1

p(·) +
1

p′(·) = 1.
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Finally, we have the Hölder type inequality:∣∣∣∣∫Ω
uvdx

∣∣∣∣ ≤ (
1

p−
+

1
(p′)−

)
∥u∥Lp(·)(Ω)∥v∥Lp′(·)(Ω)

for all u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω). An important role in manipulating the generalized
Lebesgue spaces is played by the ρp(·)-modular of the space Lp(·)(Ω), we have the following
result.

Proposition 2.1 (See [16]). If u ∈ Lp(·)(Ω), un ∈ Lp(·)(Ω) and p+ < ∞, then

(i) if ∥u∥Lp(·)(Ω) > 1, then ∥u∥p−

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ∥u∥p+

Lp(·)(Ω)
;

(ii) if ∥u∥Lp(·)(Ω) < 1, then ∥u∥p+

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ∥u∥p−

Lp(·)(Ω)
;

(iii) limn→∞ ∥un − u∥p(·) = 0 ⇔ limn→∞ ρp(·)(un − u) = 0.

Define the variable exponent Sobolev space W1,p(·)(Ω) by

W1,p(·)(Ω) =
{

u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)
}

equipped with the norm

∥u∥W1,p(·)(Ω) = ∥u∥Lp(·)(Ω) + ∥∇u∥Lp(·)(Ω).

The space (W1,p(·)(Ω), ∥.∥W1,p(·)(Ω)) is a separable and reflexive Banach space. We consider also

W1,p(·)
0 (Ω) =

{
u ∈ W1,p(·)(Ω) : u |∂Ω)= 0

}
,

with the norm
∥u∥

W1,p(·)
0 (Ω)

= ∥∇u∥Lp(·)(Ω).

Remark 2.2. Assuming (1.2), we have C∞
0 (Ω) is dense in W1,p(·)

0 (Ω) and this last space can
be defined as the completion of C∞

0 (Ω) with respect to the norm ∥.∥W1,p(·)(Ω). The density of

smooth functions in the space W1,p(·)
0 (Ω) is crucial for the understanding of these spaces. The

condition of log-continuity of p(·) is the best known and the most frequently used sufficient
condition for the density of C∞

0 (Ω) in W1,p(·)
0 (Ω) (see [3, 14]). Although this condition is not

necessary and can be substituted by other conditions (see [14, Chapter 9] for a discussion of
this question) we keep it throughout the paper for the sake of simplicity of presentation.

Also, we observe that W1,p(·)
0 (Ω) ⊆ W1,p−

0 (Ω), the Sobolev inequality

∥u∥Lq(·)(Ω) ≤ C∥u∥W1,p(·)(Ω),

holds, with 1 ≤ q(x) < 3p(x)
3−p(x) if p− < 3, any q if p− = 3, and q = ∞ if p− > 3 Here

C = C(p−, Ω) is a positive constant.

Now, we define the space wp(x)(Ω)

Let Lp(x)(Ω) = Lp(x)(Ω)× Lp(x)(Ω)× Lp(x)Ω and define

Wp(x)(Ω) = {v ∈ Lp(x)(Ω) : ∇× v ∈ Lp(x)(Ω),∇.v, v.n|∂Ω = 0}
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where n denotes the outward unitary normal vector to ∂Ω. Equip Wp(x)(Ω) with the norm

∥v∥Wp(x)(Ω) = ∥v∥Lp(x)(Ω) + ∥∇× v∥Lp(x)(Ω).

If p− > 1, by [4, Theorem 2.1], Wp(x)(Ω) is a closed subspace of W1,p(x)
n (Ω), where

W1,p(x)
n (Ω) = {v ∈ Wp(x)(Ω) : v.n|∂Ω = 0}

and
W1,p(x)(Ω) = W1,p(x)(Ω)× W1,p(x)(Ω)× W1,p(x)Ω.

Thus, we have the following theorem.

Theorem 2.3 (see [4, Theorem 2.1]). Assume that 1 < p− ≤ p+ < ∞ and p satisfies (1.2). Then
Wp(x)(Ω) is a closed subspace of W1,p(x)

n (Ω). Moreover, if p− > 6
5 , then ∥∇× .∥Lp(x)(Ω) is a norm in

Wp(x)(Ω) and there exists C = C(N, p−, p+) > 0 such that

∥v∥Wp(x)(Ω) ≤ C∥∇× v∥Lp(x)(Ω).

Remark 2.4. By Remark 2.2 and Theorem 2.3, we know the embedding Wp(x)(Ω) ↪→ C∞
0 (Ω)

is compact, with 3 < p− ≤ p+ < ∞, for all x ∈ Ω̄. Moreover, (Wp(x)(Ω), ∥.∥Wp(x)(Ω)) is a
reflexive Banach space. We set

c0 = sup
u∈Wp(x)(Ω)

∥u∥∞

∥u∥Wp(x)(Ω)

.

Definition 2.5 ([8, p. 2993], [9, p. 210]). Let Φ and Ψ be two continuously Gâteaux differen-
tiable functionals defined on a real Banach space X and fix r ∈ R. The functional I = Φ − Ψ is
said to verify the Palais-Smale condition cut off upper at r, denoted by (P.S.)[r] if any sequence
{un}n∈N in X such that

(1) {I(un)} is bounded;

(2) limn→∞ ∥I′(un)∥X∗ = 0;

(3) Φ(un) < r for each n ∈ N

has a convergent subsequence.
If only conditions (1) and (2) hold, then I = Φ − Ψ is said to satisfy the (usual) Palais–

Smale (P.S.) condition.

We next wish to define what is meant by a weak solution to our problem.

Definition 2.6. We say that a function u ∈ Wp(x)(Ω) is a weak solution of the problem (1.1) if∫
Ω
|∇ × u|p(x)−2∇× u.∇× vdx +

∫
Ω

a(x)|u|p(x)−2u.vdx =
∫

Ω
f (x, u).vdx,

holds for all v ∈ Wp(x)(Ω).
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Remark 2.7. Let u be a classical solution of (1.1). Let e = |∇ × u|p(x)−2∇ × u and v be a
smooth function in Ω, then we obtain

∇(e × v) = v.∇× e − e.∇× v. (2.1)

Multiplying the first equation of (1.1) by v and integrating over Ω, we get∫
Ω
∇× e.vdx +

∫
Ω

a(x)|u|p(x)−2u.vdx =
∫

Ω
f (x, u).vdx.

Using (2.1) and the boundary conditions in (1.1) and integrating by parts, we have∫
Ω

e.∇× vdx +
∫

Ω
a(x)|u|p(x)−2u.vdx =

∫
Ω

f (x, u).vdx,

which means that Definition 2.6 is correct.

Assume that f : Ω × R3 → R3 is a Carathédory function. We set

F(x, t) =
∫ t

0
f (x, ξ)dξ for all (x, t) ∈ Ω × R3.

The variational structure of this problem leads us to introduce We define the functionals
Φ, Ψ : Wp(x)(Ω) → R defined by

Φ(u) :=
∫

Ω

|∇ × u|p(x) + a(x)|u|p(x)

p(x)
dx (2.2)

and
Ψ(u) :=

∫
Ω

F(x, u)dx. (2.3)

Lemma 2.8 ([24, Lemmas 3.1. and 3.2.]). The functional Φ is of class C1 and

⟨Φ′(u), v⟩ =
∫

Ω
|∇ × u|p(x)−2∇× u.∇× vdx +

∫
Ω

a(x)|u|p(x)−2u.vdx

for every u, v ∈ Wp(x)(Ω). For each u ∈ Wp(x)(Ω), Φ′(u) ∈ (Wp(x)(Ω))∗, where (Wp(x)(Ω))∗ is
the dual space of Wp(x)(Ω). Moreover, Φ is a convex functional in Wp(x)(Ω).

The functional Ψ is of class C1 and

⟨Ψ′(u), v⟩ =
∫

Ω
f (x, u).vdx

for every u, v ∈ Wp(x)(Ω).

By Lemma 2.8, we know that Iλ = Φ − λΨ is of class C1 and

⟨I′λ(u), v⟩ =
∫

Ω
|∇ × u|p(x)−2∇× u.∇× vdx +

∫
Ω

a(x)|u|p(x)−2u.vdx − λ
∫

Ω
f (x, u).vdx,

for all u, v ∈ Wp(x)(Ω). Hence a critical point of Iλ is a (weak) solution of (1.1).
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3 Main results

We begin by presenting a result that guarantees the existence of at least one solution to prob-
lem (1.1).

Theorem 3.1. Let f : Ω × R3 → R3 be a Carathédory function and assume that there exist two
positive constants τ and δ, such that:

(H1) p+cp−
0 a1 meas(Ω)max{δp− , δp+} < p− min{1, a0}τp− ;

(H2)
∫

Ω sup|t|≤τ F(x,t)dx
τp <

p− min{1,a0}
∫

Ω F(x,δ)dx

p+cp−
0 a1 meas(Ω)max{δp− ,δp+}

;

(H3) infx∈Ω,t∈R3,|t|=1 F(x, t) > 0.

Then, for each

λ ∈ Λw :=

]
a1 meas(Ω)max{δp− , δp+}

p−
∫

Ω F(x, δ)dx
,

min{1, a0}τp−

p+cp−
0

∫
Ω sup|t|≤τ F(x, t)dx

[
, (3.1)

problem (1.1) admits at least one nontrivial solution uλ ∈ Wp(x)(Ω) such that ∥uλ∥∞ ≤ τ.

Proof. Our goal is to apply [9, Theorem 2.3] to problem (1.1). To this end, take the real Banach
space Wp(x)(Ω) with the norm as defined in Section 2, Φ, Ψ be the functionals defined in (2.2)
and (2.3). We can see Φ, Ψ are of C1 in Lemma 2.8. For each u ∈ Wp(x)(Ω) we have

min{1, a0}
p+

∥u∥p(x)
Wp(x)(Ω)

≤ Φ(u) ≤ max{1, a1}
p−

∥u∥p(x)
Wp(x)(Ω)

. (3.2)

From the first inequality in (3.2), it follows that Φ is coercive. To show that Φ′ admits a
continuous inverse, in view of [25, Theorem 26.A(d)], it suffices to show that Φ′ is coercive,
hemicontinuous, and uniformly monotone. For any u ∈ Wp(x)(Ω) we have

⟨Φ′(u), u⟩
∥u∥Wp(x)(Ω)

=

∫
Ω |∇ × u|p(x)dx +

∫
Ω a(x)|u|p(x)dx

∥u∥Wp(x)(Ω)

≥
min{1, a0}∥u∥p(x)

Wp(x)(Ω)

∥u∥Wp(x)(Ω)

.

By Proposition 2.1 for any u ∈ Wp(x)(Ω)

lim
∥u∥

Wp(x)(Ω)
→∞

⟨Φ′(u), u⟩
∥u∥Wp(x)(Ω)

≥ lim
∥u∥

Wp(x)(Ω)
→∞

(min{1, a0}∥u∥p−−1
Wp(x)(Ω)

) = ∞,

i.e. Φ
′

is coercive. The fact that Φ
′

is hemicontinuous can be verified using standard argu-
ments. (see, for example, [18]).

Finally, we show that Φ
′

is uniformly monotone. First, recall the inequality that for any
ξ, ψ ∈ R,

(|ξ|r−2ξ − |ψ|r−2ψ)(ξ − ψ) ≥ 2−r|ξ − ψ|r, for all r > 2. (3.3)
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Thus, for every u, v ∈ X, we deduce that

⟨Φ′(u)− Φ′(v), u − v⟩

=
∫

Ω
(|∇ × u|p(x)−2∇× u − |∇× v|p(x)−2∇× v)(∇× u −∇× v)dx

+
∫

Ω
a(x)(|u|p(x)−2u − |v|p(x)−2v)(u − v)dx

≥ 2−p+(
∫

Ω
|∇ × u −∇× v|p(x)dx +

∫
Ω

a(x)|u − v|p(x)dx)

≥ min{2−p+ , a02−p+}(
∫

Ω
|∇ × u −∇× v|p(x)dx +

∫
Ω
|u − v|p(x)dx)

≥

c1∥u − v∥p−

Wp(x)(Ω)
if ∥u − v∥Lp(x)(Ω), ∥∇× (u − v)∥Lp(x)(Ω) > 1,

c2∥u − v∥p+

Wp(x)(Ω)
if ∥u − v∥Lp(x)(Ω), ∥∇× (u − v)∥Lp(x)(Ω) < 1,

the last inequality is obtained from Proposition 2.1. It is easy to check that Φ′ is uniformly
monotone. Moreover, Ψ′ is a compact operator. Indeed, it is enough to show that Ψ

′
is strongly

continuous on Wp(x)(Ω). For this end, for fixed u ∈ Wp(x)(Ω), let un → u weakly in Wp(x)(Ω)

as n → ∞, then un(x) converges uniformly to u(x) on Ω as n → ∞; see [25]. Since f is
continuous in R3 for every x ∈ Ω, so

f (x, un) → f (x, u),

as n → ∞. Thus Ψ
′
(un) → Ψ

′
(u) as n → ∞. Hence we proved that Ψ

′
is a compact operator by

[25, Proposition 26.2]. This ensures that the functional Iλ = Φ − λΨ verifies (P.S.)[r] condition
for each r > 0 (see [8, Proposition 2.1]). To apply [9, Theorem 2.3] to the functional Iλ, first
note that infX Φ = Φ(0) = Ψ(0) = 0. We need to show that there is an r > 0 and w ∈ X with

0 < Φ(w) < r such that
supΦ(u)≤r Ψ(u)

r < Ψ(w)
Φ(w)

. To this end, set

r :=
min{1, a0}

p+

(
τ

c0

)p−

,

and define w ∈ Wp(x)(Ω) by

w(x) =

{
δ, if x ∈ Ω,

0, otherwise.
(3.4)

One has

Φ(w) =
∫

Ω

a(x)
p(x)

|w(x)|p(x)dx ≤ meas(Ω)a1

p−
max{δp+ , δp−}. (3.5)

Hence, it follows from (H1) that 0 < Φ(w) < r. If u ∈ Φ−1([0, r]), by Proposition 2.1 (i) and
(3.2), for any u ∈ Wp(x)(Ω) with ∥u∥Wp(x)(Ω) > 1, we obtain

min{1, a0}
p+

∥u∥p−

Wp(x)(Ω)
≤ Φ(u) ≤ min{1, a0}

p+

(
τ

c0

)p−

.

Similarly, by Proposition 2.1 (ii) and (3.2), for any u ∈ Wp(x)(Ω) with ∥u∥Wp(x)(Ω) < 1, we
obtain

min{1, a0}
p+

∥u∥p+

Wp(x)(Ω)
≤ Φ(u) ≤ min{1, a0}

p+

(
τ

c0

)p−

.
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Then
∥u∥Wp(x)(Ω) ≤

τ

c0
.

Hence, we obtain

|u(x)| ≤ ∥u∥L∞(Ω) ≤ c0∥u∥Wp(x)(Ω) ≤ τ ∀x ∈ Ω.

Hence, for each u ∈ Φ−1((−∞, r])

supΦ(u)≤r Ψ(u)

r
=

supu∈Φ−1(−∞,r]

∫
Ω F(x, u)dx

min{1,a0}
p+ ( τ

c0
)p−

≤
cp−

0 p+
∫

Ω sup|t|≤τ F(x, t)dx

min{1, a0}τp− . (3.6)

Moreover, thanks to (H2) and (3.5), one has

Ψ(w)

Φ(w)
≥

p−
∫

Ω F(x, δ)dx
a1 meas(Ω)max{δp− , δp+}

≥
cp−

0 p+
∫

Ω sup|t|≤τ F(x, t)dx

min{1, a0}τp−

≥
supΦ(u)≤r Ψ(u)

r
,

which means that Φ(v̄)
Ψ(v̄) ≥ r

supΦ(x)≤r Ψ(u) holds for some v̄ ∈ Wp(x)(Ω). Hence, for each λ ∈]Φ(w)
Ψ(w)

, r
supΦ(x)≤r Ψ(u)

[
, the functional Iλ admits at least one critical point uλ with

0 < Φ(uλ) < r

which in turn is a nontrivial solution of problem (1.1) such that ∥uλ∥∞ < τ.

Our second aim in this paper is to obtain a result on the existence of two distinct solutions
to problem (1.1). The following theorem is obtained by applying [9, Theorem 3.2].

Theorem 3.2. Let f : Ω × R3 → R3 be a Carathédory function, and assume that

(H4) (Ambrosetti–Rabinowitz Condition) there exist µ > p+ and R > 0 such that

0 < µF(x, t) ≤ t f (x, t) ∀x ∈ Ω and t ∈ R3\{0}, with |t| ≥ R.

Then, for each

λ ∈ Λr :=

]
0,

min{1, a0}τp−

p+cp−
0

∫
Ω sup|t|≤τ F(x, t)dx

[
,

the problem (1.1) admits at least two nontrivial solutions.

Proof. Let Φ, Ψ be the functionals defined in Theorem (2.2) and (2.3). Notice that they satisfy
all regularity assumptions required in [9, Theorem 3.2]). Arguing as in the proof of Theorem
3.1, choosing

r =
min{1, a0}

p+

(
τ

c0

)p−

,
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for each λ ∈ Λr we obtain

supΦ(u)≤r Ψ(u)

r
≤

cp−
0 p+

∫
Ω sup|t|≤τ F(x, t)dx

min{1, a0}τp− <
1
λ

(see (3.6)). Now, from condition (H4), a straight forward calculation shows that there are
positive constants m and C such that

F(x, t) ≥ m|t|µ − C for all x ∈ Ω, t ∈ R3.

Hence, for every λ ∈ Λr, u ∈ Wp(x)(Ω) \ {0} and t > 1, we obtain

Iλ(tu) = Φ(tu)− λ
∫

Ω
F(x, tu)dx

≤ tp+

p−

∫
Ω
(|∇ × u|p(x) + a(x)|u|p(x))dx

− mλtµ
∫

Ω
|u|µdx + Cλ meas(Ω).

Since µ > p+, this condition guarantees that Iλ is unbounded from below. To show that Iλ

satisfies the (PS)-condition, let {un}n∈N ⊂ Wp(x)(Ω) such that {Iλ(un)}n∈N is bounded and
I′λ,µ(un) → 0 in (Wp(x)(Ω))∗ as n → +∞. Then, there exists a positive constant s0 such that

|Iλ(un)| ≤ s0, ∥I′λ(un)∥ ≤ s0 ∀n ∈ N.

Using also the condition (H4), and the definition of I′λ, we see that, for all n ∈ N, there exists
D > 0 such that

µs0 + s0∥un∥Wp(x)(Ω) ≥ µIλ(un)− I′λ(un)un

≥
(

µ

p+
− 1

) ∫
Ω
|∇ × u|p(x) + a0

(
µ

p+
− 1

) ∫
Ω
|u|p(x)dx

+ λ
∫

Ω
( f (x, un)un − µF(x, un)) dx

≥
(

µ

p+
− 1

)
min{1, a0}∥un∥p(x)

Wp(x)(Ω)
− D.

Since µ > p+ it follows {un}n∈N is bounded. Consequently, since Wp(x)(Ω) is a reflexive
Banach space we have, up to taking a subsequence if necessary,

un ⇀ u in Wp(x)(Ω).

By the fact that I′λ(un) → 0 and un ⇀ u in Wp(x)(Ω), we obtain

(I′λ(un)− I′λ(u))(un − u) → 0.

Furthermore, ∫
Ω
( f (x, un)− f (x, u))(un − u)dx → 0, as n → +∞.
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An easy computation shows that

⟨I′λ(un)− I′λ(u), un − u⟩

=
∫

Ω
(|∇ × un|p(x)−2∇× un − |∇× u|p(x)−2∇× u)(∇× un −∇× u)dx

+
∫

Ω
a(x)(|un|p(x)−2un − |u|p(x)−2u)(un − u)dx

− λ
∫

Ω
( f (x, un)− f (x, u))(un − u)dx

≥ 2−p+∥∇× (un − u)∥p(x)
Lp(x)(Ω)

+ a02−p+∥un − u∥p(x)
Lp(x)(Ω)

− λ
∫

Ω
( f (x, un)− f (x, u))(un − u)dx

≥ min{2−p+ , a02−p+}∥un − u∥p(x)
Wp(x)(Ω)

− λ
∫

Ω
( f (x, un)− f (x, u))(un − u)dx.

The last of the above inequality is obtained by using (3.3). Combining the last relation with
Proposition 2.1 (iii), we find that the sequence {un}n∈N converges strongly to u in Wp(x)(Ω).
Therefore, Iλ,µ satisfies the (PS)-condition and so all hypotheses of [9, Theorem 3.2], are
verified. Hence, for each λ ∈ Λr the function Iλ admits at least two distinct critical points that
are solutions of the problem (1.1).

In our final result, we discuss the existence of at least three solutions to the problem (1.1).

Theorem 3.3. Let f : Ω × R3 → R3 be a Carathédory function, and let (H2), (H3) in Theorem 3.1
hold. Moreover, assume that there exist two positive constants τ and δ, such that

(H5) a0cp−
0 meas(Ω)min{δp− , δp+} > τp− min{1, a0},

(H6) there exist constants c > 0, q ∈ C(Ω̄) and 1 < q(x) ≤ q+ < p− in Ω̄ such that

|F(x, t)| ≤ c(1 + |t|q(x)) ∀(x, t) ∈ Ω × R3.

Then for every λ ∈ Λw as in (3.1), the problem (1.1) admits at least three distinct solutions.

Proof. Our aim is to apply [11, Theorem 3.6]. We consider the functionals Φ and Ψ, defined
in (2.2) and (2.3). Once again, they satisfy the regularity assumptions needed in [11, Theorem
3.6]. Now, we argue as in the proof of Theorem 3.1 with w(x) defined in (3.4), and

r =
min{1, a0}

p+

(
τ

c0

)p−

.

In view of (H5) we have Φ(w) > r > 0. Therefore, from (H2), inequality (3.6) holds, and so

supΦ(u)≤r Ψ(u)

r
<

Ψ(v)
Φ(v)

holds for some v̄ ∈ Wp(x)(Ω).
Now, we prove that, for each λ ∈ Λw the functional Iλ is coercive. By using inequality (3.2),

conditions (H6), and Sobolev embedding theorem, we easily obtain for all u ∈ Wp(x)(Ω):

Iλ(u) ≥
min{1, a0}

p+
∥u∥p−

Wp(x)(Ω)
− λ

∫
Ω

F(x, u)dx

≥ min{1, a0}
p+

∥u∥p−

Wp(x)(Ω)
− λc∥u∥q+

Wp(x)(Ω)
− λc meas(Ω).
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Since p− > q+ we see that Iλ → +∞ as ∥u∥Wp(x)(Ω) → +∞, so the functional Iλ is coercive.
Thus, for each λ ∈ Λw, [11, Theorem 3.6] implies that the functional Iλ admits at least three
critical points in Wp(x)(Ω) that are solutions of the problem (1.1).

References

[1] A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory and
applications, J. Funct. Anal. 14(1973), 349–381. https://doi.org/10.1016/0022-1236(73)
90051-7; Zbl 0273.49063

[2] S. N. Antontsev, S. I. Shmarev, A model porous medium equation with variable ex-
ponent of nonlinearity: existence, uniqueness and localization properties of solutions,
Nonlinear Anal. 60(2005), 515–545. https://doi.org/10.1016/j.na.2004.09.026

[3] S. Antontsev, S. Shmarev, Evolution PDEs with nonstandard growth conditions. Existence,
uniqueness, localization, blow-up, Atlantis Studies in Differential Equations, Atlantis Press,
2015. https://doi.org/10.2991/978-94-6239-112-3; Zbl 1410.35001

[4] S. Antontsev, F. Mirandac, L. Santos, Blow-up and finite time extinction for p(x, t)-
curl systems arising in electromagnetism, J. Math. Anal. Appl. 440(2016), 300–322. https:
//doi.org/10.1016/j.jmaa.2016.03.045; Zbl 1339.35060

[5] S. N. Antontsev, J. F. Rodrigues, On stationary thermo-rheological viscous flows, Ann.
Univ. Ferrara, Sez. VII Sci. Mat. 52(2006), 19–36. https://doi.org/10.1007/s11565-006-
0002-9; Zbl 1117.76004

[6] M. Bendahmane, M. Chrif, S. El Manouni, An approximation result in generalized
anisotropic Sobolev spaces and applications, Z. Anal. Anwend. 30(2011), No. 3, 341–353.
https://doi.org/10.4171/ZAA/3445; Zbl 1231.35065

[7] M. Bohner, G. Caristi, F. Gharehgazlouei, S. Heidarkhani, Existence and multiplicity
of weak solutions for a Neumann elliptic problem with p⃗(x)-Laplacian, Nonauton. Dyn.
Syst. 7(2020), 53–64. https://doi.org/10.1515/msds-2020-0108; Zbl 1465.35255

[8] G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear
Anal. 75(2012), 2992–3007. https://doi.org/10.1016/j.na.2011.12.003; Zbl 1239.58011

[9] G. Bonanno, Relations between the mountain pass theorem and local minima,
Adv. Nonlinear Anal. 1(2012), 205–220. https://doi.org/10.1515/anona-2012-0003;
Zbl 1277.35170

[10] G. Bonanno, A. Chinnì, Existence and multiplicity of weak solutions for elliptic
Dirichlet problems with variable exponent, J. Math. Anal. Appl. 418(2014), 812–827.
https://doi.org/10.1016/j.jmaa.2014.04.016; Zbl 1312.35111

[11] G. Bonanno, S. A. Marano, On the structure of the critical set of non-differentiable
functions with a weak compactness condition, Appl. Anal. 89(2010), 1–10. https://doi.
org/10.1080/00036810903397438; Zbl 1194.58008
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