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Abstract. In this paper, under the condition that there exists an ordered interval com-
posed of two internal ordered intervals which have the location similar to that of
Amann’s three-solution theorem, we add some simple conditions and then we obtain
some results about the existence of multiple critical points inside and outside the or-
dered interval. The main results of this paper can be regarded as an extension of the
classical Amann three-solution theorem and the mountain pass lemma on the ordered
interval of Shujie Li and Zhiqiang Wang. To show our main results, we extend the
method of invariant sets of descending flow that proposed by Jingxian Sun for smooth
functionals to the locally Lipschitz functionals. Our main results can be applied to the
study of differential inclusion problems with concave-convex nonlinearity. In this way,
we partially extend some relevant results concerning the differential equation bound-
ary value problems with a concave-convex nonlinearity that was first studied by A.
Ambrosetti, H. Brezis and G. Cerami.
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1 Introduction

In the study of nonlinear functional, ordered intervals are often used to study the existence
of critical points or fixed points. It is well known that under simpler conditions, one can
get the result that there is at least one critical point or fixed point in the ordered interval. If
the ordered interval has a finer internal structure, one can often get multiple fixed points or
critical points. A famous result of this is Amann’s three-solution theorem [1]. In the case
of the ordered interval composed of two pairs of upper and lower solutions, Amann used
the fixed point index method to prove that there are at least three fixed points in the ordered
interval. Later, Li and Wang [20] generalize this result to smooth functionals using the method
of invariant set of descending flow, and establish the mountain pass theorem in the ordered
interval.
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In [20], as an application of their mountain pass theorem in the ordered interval, Li and
Wang studied the multiple solutions of the boundary value problem{

−∆u = λ|u|q−2u + g(u) in Ω,

u = 0 on ∂Ω,
(1.1λ)

where Ω ⊂ RN is a bounded domain, λ > 0 is a parameter, 1 < q < 2 and g(u) is a super-
linear term. The nonlinearity of (1.1λ) may involve a combination of concave and convex
terms. This type of nonlinearity has been studied for a long times and has been extensively
studied by many authors; See [2, 10, 16, 20, 28] and the references therein. A. Ambrosetti, H.
Brezis, G. Cerami in their well known paper [2] firstly considered the boundary value problem
with a concave-convex terms nonlinearity{

−∆u = λuq + up in Ω,

u = 0 on ∂Ω,
(1.2λ)

where 0 < q < 1 < p and λ > 0 be a parameter. They fund a Λ > 0 such that (1.2λ) has
two positive solutions for all λ ∈ (0, Λ), at least one positive solution for λ = Λ and has no
positive for all λ > Λ. Li and Wang [20] fund a λ∗ > 0 such that for λ ∈ (0, λ∗), (1.1λ) has
at least two positive solutions, at least two negative solutions and at least two sign-changing
solutions. Their proof method is to combine the mountain pass lemma in the ordered interval
with the invariant set method of descending flow. They first established two pairs of upper
and lower solutions which have the location similar to those of H. Amann’s three solution
theorem. Then, by using the mountain pass theorem in the ordered interval they obtained the
result of at least one positive critical point, one negative critical point and one sign-changing
critical point inside the ordered interval, and by using the invariant set method of descending
flow obtained the result of at least one positive critical point, one negative critical point and
one sign-changing critical point outside the ordered interval.

Inspired by Li and Wang’s idea of proof, in the present paper we will establish some
results about multiple critical points for locally Lipschitz functionals inside and outside the
ordered interval composed of two internal ordered intervals, which have the location similar
to that of Amann’s three-solution theorem. In the last 40 years, critical point theories and their
applications for locally Lipschitz functionals have been extensively studied by many peoples;
see [5–8,12,13,17,18,23–25,27] . Our main results in this paper can be thought as an extension
of Amann’s three solutions theorem and Li and Wang’s mountain pass theorem in ordered
intervals. By adding some simple conditions, we obtain the existence of critical points both
inside and outside the ordered interval. Also, in this paper we introduce an ordering in the
Banach space and give the locations of theses critical points.

To show our main results, we will employ the invariant set method of descending flow pro-
posed by Sun [32]. For theories of invariant set of descending flow of C1 functionals, one can
also refer to [22]. According to this method, finding different critical points may be attributed
to finding different invariant sets of descending flow. So far, it has been widely used to study
the existence of solutions of various of elliptic equation boundary value problems. However,
to our best knowledge, there are no one study the existence of critical points for locally Lip-
schitz functionals by using this method. There are two main difficulties to use the method
of invariant sets of descending flow finding critical points of locally Lipschitz functionals. As
is well known, to use the method of invariant sets of descending flow for C1 functionals one
need first construct a pseudogradient vector field over the Banach space. However, for the
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Lipschitz functional case, one usually only can construct locally a pseudogradient vector field
over a subset of the Banach space rather than the whole Banach space. This is the first diffi-
culty need to overcome. In the course of the study, one need to determine whether a closed
convex set is an invariant set of the descending flow generated by the pseudogradient vector
field. In the cases of the functionals being of C1, one can use the Schauder invariance condi-
tion presented in the literatures [22, 32, 33]. However, in the cases of the functionals being of
locally Lipschitz, no one has yet used the Schauder invariance condition to establish invariant
flows on convex closed sets. This is the second difficulty we face.

In this paper, we will analyze the energy of the possible critical points of the locally Lip-
schitz functionals in advance, construct locally a pseudogradient vector field on a neighbor-
hood of the energy, and then extend this pseudogradient vector field to the entire Banach
space. We can then use the method of invariant sets of descending flow that Sun have pro-
posed to obtain the existence results for the critical points of the locally Lipschitz functionals.
By this way we overcome the first difficulty. For the second difficulty, based on the conclusion
in [25] about the relationship between the critical points on the whole space and the critical
points on the closed convex sets under the Schauder invariance condition, and using the Von
Neumann theorem to establish the descending flow on closed convex sets, we get the result
that some closed convex sets are descending flow invariant sets. In this paper we get the the-
oretical results for the existence of at least one sign-changing, at least one nontrivial, at least
two positive and at least two negative critical points of the locally Lipschitz functionals con-
sidered. The theoretical results can be applied to the study of the existence of sign-changing
solutions, positive solutions and negative solutions for differential inclusion problems with a
concave-convex nonlinearity terms. In this way, we extend the relevant results on concave-
convex nonlinearity terms in literatures.

The critical points of this paper are in the sense of Chang [6]. The study of critical points
of non-smooth functional has been greatly developed in the last thirty years. Some peoples
have studied the critical point of the Motreanu–Panagiotopopoulos functionals [26, 29, 34].
This kind of functional has the form: f := h + ψ, with h a locally Lipschitz functional and ψ

a covex,proper and l.s.c. functional. The Motreanu–Panagiotopopoulos critical point theory
contain as particular cases both the the critical point theory in the sense of Chang as well
as in the sense of Szulkin [34]. Obviously, how to study the critical point theory of the
Motreanu–Panagiotopopoulos functionals in Banach space by using the invariant set method
of descending flow is an interesting problem worthy of further study.

2 Preliminaries

In what follows we will let X and E be two real Banach spaces with the norms ∥ · ∥ and ∥ · ∥1,
respectively. Assume that X is reflexive, E is densely and continuously embedded in X. Let
X∗ be the topological dual of X and ⟨·, ·⟩ denote the duality pairing between X∗ and X. Let
P be a cone of X, that is, P is closed convex set in X, λx ∈ P for all x ∈ P and λ ⩾ 0, and
P∩ (−P) = {0}. The P is said to be generating if X = P− P. Let P1 = P∩ E. Then P1 is a cone
in E. We assume that P1 has a nonempty interior in the E topology, and denote its interior in
the E topology by int P1. For each x, y ∈ X, let us define the ordering ⩽ in X by

x ⩽ y if and only if y − x ∈ P.

For each x, y ∈ E, if y − x ∈ int P1, we write x ≪ y. For x ∈ X and A ⊂ X, let dist(x, A) =

infy∈A ∥x − y∥. For any R > 0, let B(0, R) = {x ∈ X : ∥x∥ < R} and SR = {x ∈ X : ∥x∥ = R}.
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Given B ⊂ A ⊂ E, we write ∂AB for the boundary of B in A and intA B for the interior of B
in A.

Let us recall some theories concerning the sub-differential theory of locally Lipschitz func-
tionals due to Clarke [7]. A functional φ : X → R is said to be locally Lipschitz, if for
every x ∈ X, there exists a neighborhood U of x and a constant k > 0 depending on U such
that |φ(z) − φ(y)| ⩽ k∥z − y∥ for all z, y ∈ U. For such a functional we define generalized
directional derivative φ0(x; h) at x ∈ X in the direction h ∈ X by

φ0(x; h) = lim
x′→x

sup
λ↓0+

φ(x′ + λh)− φ(x′)
λ

.

The function h 7→ φ0(x; h) is sublinear, continuous. So by the Hahn–Banach theorem we know
that φ0(x; ·) is the support function of a nonempty, convex and w∗-compact set

∂φ(x) = {x∗ ∈ X∗ : ⟨x∗, h⟩ ⩽ φ0(x; h) for all h ∈ X}.

The set ∂φ(x) is called the generalized or Clarke sub-differential of φ at x. A point x ∈ X is a
critical point of φ if 0 ∈ ∂φ(x). Let K = {x ∈ X : 0 ∈ ∂φ(x)}.

Proposition 2.1 ([5, 12]). 1) If φ, ψ : X → R are locally Lipschitz functionals, then ∂(φ + ψ)(x) ⊂
∂φ(x) + ∂ψ(x), while for any λ ∈ R we have ∂(λφ)(x) = λ∂φ(x); 2) If φ : X → R is also convex,
then this sub-differential coincides with the sub-differential in the sense of convex analysis. If φ is
strictly differentiable, then ∂φ(x) = {φ′(x)}; 3) If φ : X → R is locally Lipschitz functional, ∂φ(u)
is a weakly∗-compact subset of X∗ which is bounded by the Lipschitz constant k > 0 of φ near u.

S. T. Kyritsi and N. S. Papageorgiou [18] developed a critical point theory for non-smooth
locally Lipschitz functionals defined on a closed, convex set extending this way the work of
Struwe. Let C ⊂ X be a nonempty, non-singleton, closed and convex set. For x ∈ C we define

mC(x) = inf
x∗

sup
y

{
⟨x∗, x − y⟩ : y ∈ C, ∥x − y∥ < 1, x∗ ∈ ∂φ(x)

}
.

Evidently, mC(x) ⩾ 0 for all x ∈ C. This quantity can be viewed as a measure of the general-
ized slope of φ at x ∈ C. If φ admits an extension φ̂ ∈ C1(X), then ∂φ(x) = {φ′(x)} and so
we have

mC(x) = sup
{
⟨φ′(x), x − y⟩ : y ∈ C, ∥x − y∥ < 1

}
,

which is the quantity used by Struwe [31, p. 147]. Also if C = X, then we have

mC(x) = m(x) = inf{∥x∗∥∗ : x∗ ∈ ∂φ(x)},

which is the quantity used by Chang [6].

Now let us introduce the outwardly directed condition and the Schauder invariance con-
dition for set value mappings in a manner as in [25]. Let X be reflexive. As usual, we will
identify X∗∗ with X while F : X∗ 7→ 2X will denote the duality map, given by

F(x∗) := {x ∈ X : ⟨x∗, x⟩ = ∥x∗∥2
∗ = ∥x∥2}, ∀x∗ ∈ X∗.

The set F(x∗) turns out to be nonempty, convex, and closed; see, e.g. [13, pp. 311–319]. Define

∇φ(x) := F(∂φ(x)), x ∈ X. (2.1)
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Clearly, ∇φ(x) depends on the choice of the duality pairing between X and X∗ whenever it
is compatible with the topology of X. If X is a Hilbert space, the duality paring becomes the
scalar product and (2.1) gives the usual gradient. Write I for the identity operator on X.

Suppose C is a convex and closed set of X. Let δC : X → R ∪ {+∞} be the indicator
function of C, namely

δC(x) :=

{
0, if x ∈ C,

+∞, otherwise.

Then we have
∂δC(x) =

{
x∗ ∈ X∗ : ⟨x∗, z − x⟩ ⩽ 0, ∀z ∈ C

}
The set ∂δC(x) is usually called normal cone to C at x.

Definition 2.2. Suppose X is reflexive, C is a convex and closed set of X, φ : X 7→ R is locally
Lipschitz continuous. If (−∂δC(x)) ∩ ∂φ(x) ⊂ {0} for any x ∈ ∂C when int C ̸= ∅, or for any
x ∈ C when int C = ∅, then we say that ∂φ turns out to be outwardly directed on C. This
clearly rewrites as

∀z∗ ∈ ∂φ(x)\{0} there exists z ∈ C fulfilling ⟨z∗, z − x⟩ < 0.

Definition 2.3 (Schauder invariance condition). Suppose X is reflexive, C is a convex and
closed set of X, φ : X 7→ R is locally Lipschitz continuous. Then we say φ satisfies the
Schauder invariance condition on C if

(
I −∇φ

)
(∂C) ⊂ C when int C ̸= ∅, if

(
I −∇φ

)
(C) ⊂ C

when int C = ∅

Remark 2.4. Definition 2.2 and 2.3 essentially come from [25]. However, there are some subtle
differences here and [25]. The well known Schauder invariance condition for a C1-functional
φ on a Hilbert space X reads as (I − φ′)(C) ⊂ C; see [15, 22, 32, 33]. It has been extend to
Banach spaces in [19]. The notation of Schauder invariance condition was firstly put forward
by J. Sun in [33].

It follows from [25, Theorem 4.4 and 4.5] we have the following Lemma 2.5.

Lemma 2.5. Suppose X is reflexive, C is a convex and closed set of X, φ : X 7→ R is locally Lipschitz
continuous, φ is outwardly directed on C or φ satisfies the Schauder invariance condition on C. Then
mC(x) = 0 if and only if m(x) = 0.

Lemma 2.6 ([30], von Neumann). Let X, Y be two Hausdorff topological linear spaces, C ⊂ X,
D ⊂ Y be two convex and compact sets. Let ψ : X × Y 7→ R satisfy:

1) x 7→ ψ(x, y) is upper semi-continuous (usc.) and concave;

2) y 7→ ψ(x, y) is lower semi-continuous (lsc.) and convex.

Then ψ has at least one saddle point (x̄, ȳ) ∈ C × D, that is

ψ(x, ȳ) ⩽ ψ(x̄, ȳ) ⩽ ψ(x̄, y) for (x, y) ∈ C × D.

Definition 2.7. Let D be a nonempty closed subset of X. We say that φ satisfies the non-smooth
CPS-condition on D, denoted by (CPS)D, if every sequence {xn} ⊂ D such that {φ(xn)} is
bounded and (1 + ∥xn∥)mD(xn) → 0 as n → ∞, has a convergent subsequence. If D = X,
denoted simply by (CPS).
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The following Lemma 2.8 comes from [4, p. 63], in which X is required to be a Hilbert
space. However, we can easily see that the conclusion also holds if we assume that X is a real
Banach space.

Lemma 2.8 ([4]). Let C be a convex set of X. Then for all x ∈ int C and y ∈ C̄, αx + (1 − α)y ⊂
int C for all α ∈ (0, 1].

Proposition 2.9. Assume that X is reflexive, C is a convex and closed set of X, x0 ∈ C, φ : X 7→ R is
locally Lipschitz. Then there exists (x∗0 , u(x0)) ∈ ∂φ(x0)×

(
(x0 − C)∩ B̄(0, 1)

)
such that mC(x0) =

⟨x∗0 , u(x0)⟩. In particular, m(x0) = ⟨x∗0 , u(x0)⟩ for some (x∗0 , u(x0)) ∈ ∂φ(x0)× B̄(x0, 1) if X = C.

Proof. Let Xw and X∗
w be the spaces X and X∗ equipped with their weak topology respectively.

Since X is reflexive, it follows from Proposition 2.1 that ∂φ(x0) is a compact set in X∗
w. Obvi-

ously,
(
x0 − C

)
∩ B̄(0, 1) is a compact set in Xw. Let ψ : ((x0 − C) ∩ B̄(0, 1))× ∂φ(x0) 7→ R be

defined by ψ(x, y∗) = ⟨y∗, x⟩ for any (x, y∗) ∈ ((x0 − C) ∩ B̄(0, 1))× ∂φ(x0). It follows from
Lemma 2.6 that ψ has at least one saddle point (u(x0), x∗0) ∈ ((x0 − C) ∩ B̄(0, 1)) × ∂φ(x0),
that is

⟨x∗0 , x⟩ ⩽ ⟨x∗0 , u(x0)⟩ ⩽ ⟨x∗, u(x0)⟩, ∀x∗ ∈ ∂φ(x0), x ∈ (x0 − C) ∩ B̄(0, 1).

Hence, mC(x0) = ⟨x∗0 , u(x0)⟩. The proof is complete.

Remark 2.10. By using Proposition 2.9 we can find (u(x0), x∗0) ∈ ((x0 − C) ∩ B̄(0, 1))× ∂φ(x0)

such that mC(x0) = ⟨x∗0 , u(x0)⟩. By this way we give an unified treatment for the case C = X
in [6] and the case C being a proper closed and convex set in [18]. It should be pointed out
that in order to prove Proposition 2.9, we only need C to be weakly sequence compact not
weakly compact. A direct proof of Proposition 2.9 can be found in the Appendix.

Proposition 2.11. Assume that X is reflexive, C is a convex and closed set of X, φ : X 7→ R is locally
Lipschitz, (I −∇φ)(C) ⊂ C. Then

mC(x) ⩾ min
{

1
2

, m(x)
}

m(x) for all x ∈ C. (2.2)

Proof. It follows from of Proposition 2.9 that for each x0 ∈ C, there exists (u(x0), x∗0) ∈
(
{x0}−

C)∩ B̄(0, 1)
)
× ∂φ(x0) satisfying mC(x0) = ⟨x∗0 , u(x0)). Take y0 ∈ {x0}− F(x∗0). It follows from

the condition (I −∇φ)(C) ⊂ C that y0 ∈ C. So, if ∥x0 − y0∥ < 1,

mC(x0) = ⟨x∗0 , u(x0)) ⩾ ⟨x∗0 , x0 − y0⟩ = ⟨x∗0 , F(x∗0)⟩ = ∥x∗0∥2
∗ ⩾ m2(x0);

if ∥x0 − y0∥ ⩾ 1, let z0 = x0 +
y0−x0

2∥x0−y0∥ , we have z0 ∈ C and ∥x0 − z0∥ = 1
2 , and so

mC(x0) = ⟨x∗0 , u(x0)) ⩾ ⟨x∗0 , x0 − z0⟩

=
1

2∥x0 − y0∥
⟨x∗0 , x0 − y0⟩

=
1

2∥x0∥∗
∥x∗0∥2

∗ =
1
2
∥x∗0∥∗ ⩾

1
2

m(x0)

So, (2.2) holds. The proof is complete.

Definition 2.12. Let D be a nonempty closed subset of X. We say that φ satisfies the non-
smooth PS-condition on D, denoted by (PS)D, if every sequence {xn} ⊂ D such that {φ(xn)}
is bounded and mD(xn) → 0 as n → ∞, has a convergent subsequence. If D = X, denoted
simply by (PS).
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Remark 2.13. Assume that all conditions of Proposition 2.11 hold. Then, by (2.2), we see that
φ satisfies the condition (PS)C if and only if φ satisfies the condition (PS) for each convex and
closed set C. Moreover, mC(x0) = 0 if and only if m(x0) = 0 for x0 ∈ C. So, we can deduce
Lemma 2.5 by (2.2) if φ satisfies the Schauder invariance condition.

Lemma 2.14 ([10]). Assume U is bounded connected open set of R2 and (0, 0) ∈ U, then there exists
a connected component Γ′ of the boundary of U, such that each one side ray l emitting from the origin
satisfies l ∩ Γ′ ̸= ∅.

3 Main results

3.1 Critical points outside the ordered interval

Let u0, v1 ∈ E be such that u0 ≪ 0 ≪ v1. Set D1 = [u0, v1] and G1 = D1 ∩ E. Now let us
introduce the following conditions:

(H1) φ−1([a, b]) ∩ K is compact in E for each a < b;

(H2) φ satisfies the conditions (CPS), (CPS)±P and (CPS)D for any ordered interval D in X;

(H3) there exist subspace E1 of E and R0 > 0 such that dim E1 = 2,

E1 ∩ D1 ⊂ B(0, R0), E1 ∩ int P1 ̸= ∅ (3.1)

and
α0 := max

u∈SR0∩E1
φ(u) < β0 := inf

u∈D1
φ(u). (3.2)

We have the following result concerning the existence of multiple critical points outside
the ordered interval D1.

Theorem 3.1. Suppose that (H1)∼(H3) hold, φ has no nontrivial critical point on ∂E(±P1) and ∂EG1.
Moreover, either

(H′
4) φ is outwardly directed on ±P, D1 and ±P ∩ D1, and P is generating; or

(H′
5) (I −∇φ)(±P) ⊂ ±P and (I −∇φ)(D1) ⊂ D1.

Then φ has at least one positive critical point ū1, one negative critical point ū2 and one sign-changing
critical point ū3 outside D1.

Remark 3.2. The condition (H′
5) is stronger than (H′

4). In fact, it follows from [25, Theorem 4.5]
that φ is outwardly directed on ±P if (I −∇φ)(±P) ⊂ ±P.

Let α1 = supu∈B(0,R0)∩E1
φ(u), D0 = φ−1([α0 − 1, α1 + 1]

)
, and K = D0 ∩ K. Assume

without loss of generality that D0\K ̸= ∅. Since φ has no nontrivial critical point on ∂E(±P1)

and ∂EG1, by using the conditions (H1) we may take δ > 0 small enough such that Dδ
0 ̸= ∅,

and
K3δ ∩

(
∂EP1 ∪ ∂E(−P1) ∪ ∂EG1

)
= ∅ (3.3)

where K3δ = {x ∈ D0 : dist(x, K) < 3δ} and Dδ
0 = D0\Kδ.

In what follows of this Subsection 3.1, we assume that all conditions of Theorem 3.1 hold.
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Lemma 3.3. There exists a locally Lipschitz mapping v : Dδ
0 7→ X such that ∥v(x)∥ ⩽ 2(1 + ∥x∥)

for any x ∈ Dδ
0, ⟨x∗, v(x)⟩ ⩾ γ

16 for some γ > 0 and all x∗ ∈ ∂φ(x). Moreover, v : Dδ
0 ∩ E 7→ E is

locally Lipschitz, and

x − 1
1 + ∥x∥v(x) ∈ ±P1 for any x ∈ ±P ∩ Dδ

0, (3.4)

x − 1
1 + ∥x∥v(x) ∈ G1 for any x ∈ D1 ∩ Dδ

0, (3.5)

x − 1
1 + ∥x∥v(x) ∈ ±P1 ∩ G1 for any x ∈ ±P ∩ D1 ∩ Dδ

0. (3.6)

Proof. Let S = Dδ
0\
(

P ∪ (−P) ∪ D1
)

and S̃ = Dδ
0 ∩ (D1\(P ∪ (−P))). First we claim that for

some γ > 0,

(1 + ∥x∥)m(x) ⩾ γ, ∀x ∈ S, (3.7)

(1 + ∥x∥)mP(x) ⩾ γ, ∀x ∈ (Dδ
0 ∩ P)\D1, (3.8)

(1 + ∥x∥)m−P(x) ⩾ γ, ∀x ∈ (Dδ
0 ∩ (−P))\D1, (3.9)

(1 + ∥x∥)mD1(x) ⩾ γ, ∀x ∈ S̃, (3.10)

(1 + ∥x∥)mP∩D1(x) ⩾ γ, ∀x ∈ Dδ
0 ∩ P ∩ D1, (3.11)

(1 + ∥x∥)m−P∩D1(x) ⩾ γ, ∀x ∈ Dδ
0 ∩ (−P) ∩ D1. (3.12)

We only show that (3.11) holds. In a similar way we can show that (3.7)∼(3.10) and
(3.12) hold. Arguing by contradiction, assume that (3.11) does not hold. Then there exists
an sequence {xn} ⊂ Dδ

0 ∩ D1 ∩ P such that (1 + ∥xn∥)mP∩D1(xn) → 0 as n → ∞. Obviously,
{φ(xn) : n = 1, 2, . . .} ⊂ [α0 − 1, α1 + 1]. It follows from (H2) that φ satisfies the condition
(CPS)D1∩P. Thus, up to a subsequence if necessary, xn → x0 as n → ∞ for some x0 ∈
Dδ

0 ∩ D1 ∩ P. Since mD1∩P : D1 ∩ P 7→ R is lsc., we have mD1∩P(x0) = 0. It follows from (H′
4)

or (H′
5) and Lemma 2.5 that m(x0) = 0, which is a contradiction. Thus, (3.11) holds.

Pick x0 ∈ S. It follows from Proposition 2.9 and (3.7) that there exist (u1(x0), x∗0) ∈
B̄(x0, 1)× ∂φ(x0) such that for any y∗ ∈ ∂φ(x0),

⟨y∗, u1(x0)⟩ ⩾ ⟨x∗0 , u1(x0)⟩ = m(x0) >
γ

2(1 + ∥x0∥)
.

Since the map x 7→ ∂φ(x) is usc. from X into X∗
w, we may take an open neighborhood

B1(x0, r1(x0)) of x0, such that

⟨y∗, u1(x0)⟩ >
γ

4(1 + ∥y∥) , ∀y∗ ∈ ∂φ(y), y ∈ U1(x0), (3.13)

where U1(x0) = B1(x0, r1(x0)) ∩ S. Since S is an open subset of Dδ
0, we may take r1(x0) > 0

small enough such that U1(x0) ⊂ S.
Pick x0 ∈ (Dδ

0 ∩ P)\D1. It follows from Proposition 2.9 and inequality (3.8) that there exist
(u2(x0), x∗0) ∈

(
(x0 − P) ∩ B̄(0, 1)

)
× ∂φ(x0) ,such that for any x∗ ∈ ∂φ(x0),

⟨x∗, u2(x0)⟩ ⩾ ⟨x∗0 , u2(x0)⟩ = mP(x0) >
γ

2(1 + ∥x0∥)
.

Again by using the fact that x 7→ ∂φ(x) is usc., we know that there exists an open neighbor-
hood B2(x0, r2(x0)) of x0 such that for any y ∈ U2(x0), y∗ ∈ ∂φ(y),

⟨y∗, u2(x0)⟩ >
γ

4(1 + ∥y∥) . (3.14)
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where U2(x0) = B2(x0, r2(x0)) ∩ Dδ
0. Since x0 ∈ (Dδ

0 ∩ P)\D1 and Dδ
0\(D1 ∪ (−P)) is an open

set of Dδ
0, we may take r2(x0) > 0 small such that U2(x0) ∩

(
D1 ∪ (−P)

)
= ∅.

Similarly, by (3.9) and Proposition 2.9 we can show that for each x0 ∈ (Dδ
0 ∩ (−P))\D1,

there exist U3(x0) := B3(x0, r3(x0)) ∩ Dδ
0, u3(x0) ∈ X with ∥u3(x0)∥ ⩽ 1, such that

x0 − u3(x0) ∈ −P, U3(x0) ∩ (D1 ∪ P) = ∅

and for any y ∈ U3(x0), y∗ ∈ ∂φ(y),

⟨y∗, u3(x0)⟩ >
γ

4(1 + ∥y∥) . (3.15)

By (3.10) we can show that for each x0 ∈ S̃, there exist U4(x0) := B4(x0, r4(x0)) ∩ Dδ
0,

u4(x0) ∈ X with ∥u4(x0)∥ ⩽ 1, such that

x0 − u4(x0) ∈ D1, U4(x0) ∩ (P ∪ (−P)) = ∅

and for any y ∈ U4(x0), y∗ ∈ ∂φ(y),

⟨y∗, u4(x0)⟩ >
γ

4(1 + ∥y∥) . (3.16)

It follows from (H′
4) or (H′

5) that ∂φ(0) = {0}. Then 0 is a critical point. Pick x0 ∈ Dδ
0 ∩

D1 ∩ P. Then x0 ̸= 0. By using Proposition 2.9 and (3.11) we obtain that there exist U5(x0) :=
B5(x0, r5(x0)) ∩ Dδ

0, u5(x0) ∈ X with ∥u5(x0)∥ ⩽ 1, such that

x0 − u5(x0) ∈ D1 ∩ P, U5(x0) ∩ (−P) = ∅

and for any y ∈ U5(x0), y∗ ∈ ∂φ(y),

⟨y∗, u5(x0)⟩ >
γ

4(1 + ∥y∥) . (3.17)

Similarly, by (3.12) we can show that for each x0 ∈ Dδ
0 ∩ D1 ∩ (−P), there exist U6(x0) :=

B6(x0, r6(x0)) ∩ Dδ
0, u6(x0) ∈ X with ∥u6(x0)∥ ⩽ 1, such that

x0 − u6(x0) ∈ D1 ∩ (−P), U6(x0) ∩ P = ∅

and for any y ∈ U6(x0), y∗ ∈ ∂φ(y),

⟨y∗, u6(x0)⟩ >
γ

4(1 + ∥y∥) . (3.18)

By 3) in Proposition 2.1, we may assume that ∥x∗∥∗ ⩽ Lα,i for some Lα,i > 0 and any
x ∈ Ui(xα) with i = 1, 2, . . . , 6 and x∗ ∈ ∂φ(x). Also, we assume that for i = 1, 2, . . . , 6,
Bi(xα, ri(xα)) has a small radius ri(xα) > 0 such that (1 + ∥x∥)(1 + ∥xα∥)−1 ⩽ 2 for each
x ∈ Ui(xα), and

0 < ri(xα) ⩽ min
{

1
2

,
γ

64(1 + ∥xα∥)Lα,i

}
.

Let
A1 =

{
U1(x0) : x0 ∈ S

}
,

A2 =
{

U2(x0) : x0 ∈ (Dδ
0 ∩ P)\D1

}
,

A3 =
{

U3(x0) : x0 ∈ (Dδ
0 ∩ (−P))\D1

}
,

A4 =
{

U4(x0) : x0 ∈ S̃
}

,

A5 =
{

U5(x0) : x0 ∈ Dδ
0 ∩ P ∩ D1

}
,

A6 =
{

U6(x0) : x0 ∈ Dδ
0 ∩ (−P) ∩ D1

}
,
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and A =
⋃

i=1,2,...,6 Ai. Then A is an open cover of Dδ
0.

By paracompactness we can find a locally finite refinement B = {Vα : α ∈ Λ} and a locally
Lipschitz partition of unit {γα : α ∈ Λ} sub-ordinate to it, with supp γα ⊂ Vα. For each α ∈ Λ
we can find xα ∈ Dδ

0 such that Vα ⊂ Ui(α)(xα) for some i(α) ∈ {1, 2, . . . , 6}, and Ui(α)(xα) ∈ A .

To this xα ∈ Dδ
0 corresponds the element wi(α)

α such that ∥wi(α)
α ∥ ⩽ 1, and wi(α)

α = ui(α)(xα)

if Vα ⊂ Ui(α)(xα) for some i(α) ∈ {1, 2, . . . , 6}. Since E is densely embedded in X, and so

P1,−P1, G1 are densely embedded in P,−P, D1, respectively. Thus, we may take x̄α, w̄i(α)
α ∈ E

with ∥w̄i(α)
α ∥ ⩽ 1 such that

max
{
∥wi(α)

α − w̄i(α)
α ∥, ∥xα − x̄α∥

}
< min

{
1
2

,
γ

64(1 + ∥xα∥)Lα,i(α)

}
. (3.19)

and

x̄α − w̄i(α)
α ∈



P1 if xα ∈ P ∩ Dδ
0;

−P1 if xα ∈ −P ∩ Dδ
0;

G1 if xα ∈ S̃;

G1 ∩ P1 if xα ∈ P ∩ D1 ∩ Dδ
0;

G1 ∩ (−P1) if xα ∈ −P ∩ D1 ∩ Dδ
0.

(3.20)

Now, let v : Dδ
0 7→ X be defined by

v(x) = (1 + ∥x∥) ∑
α∈Λ

γα(x)(w̄i(α)
α − x̄α + x). (3.21)

Then, v : Dδ
0 7→ X is locally Lipschitz. Since E ↪→ X, γα : Dδ

0 ∩ E 7→ R is also locally
Lipschitz. Thus, v : Dδ

0 ∩ E 7→ E is locally Lipschitz.
By (3.19) and (3.21) , we have for any x ∈ Dδ

0,

∥v(x)∥ ⩽ (1 + ∥x∥) ∑
α∈Λ

γα(x)
(
∥w̄i(α)

α ∥+ ∥x̄α − xα∥+ ∥xα − x∥
)
⩽ 2(1 + ∥x∥).

Moreover, we have for any x ∈ Dδ
0 and x∗ ∈ ∂φ(x),

(1 + ∥x∥)
∣∣ ∑

α∈Λ
γα(x)⟨x∗, x − x̄α⟩

∣∣
⩽ ∑

α∈Λ

1 + ∥x∥
1 + ∥xα∥

(1 + ∥xα∥)γα(x)∥x∗∥∗
(
∥x − xα∥+ ∥xα − x̄α∥

)
⩽ 2 ∑

α∈Λ
Lα,i(α)

(
∥x − xα∥+ ∥xα − x̄α∥

)
(1 + ∥xα∥)

<
γ

16

and∣∣∣∣∣∑
α∈Λ

γα(x)(1 + ∥x∥)⟨x∗, w̄i(α)
α − wi(α)

α ⟩
∣∣∣∣∣ ⩽ ∑

α∈Λ

1 + ∥x∥
1 + ∥xα∥

(1 + ∥xα∥)γα(x)∥x∗∥∗∥w̄i(α)
α − wi(α)

α ∥

⩽ 2 ∑
α∈Λ

(1 + ∥xα∥)Lα,i(α)∥w̄i(α)
α − wi(α)

α ∥ <
γ

16
.
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So, by (3.13)∼(3.18) we have for any x ∈ Dδ
0 and x∗ ∈ ∂φ(x),

∑
α∈Λ

γα(x)(1 + ∥x∥)⟨x∗, w̄i(α)
α ⟩ = ∑

α∈Λ
γα(x)(1 + ∥x∥)⟨x∗, w̄i(α)

α − wi(α)
α + wi(α)

α ⟩

= ∑
α∈Λ

γα(x)(1 + ∥x∥)⟨x∗, wi(α)
α ⟩

+ ∑
α∈Λ

γα(x)(1 + ∥x∥)⟨x∗, w̄i(α)
α − wi(α)

α ⟩

⩾
γ

4
− γ

16
⩾

γ

8
.

Hence, we have for any x ∈ Dδ
0 and x∗ ∈ ∂φ(x),

⟨x∗, v(x)⟩ = ∑
α∈Λ

γα(x)(1 + ∥x∥)⟨x∗, w̄i(α)
α ⟩

+ ∑
α∈Λ

γα(x)(1 + ∥x∥)⟨x∗, x − x̄α⟩ ⩾
γ

16
.

For a given x ∈ Dδ
0, we assume that x ∈ Ui(α)(xα) for some Ui(α)(xα) ∈ A . Recalling the

construction of A , we have

Ui(α)(xα) ∈



A2 ∪A5 if x ∈ (Dδ
0 ∩ P)\D1;

A3 ∪A6 if x ∈ (Dδ
0 ∩ (−P))\D1;

A4 ∪A5 ∪A6 if x ∈ S̃;

A5 if x ∈ Dδ
0 ∩ P ∩ D1;

A6 if x ∈ Dδ
0 ∩ (−P) ∩ D1.

(3.22)

It follows from (3.21) and (3.22) that (3.4)∼(3.6) hold. The proof is complete.

Let l1, l2 : X 7→ R be defined by

l1(x) =
dist (x, Kδ)

dist (x, Kδ) + dist (x, X\K2δ)
,

l2(x) =
dist

(
x, Γ1

)
dist

(
x, Γ2

)
+ dist

(
x, Γ1

) ,
(3.23)

v1(x) =

{
v(x), x ∈ Dδ

0;

0, otherwise,

and V(x) = l1(x)l2(x)v1(x) for any x ∈ X, where

Γ1 = φ−1
([

α1 +
1
2

,+∞
))

∪ φ−1
((

−∞, α0 −
1
2

])
, Γ2 = φ−1

([
α0 −

1
4

, α1 +
1
4

])
.

Then l1, l2 : X 7→ R are locally Lipschitz, and so V : X 7→ X is locally Lipschitz. Since E ↪→ X,
l1, l2 : E 7→ R are also locally Lipschitz, and so V : E 7→ E is locally Lipschitz.

Consider the following initial value problem{
du
dt = −V(u),

u(0) = v0 ∈ X.
(3.24)



12 X. Xu and B. Qin

By the theories for initial value problems of ordinary equations in Banach space, we
see that (3.24) has a unique solution σ(t, v0) in X, with its right maximal existence inter-
val [0, T(v0)), and its right maximal existence interval [0, T1(v0)) in E. Obviously, we have
T1(v0) ⩽ T(v0). Concerning the solution σ(t, v0) of (3.24), we have the following Lemmas
3.4∼3.6.

Lemma 3.4. For each v0 ∈ X, T(v0) = +∞

Proof. The proof is standard. For the reader’s convenience we give detailed process. Arguing
by contradiction, let us assume that T(v0) < +∞. By (3.24) we have

∥σ(t, v0)− v0∥ ⩽
∫ t

0
∥V(σ(s, v0))∥ds ⩽ 2

∫ t

0

(
1 + ∥σ(s, v0)∥

)
ds.

So, we have

1
2
∥σ(t, v0)− v0∥ ⩽

∫ t

0
(1 + ∥σ(s, v0)∥)ds

⩽
∫ t

0
∥σ(s, v0)− v0∥ds + (1 + ∥v0∥)t,

By the well known Gronwall’s inequality, we have

1
2
∥σ(t, v0)− v0∥ ⩽

∫ t

0
(1 + ∥v0∥)et−sds + (1 + ∥v0∥)t

⩽ (1 + ∥v0∥)(et − 1) + (1 + ∥v0∥)t
⩽ (1 + ∥v0∥)(t + et − 1)

⩽ (1 + ∥v0∥)(T(v0) + eT(v0)).

So, we have

∥σ(t, v0)∥ ⩽ 2(1 + ∥v0∥)(T(v0) + eT(v0)) + 2∥v0∥ =: M1.

Take {tn} ⊂ [0, T(v0)) such that tn → T−(v0) and for n = 1, 2, . . .,

|tn − tn−1| <
1

2 · 2n(1 + M1)
.

Then we have

∥σ(tn, v0)− σ(tn−1, v0)∥ ⩽
∫ tn

tn−1

∥V(σ(s, v0)∥ds

⩽ 2
∫ tn

tn−1

(
1 + ∥σ(s, v0)∥

)
ds

⩽ 2(1 + M1)(tn − tn−1) <
1
2n .

This implies that {σ(tn, v0)} is a Cauchy sequence in X. Thus, there exists ū ∈ X such that
σ(tn, v0) → ū as tn → T−(v0). Then we can show that σ(t, v0) → ū as t → T−(v0).

Now we consider the initial value problem{
du
dt = −V(u),

u(0) = ū.
(3.25)

Then (3.25) has a unique solution on [0, δ̄) for some δ̄ > 0, and so (3.24) has a unique
solution on [0, T(v0) + δ̄), which is a contradiction. Thus, we have T(v0) = +∞. The proof is
complete.
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Lemma 3.5. If o(v0) := {σ(t, v0) ⊂ X : t ∈ [0,+∞)} ⊂ Γ2\K2δ, then T1(v0) = +∞.

Proof. Let the operator A : E → X be defined by

Ax = x − 1
1 + ∥x∥V(x), ∀x ∈ E.

Then we have
Ax = ∑

α∈Λ
γα(x)(x̄α − w̄i(α)

α ), ∀x ∈ Γ2\K2δ. (3.26)

Let

µ(t) =
∫ t

0

(
1 + ∥σ(s, v0)∥

)
ds for t ∈ [0,+∞).

Obviously, µ : [0,+∞) → [0,+∞) is strictly increasing. And so, µ−1, the inverse function of µ,
exists. Then we have{

d
dt

(
eµ(t)σ(t, v0)

)
= eµ(t)(1 + ∥σ(t, v0)∥

)
Aσ(t, v0),

σ(0, v0) = v0.

By direct computation, we have

σ(t, v0) = e−µ(t)v0 + e−µ(t)
∫ t

0
eµ(s)(1 + ∥σ(s, v0)∥

)
Aσ(s, v0)ds. (3.27)

where the integral is in the sense of X topology. Now we show that T1(v0) = +∞ when
o(v0) ⊂ Γ2\K2δ. Arguing by contradiction, let us assume that T1(v0) < +∞. Take T >

T1(v0). It follows from (3.26) that {A(σ(t, v0)) : t ∈ [0, T]} is contained in a finite-dimensional
subspace of X. Then, there exists M1(T) > 0 such that for s ∈ [0, T],

∥eµ(s)(1 + ∥σ(s, v0)∥
)

Aσ(s, v0)∥1 ⩽ M1(T).

Let {tn} ⊂ [0, T1(v0)) such that tn → T−
1 (v0) as n → ∞. Note (3.27) also holds in which the

integral is in the sense of E topology for any t ∈ [0, T1(v0)). Assume without loss of generality
that {tn} is increasing. Then we have

∥σ(tn, v0)− σ(tn−1, v0)∥1 ⩽ |e−µ(tn) − e−µ(tn−1)|
(
∥v0∥1

+
∫ tn

0
eµ(s)(1 + ∥σ(s, v0)∥

)
∥Aσ(s, v0)∥1ds

)
+ e−µ(tn−1)

∫ tn

tn−1

eµ(s)(1 + ∥σ(s, v0)∥
)
∥Aσ(s, v0)∥1ds

⩽ |e−µ(tn) − e−µ(tn−1)|
(
∥v0∥1 + TM1(T)

)
+ M1(T)(tn − tn−1).

So, {σ(tn, v0)} is a Cauchy sequence in E. Assume that that σ(tn, v0) → ū in E as t →
T−

1 (v0). Since V : E 7→ E is locally Lipschitz. Then we can easily obtain a contradiction as in
the proof of T(v0) = +∞. Thus, we have T1(v0) = +∞. The proof is complete.

Lemma 3.6. φ(σ(t, v0)) is non-increasing in t ∈ [0, T1(v0)).
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Proof. Let h(t, v0) = φ(σ(t, v0)) for all t ∈ [0, T1(v0)). It is easy to see that h(t, v0) is locally
Lipschitz in t ∈ [0, T1(v0)), hence differentiable almost everywhere. According to Lebourg’s
Mean Theorem we have

∂

∂s
h(s, v0) ⩽ max

{〈
w∗,

∂

∂s
σ(s, v0)

〉
: w∗ ∈ ∂φ(σ(s, v0))

}
a.e.

= −min
{
⟨w∗, V(σ(s, v0))⟩ : w∗ ∈ ∂φ(σ(s, v0))

}
a.e.

⩽

{
− γ

16 , if σ(s, v0) ∈ φ−1([α0 − 1
4 , α1 +

1
4 ])\K2δ;

0, otherwise.

(3.28)

Consequently, φ(σ(t, v0)) is non-increasing in t ∈ [0, T1(v0)). The proof is complete.

As in [22], we give the following Definition 3.7 and 3.8

Definition 3.7. A nonempty subset D of E is called an invariant set of descending flow of
(3.24) if o(v0) ⊂ D for all v0 ∈ D, where o(v0) = {σ(t, v0) : t ∈ [0, T1(v0))}.

Definition 3.8. Let M ⊂ E be a connected invariant set of the descending flow of (3.24), D be
an open subset of M and be an invariant set of descending flow of (3.24). Denote

CM(D) = {v0 : v0 ∈ D or v0 ∈ M\D and there exists t′ ∈ (0, T1(v0)) such that σ(t′, v0) ∈ D}.

If D = CM(D), then D is called a complete invariant set of descending flow of (3.24) in M.

Lemma 3.9. ±P1, int(±P1), G1 and int G1 are all invariant sets of descending flow of (3.24).

Proof. 1) P1, −P1 and G1 are all invariant sets of descending flow of (3.24).
For u ∈ ∂EG1, it follows from Lemma 3.3 that for λ > 0 small enough,

u + λ(−V(u)) = λg(u)
(

u − v1(u)
1 + ∥u∥

)
+ (1 − λg(u)) u ∈ G1,

where g(u) = l1(u)l2(u)
(
1+ ∥u∥

)
. It follows from the theorem due to Brezis–Martin (see [11])

that G1 is an invariant sets of descending flow of (3.24).
In a similar way we can show that P1,−P1 are also invariant sets of descending flow of

(3.24).
2) int P1, int(−P1) and intG1 are all invariant sets of descending flow of (3.24)
Take v0 ∈ int G1. Note (3.27) also holds where the integral is in the sense of E topology for

t ∈ [0, T1(v0)). Make a variable change τ = eµ(s) − 1 in (3.27). Then we have

s = µ−1( ln(1 + τ)
)
, ds =

e−µ(s)

µ′(s)
dτ

and

e−µ(t)
∫ eµ(t)−1

0
Aσ
(

µ−1( ln(1 + τ)
)
, v0

)
dτ (the integral is in the sense of E topology)

= lim
n→∞

1
n
(
1 − e−µ(t)) n−1

∑
k=0

Aσ

(
µ−1

(
ln(1 +

k(eµ(t) − 1)
n

)
, v0

)
.
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For any x ∈ G1, we have

Ax =


x, if x ∈

(
E\φ−1(α0 − 1

2 , α1 +
1
2 )
)
∪ Kδ;

x − 1
1+∥x∥v(x), if x ∈ φ−1([α0 − 1

4 , α1 +
1
4 ])\K2δ;

l(x)
(

x − 1
1+∥x∥v1(x)

)
+
(
1 − l(x)

)
x, otherwise.

∈ G1,

(3.29)
where l(x) := l1(x)l2(x) ∈ (0, 1), that is A(G1) ⊂ G1. Since G1 is an invariant set of

descending flow of (3.24), by (3.29) we have

v̄ := lim
n→∞

1
n

n−1

∑
k=0

Aσ

(
µ−1

(
ln(1 +

k(eµ(t) − 1)
n

)
, v0

)
∈ G1.

It follows from (3.27) that

σ(t, v0) = e−µ(t)v0 + (1 − e−µ(t))v̄. (3.30)

Since v0 ∈ int G1 and e−µ(t) ∈ (0, 1), it follows from Lemma 2.8 and (3.30) that σ(t, v0) ∈ int G1

for t ∈ [0, T1(v0)). Thus, int G1 is an invariant set of descending flow of (3.24).
Similarly, we can show that int(±P1) are invariant sets for the descending flow of (3.24).

The proof is complete.

Lemma 3.10. For each v0 ∈ φ−1((−∞, α1 +
1
4 ]
)
∩ E with infu∈o(v0) φ(u) ⩾ α0 − 1

4 , there exists
τ(v0) ⩾ 0 such that σ(τ(v0), v0) ∈ K2δ.

Proof. Assume that o(v0) ∩ K2δ = ∅. It follows from (3.28) that

φ(v0)− φ(σ(t, v0)) = −
∫ t

0

∂

∂s
h(s, v0)ds ⩾

γ

16
t for t ∈ [0, T1(v0)).

It follows from Lemma 3.5 that the maximal existence interval of σ(t, v0) in E is [0,+∞). So,
we may take t0 = 16γ−1(α1 − α0 + 2), and have

φ(σ(t0, v0)) ⩽ φ(v0)−
γ

16
t0 ⩽ α1 +

1
4
− γ

16
t0 < α0 − 1,

which contradicts to infu∈o(v0) φ(u) ⩾ α0 − 1
4 . The proof is complete.

Similar to the proof of Lemma 3.1 in [22] we have the following Lemma 3.11.

Lemma 3.11. Let G ⊂ E be a connected and invariant set of (3.24), and D be an open invariant subset
of G. Then the following assertions hold:

1) CG(D) is an open subset of G;

2) ∂GCG(D) is an invariant set of descending flow of (3.24);

3) infu∈∂GCG(D) φ(u) ⩾ infu∈∂G D φ(u).

Proof of Theorem 3.1. It follows from Lemma 3.9 that int(±P1) and int G1 are all invariant sets
of descending flow of (3.24). So, int(P1 ∩ G1) and int(−P1 ∩ G1) are invariant sets of descend-
ing flow of (3.24). It follows from Lemma 3.11 that CE(int G1) is an open invariant set of
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descending flow of (3.24). It follows from (3.2) that CE(int G1) ̸= E, and so ∂ECE(int G1) ̸= ∅.
By Lemma 3.11 we have

inf
u∈∂ECE(int G1)

φ(u) ⩾ inf
u∈∂EG1

φ(u) ⩾ inf
u∈D1

φ(u) = β0 > α0 −
1
4

. (3.31)

Since CE(int G1) is open in E, CE(int G1) ∩ E1 ⊂ B(0, R0) is an open and bounded subset of E1

containing 0. It follows from Lemma 2.14 that there exists a connected component Γ′ of the
boundary of CE(int G1) ∩ E1, such that each one side ray l emitting from the origin satisfies
l ∩ Γ′ ̸= ∅. Let Γ be the connected component of ∂ECE(int G1) containing Γ′. It follows from
Lemma 3.11 that Γ is an invariant set of descending flow of (3.24).

It follows from (3.1) that SR0 ∩ E1 ∩ int P1 ̸= ∅. Thus, Γ ∩ int P1 is an invariant set of
descending flow of (3.24). Take ṽ1 ∈ SR0 ∩ E1 ∩ int P1 and let l̃ be the ray emitting from the
origin and passing through ṽ1. Then, we have l̃ ∩ (Γ ∩ P1) ̸= ∅, and so Γ ∩ P1 ∩ φ−1((−∞, α1 +
1
4 ]
)
̸= ∅. Take v0 ∈ Γ ∩ P1 ∩ φ−1((−∞, α1 +

1
4 ]
)
. It follows from (3.31) that infu∈o(v0) φ(u) ⩾

α0 − 1
4 , that is o(v0) ⊂ φ−1([α0 − 1

4 , α1 +
1
4 ]
)
.

Now we have the following two cases:
1) If v0 ∈ K2δ, it follows from (3.3) that there must exists a u1 with

ū1 ∈ P1 ∩ φ−1
([

α0 −
1
4

, α1

])
∩ (K\{0})

and ū1 ∈ E\(D1)δ.
2) If v0 ∈

(
Γ ∩ P1 ∩ φ−1([α0 − 1

4 , α1 +
1
4 ])
)
\K2δ, by Lemma 3.10 we see that σ(τ(v0), v0) ∈

K2δ ∩ P1 for some τ(v0) > 0, also by (3.3) we see that there must exists a ū1 with

u1 ∈ P1 ∩ φ−1
([

α0 −
1
4

, α1 +
1
4

])
∩ (K\{0}),

and ū1 ∈ E\(D1)δ. Hence, φ has at least one positive critical point ū1 outside D1.
Similarly, we can show that φ has at least one negative critical point ū2 outside D1.
Now we show that φ has at least one sign-changing critical point ū3. Obviously, Γ ∩ int P1

and Γ ∩ int(−P1) are two open invariant sets of descending flow of (3.24) in Γ. It follows from
Lemma 3.11 that CΓ(Γ∩ int P1) and CΓ(Γ∩ int(−P1)) are two open invariant sets of descending
flow of (3.24) in Γ. By the connectedness of Γ, we see that

O1 := Γ\
(
CΓ(Γ ∩ int P1) ∪ CΓ(Γ ∩ int(−P1)) ̸= ∅.

Let
O2 := Γ′\

(
CΓ(Γ ∩ int P1) ∪ CΓ(Γ ∩ int(−P1)).

Obviously, O2 ⊂ O1. Also by the connectedness of Γ′, we have O2 ̸= ∅. Take v0 ∈ O2. It
follows from (3.31) that infu∈o(v0) φ(u) ⩾ α0 − 1

4 . Then we can show that φ has a sign-changing
critical point ū3. Indeed, if v0 ∈ K2δ, by (3.31) there must exist a ū3 ∈ S ∩ φ−1([α0 − 1

4 , α1 +
1
4 ]) ∩ K, where S is defined as in Lemma 3.3. If v0 ∈ φ−1([α0 − 1

4 , α1 +
1
4 ])\K2δ, it follows from

Lemma 3.10 that σ(τ(v0), v0) ∈ K2δ for some τ(v0) > 0. By (3.3), we see that there must exists
a ū3 with

ū3 ∈ (E\(P ∪ (−P))) ∩ φ−1
([

α0 −
1
4

, α1 +
1
4

])
∩ (K\{0})

and u3 ∈ E\(D1)δ. Hence, φ has at least one sign-changing critical point ū3 outside D1. The
proof is complete.
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Remark 3.12. According to Remark 2.13, if (H′
5) holds, then (H2) can be substituted with the

condition that φ satisfies the condition (PS). So, we have the following Corollary 3.13.

Corollary 3.13. it Suppose that (H1), (H3) and (H′
5) hold. Moreover, φ satisfies the condition (PS)

and has no nontrivial critical point on ∂E(±P1) and ∂EG1. Then the conclusion in Theorem 3.1 holds.

3.2 Critical points inside the ordered interval

Next in this section we will give the existence results for critical points inside the ordered
interval D1. Assume that u0, v0, u1, v1 ∈ E such that u0 ≪ v0 ≪ 0 ≪ u1 ≪ v1. Set D2 = [u0, v0],
D3 = [u1, v1] and Gi = Di ∩ E for i = 2, 3.

Theorem 3.14. Suppose that (H1) holds, φ has no nontrivial critical point on ∂EGi for i = 1, 2, 3, and
φ satisfies (CPS)D for any ordered interval D in X. Moreover, either

(H′′
4 ) φ is outwardly directed on Di for i = 1, 2, 3; or

(H′′
5 ) (I −∇φ)(Di) ⊂ Di for i = 1, 2, 3.

Then φ has at least one positive critical point ū4, one negative critical point ū5 and one critical point ū6

inside D1. Moreover, ū6 is nontrivial if there exists a curve l in E1 such that l ∩ D2 ̸= ∅, l ∩ D3 ̸= ∅
and maxu∈l φ(u) < φ(0).

Corollary 3.15. Suppose that (H1) holds, φ has no nontrivial critical point on ∂EGi for i = 1, 2, 3, φ

satisfies (PS) and (I −∇φ)(Di) ⊂ Di for i = 1, 2, 3. Then the conclusion in Theorem 3.14 holds.

Set

K̃r = {x ∈ D1 : φ(x) = r, m(x) = 0} for any r ∈ R,

(K̃r)δ = {x ∈ D1 : d(x, K̃r) < δ}, (K̃r)
c
δ = D1\(K̃r)δ for any r ∈ R, δ > 0,

D1(r, ε, δ) = {x ∈ D1 : r − ε ⩽ φ(x) ⩽ r + ε, x ∈ (K̃r)
c
δ} for any r ∈ R, δ > 0, ε > 0.

Lemma 3.16. Assume that all conditions in Theorem 3.14 hold. Let r ∈ R, δ > 0 be given. Then
there exist ε̄ > 0, γ > 0 and a locally Lipschitz mapping ṽ : D1(r, ε̄, δ) 7→ D1 such that ∥ṽ(x)∥ ⩽
2(1 + ∥x∥) for any x ∈ D1(r, ε̄, δ), ⟨x∗, ṽ(x)⟩ ⩾ γ

16 for any x ∈ D1(r, ε̄, δ) and x∗ ∈ ∂φ(x).
Moreover, ṽ : D1(r, ε̄, δ) ∩ E 7→ E is locally Lipschitz, and for i = 1, 2, 3,

x − 1
1 + ∥x∥ ṽ(x) ∈ Gi for any x ∈ Di ∩ D1(r, ε̄, δ). (3.32)

Proof. The proof is similar to Lemma 3.3. Now we only sketch it. First we can show that for
i = 1, 2, 3 and some ε̄, γ > 0,

(1 + ∥x∥)mDi(x) ⩾ γ, ∀x ∈ D1(r, ε̄, δ) ∩ Di. (3.33)

Then, by using (3.33), as the proof in Lemma 3.3, we can find a ũi(x) ∈ X for i = 1, 2, 3,
an open neighborhood Ũ1(x) for x ∈ D1(r, ε̄, δ)\(D2 ∪ D3), an open neighborhood Ũ2(x)
for x ∈ D2 ∩ D1(r, ε̄, δ), and an open neighborhood Ũ3(x) for x ∈ D3 ∩ D1(r, ε̄, δ) such that,
∥ũi(x)∥ ⩽ 1, x − ũi(x) ∈ Di,

Ũ1(x) ∩ (D2 ∪ D3) = ∅, Ũ2(x) ∩ D3 = ∅, Ũ3(x) ∩ D2 = ∅,
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and
⟨y∗, ũi(x0)⟩ >

γ

4(1 + ∥y∥) , ∀y∗ ∈ ∂φ(y), y ∈ Ũi(x), (3.34)

where Ũi(x) = B(x, ri(x)) ∩ D1(r, ε̄, δ) for i = 1, 2, 3.
Let A1 = {Ũ1(x) : x ∈ D1(r, ε̄, δ)\(D2 ∪ D3)}, Ai = {Ũi(x) : x ∈ Di ∩ D1(r, ε̄, δ)} for i = 2, 3

and A = A1 ∪ A2 ∪ A3. The collection A is an open cover of the set D1(r, ε̄, δ). So, by the
paracompactness we can find a locally finite refinement {Vα : α ∈ Λ} and a locally Lipschitz
partition of unit {γα : α ∈ Λ} sub-ordinate to it with supp γα ⊂ Vα for each α ∈ Λ. For each
α ∈ Λ, we can find xα ∈ D1(r, ε̄, δ) such that Vα ⊂ Ũi(α)(xα) for some i(α) ∈ {1, 2, 3}, and

Ũi(α)(xα) ∈ A . To this xα ∈ D1(r, ε̄, δ) corresponds the element wi(α)
α such that ∥wi(α)

α ∥ ⩽ 1,

and wi(α)
α = ūi(α)(xα) if Vα ⊂ Ui(α)(xα) for some i(α) ∈ {1, 2, 3}. Since E is densely embedded

in X, and so G1, G2, G3 are densely embedded in D1, D2, D3, respectively. Thus, we may take
x̄α, w̄i(α)

α ∈ E with ∥w̄i(α)
α ∥ ⩽ 1 such that

max
{
∥wi(α)

α − w̄i(α)
α ∥, ∥xα − x̄α∥

}
< min

{
1
2

,
γ

64(1 + ∥xα∥)Lα,i(α)

}
. (3.35)

and
x̄α − w̄i(α)

α ∈ Gi if xα ∈ Di ∩ D1(r, ε̄, δ) for i = 1, 2, 3. (3.36)

Now, let ṽ : D1(r, ε̄, δ) 7→ X be defined by

ṽ(x) = (1 + ∥x∥) ∑
α∈Λ

γα(x)(w̄i(α)
α − x̄α + x). (3.37)

Then, by (3.34), (3.35) and (3.37) we have ∥ṽ(x)∥ ⩽ 2(1 + ∥x∥), and ⟨x∗, ṽ(x)⟩ ⩾ γ
16 for any

x ∈ D1(r, ε̄, δ) and x∗ ∈ ∂φ(x).
For a given x ∈ D1(r, ε̄, δ), we assume that x ∈ Ui(α)(xα) for some Ui(α)(xα) ∈ A . Recalling

the construction of A , we have

Ui(α)(xα) ∈


A1 ∪A2 ∪A3 if x ∈ D1(r, ε̄, δ)\(D2 ∪ D3);

A2 if x ∈ D2 ∩ D1(r, ε̄, δ);

A3 if x ∈ D3 ∩ D1(r, ε̄, δ).

(3.38)

It follows from (3.36), (3.37), (3.38) that (3.32) holds. The proof of is complete.

Since φ has no nontrivial critical point on ∂EGi for i = 1, 2, 3, by using the conditions (H1)

we may take δ > 0 small enough such that

(K̃r)3δ ∩ (∂G1 G2 ∪ ∂G1 G3) = ∅. (3.39)

Let O = G1\(G2 ∪ G3) and K̃0
r = K̃r ∩ O.

Lemma 3.17. Assume that all the conditions in Theorem 3.14 hold. Let r ∈ R, δ > 0 be such
that (3.39) holds. Then there exists ε̄0 > 0 such that for any 0 < ε < 1

3 ε̄0 and any compact set
B ⊂ φr+ε ∩ G1, there exists η ∈ C([0, 1]× G1, G1) such that

1) η(t, x) = x for t = 0; or x ̸∈ G1 ∩ D1(r, ε̄0, δ);

2) η(1, B\(K̃0
r )3δ) ⊂ (O ∩ φr−ε) ∪ intG1 G2 ∪ intG1 G3;
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3) η(t, ·) is a homeomorphism of G1 for t ∈ [0, 1];

4) φ(η(·, x)) is non-increasing for any x ∈ G1;

5) η(1, G2) ⊂ G2, η(1, G3) ⊂ G3;

6) η(1, intG1 G2) ⊂ intG1 G2, η(1, intG1 G3) ⊂ intG1 G3.

Proof. It follows from Lemma 3.16 that there exists ṽ : D1(r, ε̄, δ) → X such that such that
∥ṽ(x)∥ ⩽ 2(1 + ∥x∥) for any x ∈ D1(r, ε̄, δ), ⟨x∗, ṽ(x)⟩ ⩾ γ

16 for some γ > 0 and all x∗ ∈ ∂φ(x),
and (3.32) holds. Since K̃r is compact in X, we may choose R0 > 0 such that ∥x∥ ⩽ R0 for all
x ∈ (K̃r)3δ. Take

0 < ε̄0 < min
{

ε̄,
γδ

32(1 + R0)

}
. (3.40)

Take 0 < ε < 1
3 ε̄0. Let li : D1 → R for i = 1, 2 be defined by

l1(x) =
d
(
x, D1\φr+ε̄0

r−ε̄0

)
d
(
x, D1\φr+ε̄0

r−ε̄0

)
+ d
(
x, D1 ∩ φr+2ε

r−2ε

) ,

and

l2(x) =
d
(
x, D1 ∩ (K̃r)δ

)
d
(

x, D1 ∩ (K̃r)δ

)
+ d
(
x, D1\(K̃r)2δ

) .

Then li : D1 → R for i = 1, 2 is locally Lipschitz continuous in X. It is easy to see that
li : G1 → R for i = 1, 2 is locally Lipschitz continuous in E. Let V(x) = l1(x)l2(x)ṽ1(x) for all
x ∈ D1, where

ṽ1(x) =

{
ṽ(x), x ∈ D1(r, ε̄, δ);

0, otherwise.

Then V : D1 → X is locally Lipschitz, V : G1 → E is also locally Lipschitz.
Consider the initial value problem in X{

dσ
dt = −V(σ(t, u)),

σ(0) = u ∈ G1.
(3.41)

Obviously, (3.41) has a unique solution σ(t, u) in X, with its right maximal existence in-
terval [0, T(u)), where 0 < T(u) ⩽ +∞. Since V : G1 → E is also locally Lipschitz, (3.41)
has a unique solution σ(t, u) in E, with its right maximal existence interval [0, T1(u)), where
0 < T1(u) ⩽ T(u) = +∞.

In a similar way as in the proof of Lemmas 3.4, 3.6, 3.9,we can show the following conclu-
sions hold: 1) T(u) = +∞; 2). G1, G2, G3, intG1 G2 and intG1 G3 are invariant sets for the flow
of (3.41). Moreover, the following inequality hold: for any [t1, t2] ⊂ [0, T1(u)),

φ
(
σ(t1, u)

)
− φ

(
σ(t2, u)

)
= −

∫ t2

t1

dφ(σ(s, u))
ds

ds

⩾
γ

16
(t2 − t1) if σ(s, u) ∈ G1 ∩ D1(r, 2ε, 2δ) for s ∈ [t1, t2].

(3.42)

Let B ⊂ φr+ε ∩ G1 be a compact set, u0 ∈ B\(K0
r )3δ and o(u0) = {σ(t, u0) : t ∈ [0, T1(u0))}.

Then we have the following cases:
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1) o(u0) ∩ intG1 G2 ̸= ∅. Assume that u1 := σ(t(u0), u0) ∈ intG1 G2 for some t(u0) ∈
[0, T1(u0)). Take a neighborhood U(u1) of u1 in G1 such that U(u1) ⊂ intG1 G2. By the
continuous dependence of ordinary differential equations on initial data, there exists an open
neighborhood U(u0) of u0, such that σ(t(u0), u) ∈ U(u1) ⊂ intG1 G2 for any u ∈ U(u0). Since
intG1 G2 is an invariant set, σ(t, u) ∈ intG1 G2 for all u ∈ U(u0) and t ⩾ t(u0).

2) o(u0) ∩ intG1 G3 ̸= ∅. A similar argument as above yields that, there is a neighborhood
U(u0) of u0 and t(u0) > 0, such that σ(t, u) ∈ intG1 G3 for any u ∈ U(u0) and t ⩾ t(u0).

3) o(u0) ∩
(

intG1 G2 ∪ intG1 G3
)
= ∅. In this case we have the following two subcases:

3a) o(u0) ∩ (K̃0
r )2δ = ∅. First we show that o(u0) ∩ {x ∈ X : φ(x) < r − ε} ̸= ∅. Assume

indirectly that this is not the case, then o(u0) ∩ {x ∈ X : φ(x) < r − ε} = ∅. Assume without
loss of generality that o(u0) ⊂ φ−1([r − ε, r + ε]). Let Ax = x − 1

1+∥x∥V(x) for all x ∈ D1. Note
that

Ax = ∑
α∈Λ

γα(x)(x̄α − w̄α), ∀x ∈ D1 ∩ φ−1([r − ε, r + ε])\(K̃r)2δ.

So, in a similar way as in the proof of Lemma 3.5 we can easily show that T1(u0) = +∞. Then,
we can take t1 = 32ε

γ . By (3.42) we have

vr(σ(t1, u0)) ⩽ φ(u0)−
γ

16
t1 ⩽ φ(u0)−

γ

16
t1 < r − ε. (3.43)

which is a contradiction. Thus, o(u0) ∩ {x ∈ X : φ(x) < r − ε} ̸= ∅. Assume that u1 :=
σ(t(u0), u0) ∈ {x ∈ X : φ(x) < r − ε} for some t(u0) ⩾ 0. Take a neighborhood U(u1) of u1

such that U(u1) ⊂ {x ∈ X : φ(x) < r − ε}. Then, there exists an open neighborhood U(u0) of
u0, such that σ(t(u0), u) ∈ U(u1) ⊂ {x ∈ X : φ(x) < r − ε} for any u ∈ U(u0). Since σ(t, u)
is non-increasing in t ∈ [0,+∞), we have σ(t, u) ⊂ {x ∈ X : φ(x) < r − ε} for any u ∈ U(u0)

and t ⩾ t(u0).
3b) o(u0) ∩ (K̃0

r )2δ ̸= ∅. In this case, we may take [t1, t2] ⊂ [0,+∞) such that σ(t1, u0) ∈
∂(K̃r)3δ, σ(t2, u0) ∈ ∂(K̃r)2δ, and σ(t, u0) ∈ (K̃0

r )3δ\(K̃0
r )2δ for t ∈ [t1, t2]. By (3.41) we have

∥σ(t2, u0)− σ(t1, u0)∥ ⩽
∫ t2

t1

∥V(σ(s, u0)∥ds

⩽ 2
∫ t2

t1

(
1 + ∥σ(s, u0)∥

)
ds

⩽ 2
(
1 + R0

)
(t2 − t1).

So, we have

t2 − t1 ⩾
∥σ(t2, u0)− σ(t1, u0)∥

2
(
1 + R0

) ⩾
δ

2
(
1 + R0

) . (3.44)

Now we show that there must exist t(u0) ∈ [t1, t2] such that σ(t(u0), u0) ∈ {x ∈ X : φ(x) <

r − ε}. Assume indirectly that this is not the case, then

{σ(t, u0) : t ∈ [t1, t2]} ∩ {x ∈ X : φ(x) < r − ε} = ∅.

Then, by (3.42) and (3.44) we have

φ(σ(t2, u0)) ⩽ φ(σ(t1, u0))−
γ

16
(t2 − t1)

⩽ φ(u0)−
γ

16
(t2 − t1)

⩽ r + ε − γδ

32
(
1 + R0

)
< r + ε − ε̄0 < r − ε,
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which is a contradiction. Thus, there must exist t(u0) ∈ [t1, t2] such that σ(t(u0), u0) ∈ {x ∈
X : φ(x) < r − ε}. Then, as the arguments in the case 3a), we can show that there exists a open
neighborhood of U(u0) of u0 such that σ(t, u) ⊂ {x ∈ X : φ(x) < r − ε} for any u ∈ U(u0)

and t ⩾ t(u0).
Let B = {U(u0) : u0 ∈ B\(K̃0

r )3δ}. Then B is an open cover of B\(K̃0
r )3δ. Since B\(K̃0

r )3δ

is a compact set, then there exist finite sets of B, say U(u1), U(u2), . . . , U(um), such that
B\(K̃0

r )3δ ⊂
⋃m

i=1 U(ui). Let T = max{t(u1), t(u2), . . . , t(um)} and η(Tt, u) for all t ∈ [0, 1] and
u ∈ B\(K̃0

r )3δ. Then we can easily check that all conclusions hold. The proof is complete.

Proof of Theorem 3.14. Let
r = inf

γ∈Γ
sup

u∈γ([0,1])∩O
φ(u),

where
Γ = {γ ∈ C([0, 1], G1) : γ(0) ∈ intG1 G2, γ(1) ∈ intG1 G3}.

Now we show that K̃r ∩ O ̸= ∅. Arguing by contradiction that O ∩ K̃r = ∅. Take δ > 0 small
enough such that (3.39) holds. By using Lemma 3.17, there exists ε̄0 > 0 such that for any
0 < ε < 1

3 ε̄0 and any compact set B ⊂ φr+ε ∩ G1, there exists η ∈ C([0, 1]× G1, G1) such that
the conclusions 1)∼6) in Lemma 3.17 hold.

Take γ ∈ Γ such that supu∈γ([0,1])∩O φ(u) < r + ε. Let γ1 = η(1, γ(·)). Since

η(1, intG1 G2) ⊂ intG1 G2, η(1, intG1 G3) ⊂ intG1 G3,

γ(0) ∈ intG1 G2, γ(1) ∈ intG1 G3,

then we have γ1(0) ∈ intG1 G2 and γ1(1) ∈ intG1 G3. So, γ1 ∈ Γ.
On the other hand, we have by 2) in Lemma 3.17,

r ⩽ sup
u∈γ1([0,1])∩O

φ(u) ⩽ sup
u∈(φr−ε∪intG1 G2∪intG1 G3)∩O

φ(u) ⩽ sup
u∈φr−ε

φ(u) ⩽ r − ε,

which is a contradiction. So, K̃r ∩ O ̸= ∅.
If there exists a curve l in E1 such that l ∩ D2 ̸= ∅, l ∩ D3 ̸= ∅ and maxu∈l φ(u) < φ(0),

then we have r < φ(0). So, K̃r ∩ (O\{0}) ̸= ∅. The proof is complete.

Remark 3.18. Here in Theorem 3.14 we have proved a three critical points theorem in ordered
interval, which can be thought as a mountain pass theorem in ordered interval. It should be
pointed out that Theorem 3.14 can also be obtained by the method showing Theorem 3.1.

3.3 Critical points inside and outside the ordered interval

By Theorem 3.1 and 3.14 we can get the following Theorem 3.19.

Theorem 3.19. Suppose that (H1)∼(H3) hold, φ has no nontrivial critical point on ∂E(±P1) and
∂E(Di ∩ E) for i = 1, 2, 3. Moreover, either

(H4) φ is outwardly directed on ±P, Di for i = 1, 2, 3 and ±P ∩ D1; or

(H5) (I −∇φ)(±P) ⊂ ±P and (I −∇φ)(Di) ⊂ Di for i = 1, 2, 3.
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Then φ has at least one positive critical point ū1, one negative critical point ū2 and one sign-changing
critical point ū3 outside D1; 2) φ has at least one positive critical point ū4, one negative critical point
ū5 and one critical point ū6 inside D1; moreover, ū6 is nontrivial if there exists a curve l in E1 such
that l ∩ D2 ̸= ∅, l ∩ D3 ̸= ∅ and maxu∈l φ(u) < φ(0).

Remark 3.20. Obviously, by the method above we can study the existence of multiple critical
points inside and outside the ordered interval which not contain the origin. Moreover, we can
give results for at least one or two critical points exist outside the ordered interval, and we
can also use the concept of parallel pair of upper and lower solutions to establish the results
for multiple critical points. For the sake of brevity, we will only list two of such kind results
and not give their proofs.

Theorem 3.21. Let u0 ≪ v1, D1 = [u0, v1] and G1 = D1 ∩ E. Suppose that (H1) and (H3) hold, φ

satisfies the condition (PS) and has no critical points on ∂EG1, (I −∇φ)(D1) ⊂ D1. Then φ has at
least one critical point outside D1, and at least one critical point inside D1.

Theorem 3.22. Let u0 ≪ u1 ≪ v1, D1 = [u0, v1], D2 = [u1, v1], G1 = D1 ∩ E, G2 = D2 ∩ E and
O1 = {x ∈ X : x ⩾ u1}. Suppose that (H1) and (H3) hold, φ satisfies the condition (PS) and has
no critical points on ∂EG1 ∪ ∂E(O1 ∩ E) ∪ ∂EG2, (I −∇φ)(D1) ⊂ D1, (I −∇φ)(D2) ⊂ D2, and
(I −∇φ)(O1) ⊂ O1. Then φ has at least two critical points ū1, ū2 outside D1 and at least one critical
point ū3 inside D1 such that ū1 ≫ u1, ū2 ̸≫ u1, and u1 ≪ ū3 ≪ v1.

Remark 3.23. Obviously, we can also study the existence of fixed points for set value operators
using the methods described above. Moreover, our main results also be applicable for φ being
of C1 class, and some of our main results are new even for the case of φ being of C1 class.

4 Application to the differential inclusion problem with a convex-
concave nonlinearity

As the application of Theorem 3.19, in this section we will show multiple solutions of a differ-
ential inclusion problem with a convex-concave nonlinearity. The main result of this section
extend some relevant results concerning the differential equation boundary value problems
with a concave-convex nonlinearity that was first studied by A. Ambrosetti, H. Brezis and
G. Cerami [2].

Let

∥u∥ =

(∫
Ω
∥Du∥pdx

) 1
p

, |u|k =
(∫

Ω
|u|kdx

) 1
k

be the standard norms of W1,p
0 (Ω), respectively Lk(Ω) for 1 < k < p∗. Let X = W1,p

0 (Ω) and
E = C1

0(Ω).
Consider the following Dirichlet problem for differential inclusion problem{

−div
(
∥Du(x)∥p−2Du(x)

)
− λ|u(x)|q−2u(x) ∈ ∂j(x, u) in Ω,

u = 0 on ∂Ω,
(4.1)

where Ω is a bounded open domain in RN with a smooth boundary, 1 < q < p < +∞, the
reaction term ∂j(x, s) is the generalized gradient of a non-smooth potential s 7→ j(x, s), which
is subject to the following conditions.
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(Hj) j : Ω × R 7→ R is a Carathéodory function and there exist constants a1 > 0, q < p < r <
p∗ such that

(i) j(x, ·) is locally Lipschitz for almost every x ∈ Ω, j(x, z) ⩾ 0 for all z ∈ R and
∂j(x, 0) = {0} a.e. on Ω;

(ii) |ξ| ⩽ a1(1 + |s|r−1) a.e. in Ω and for all s ∈ R, ξ ∈ ∂j(x, s);

(iii) there exist constants µ > p and M > 0 such that

inf
x∈Ω

j(x, M) > 0 and µj(x, z) ⩽ −jo(x, z;−z) a.e. on Ω all z ⩾ M;

(iv) there exist M+ > 0, M− < 0 such that

max ∂j(x, M
1

p−1
+ e) <

M+

2
and min ∂j(x, M

1
p−1
− e) >

M−
2

a.e. in Ω,

where e ∈ W1,p
0 (Ω) such that −∆pe = 1.

(v) both min ∂j(x, z)+m|z|p−2z and max ∂j(x, z)+m|z|p−2z are nondecreasing in z ∈ R

for a.e. x ∈ Ω and some m ⩾ 0.

Remark 4.1. (Hj) (iii) was firstly put forward by [27]. It is a super-linear condition; see (4.14)
below. So, (4.1) has a concave-convex nonlinearity. The condition (Hj) (iv) assures the existence
of a pair of strict upper and lower solution of (4.1).

For λ > 0, we introduce the energy functional φλ : X 7→ R by

φλ(u) =
1
p
∥u∥p

p −
λ

q
|u|qq −

∫
Ω

j(x, u(x))dx,

Let P = {u ∈ X : u(x) ⩾ 0 a.e. x ∈ Ω} and P1 = P ∩ E. Given λ > 0, we say that u ∈ X is a
(weak) solution of (4.1λ) if ∆pu ∈ Lr′(Ω), where 1

r +
1
r′ = 1, and

−∆pu(x) ∈ λ|u(x)|q−2u(x) + ∂j(x, u(x)) for almost every x ∈ Ω.

Let Kλ = {x ∈ X : 0 ∈ ∂φλ(x)} for λ > 0.

Theorem 4.2. Assume (Hj) holds. Then there exists λ∗ > 0, such that for λ ∈ (0, λ∗), (4.1) has
at least two positive solutions ū1, ū2 ∈ int P1, two negative solutions ū3, ū4 ∈ int(−P1), one sign-
changing solution ū5 ∈ C1

0(Ω̄) and one nontrivial solution ū6 ∈ C1
0(Ω̄).

Example 4.3. Assume ∂j(x, u) := g(u) satisfies:

(a) g : R → R is continuous;

(b) |g(u)| ⩽ a1(1 + |u|r−1) for some a1 > 0 and q < p < r < p∗;

(c) there exists µ > p and M ⩾ 0 such that 0 < µG(u) ⩽ ug(u) for all u ⩾ M, where
G(u) =

∫ u
0 g(s)ds;

(d) limu→0
g(u)

|u|p−2u = 0;

(e) there exists m0 ⩾ 0 such that g(u) + m0|u|p−2u is nondecreasing in u.
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Note e ∈ L∞(Ω) if e ∈ W1,p
0 (Ω) and −∆pe = 1. By the condition (d) we can see the

condition (Hj) (iv) holds. Thus, all of the conditions in (Hj) hold if all conditions (a)∼(e) hold.
According to Theorem 4.2, we see that, for small enough λ > 0, the following boundary value
problem {

−div
(
∥Du(x)∥p−2Du(x)

)
− λ|u(x)|q−2u(x) = g(u) in Ω,

u = 0 on ∂Ω,

has at least two positive solutions ū1, ū2 ∈ int P1, two negative solutions ū3, ū4 ∈ int(−P1),
one sign-changing solution ū5 ∈ C1

0(Ω̄) and one nontrivial solution ū6 ∈ C1
0(Ω̄).

We should point out that in this case ū6 may be taken as a sign-changing solution. The
result of this kind has been obtained in [20]. Hence, Theorem 4.2 can be thought as an
extension of some main results in [20].

Example 4.4. Let

j(s) =

{
a
r1
|s|r1 , if s < 1,

b
r2
|s|r2 +

( a
r1
− b

r2

)
, if s ⩾ 1,

where p < r1 < r2 < p∗, 0 < a < b. Let Q = [a, b], then we have

∂j(s) =


a|s|r1−2s, if s < 1,

Q, if s = 1,

b|s|r2−2s, if s > 1.

It is easy to check that (Hj) holds for the above j.

To show Theorem 4.2 we will apply Theorem 3.19. To this end, we need to check that all
conditions in Theorem 3.19 hold. By now, many of these proofs are standard and well known.
Nevertheless, for the convenience of the reader, we will give detailed proofs of some lemmas.
Some of our proofs refer to [17, 27]. In what follows we will assume that m = 0. It is not
difficult to show the result holds in the case of m > 0.

Let A : W1,p
0 (Ω) 7→ W−1,p′(Ω) be defined by

⟨A(u), v⟩ =
∫

Ω
∥Du(z)∥p−2(Du(z), Dv(z))RN dz for u, v ∈ W1,p

0 (Ω).

The following Lemma 4.5 can be found in [17, p. 435].

Lemma 4.5. The mapping A : W1,p 7→ W−1,p′(Ω) is continuous and has the (S)+ property, i.e., if
{un} is a sequence in W1,p(Ω) such that un ⇀ u in W1,p(Ω) and

lim sup
n→∞

⟨A(un), un − u⟩ ⩽ 0,

then un → u in W1,p(Ω).

Recall some facts about the spectrum of the p-Laplacian with Dirichlet boundary condition.
Consider the nonlinear eigenvalue problem{

−div
(
∥Du(x)∥p−2Du(x)

)
= λ|u(x)|p−2u(x) in Ω,

u = 0 on ∂Ω.
(4.2)
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Let λ1 be the principal eigenvalue of (−∆p, W1,p
0 (Ω)). Then λ1 is positive, isolated and

simple. There is the following variational characterization of λ1 using Rayleigh quotient:

λ1 = inf

{
∥Du∥p

p

|u|pp
: u ∈ W1,p

0 (Ω), u ̸= 0

}
.

This minimum is actually realized at normalized eigenfunction ũ1. The Ljusternik–
Schnirelmann theory gives, in addition to λ1, a whole strictly increasing sequence of posi-
tive numbers λ1 < λ2 ⩽ λ3 ⩽ · · · ⩽ λk ⩽ · · · for which there exist nontrivial solutions for
problem (4.2). In what follows we let ũ2 ∈ W1,p

0 (Ω) be a nontrivial solutions for problem (4.2)
corresponding to λ2, and E1 = span{ũ1, ũ2}.

Lemma 4.6. If u ∈ Kλ, then u ∈ C1
0(Ω̄) and u solves (4.1). Moreover, if u ∈ ±P ∩ Kλ and u ̸= 0,

then u ∈ int(±P1) ∩ Kλ.

Proof. The proof is similar to Proposition 3.1 and 3.2 in [17]. Obviously, u 7→ 1
p∥u∥p is a

C1-functional whose derivative is the operator A. Aubin–Clarke’s Theorem ensures that the
functional

u 7→
∫

Ω
j(x, u)dx

is Lipschitz continuous on any bounded subset of Lr(Ω) and its gradient is included in the
set

N(u) = {w ∈ Lr′(Ω) : w(x) ∈ ∂j(x, u(x)) for almost every x ∈ Ω}.

Since X continuously embedded in Lr(Ω), the function φλ turns out to be locally Lipschitz
on X. So, we have

∂φλ(u) ⊂ A(u)− λ|u|q−2u − N(u). (4.3)

Now, if u ∈ X complies with 0 ∈ ∂φλ(u) then

A(u) = λ|u|q−2u + w in X∗

for some w ∈ N(u). Hence, ∆pu ∈ Lr′(Ω) and u solves (4.1). By the condition (Hj) (ii) and
(4.3) we get the estimate

−u∆pu ⩽ a1(|u|+ |u|r) a.e. in Ω.

Hence, by [12, Theorem 1.5.5], we have u ∈ L∞(Ω). From (Hj) (ii) it follows ∆pu ∈ L∞(Ω).
So, by [12, Theorem 1.5.6], we have u ∈ C1

0(Ω̄).
Let u ∈ P ∩ Kλ and u ̸= 0. By (Hj) (v), we can find a constant c0 > 0

∆pu = −λuq−1 − w ⩽ c0up−1

for some w ∈ ∂j(x, u). The Vázquez maximum principle yields u ∈ int P1.
Similarly, if u ∈ −P ∩ Kλ and u ̸= 0, then u ∈ int(−P1) ∩ Kλ. The proof is complete.

Lemma 4.7. If {xn} ⊂ W1,p
0 (Ω) is bounded, and either (1 + ∥xn∥)m(xn) → 0, or

(1 + ∥xn∥)m±P(xn) → 0, or (1 + ∥xn∥)mD(xn) → 0 as n → +∞, where D is an ordered inter-
val in X, then {xn} has a convergent subsequence.
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Proof. We only consider the case of (1+ ∥xn∥)m(xn) → 0 as n → +∞. In a similar way we can
prove other cases.

Since {xn} is bounded, by passing to a subsequence if necessary, we may assume

xn ⇀ x in W1,p
0 (Ω), xn → x in Lk(Ω) for 1 < k < p∗, xn(z) → x(z) a.e. on Ω

and |xn(z)| ⩽ g(z) a.e. on Ω, for all n ⩾ 1, with g ∈ Lr(Ω). Take x∗n ∈ ∂φλ(xn) such that
m(xn) = ∥x∗n∥∗ for n ⩾ 1. Then we have

x∗n = A(xn)− λ|xn|q−2xn − un (4.4)

with un ∈ Lr′(Ω), where 1
r +

1
r′ = 1, satisfying un(x) ∈ ∂φ(x, xn(x)) a.e. on Ω.

Now, we can deduce from (1+ ∥xn∥)m(xn) → 0 that |⟨x∗n, xn − x⟩| ⩽ 1
n∥xn − x∥. This reads∣∣∣⟨A(xn), xn − x⟩ − λ

∫
Ω
|xn|q−2xn(xn − x)dz −

∫
Ω

un(xn − x)dz
∣∣∣ ⩽ 1

n
∥xn − x∥.

Then, we have

λ
∫

Ω
|xn|q−2xn(xn − x)dz → 0 and

∫
Ω

un(xn − x)dz → 0 as n → ∞,

and so,
lim
n→∞

⟨A(xn), xn − x⟩ = 0.

It follows from Lemma 4.5 that xn → x in W1,p
0 (Ω). The proof is complete.

Lemma 4.8. For λ > 0 small enough, the functional φλ : X 7→ R satisfies the conditions (CPS),
(CPS)±P and (CPS)D for any ordered interval D ⊂ X.

Proof. The proof is similar to claim 1 of Theorem 3.1 in [27]. We only prove that φλ : X 7→ R

satisfies the conditions (CPS)P and (CPS)D for any interval D ⊂ X.
Let c1 > 0 is the best embedding constant of Lp(Ω) ↪→ Lq(Ω). Assume that λ̃ > 0 be such

that (
µ

p
− 1
)
−

λ̃cp
1

λ
q
p
1

(
µ

q
− 1
)
> 0.

Let λ ∈ (0, λ̃). In what follows c2, . . . , c8 denote some positive constants. Let {xn} ⊂ P be such
that |φλ(xn)| ⩽ M1 for some M1 > 0, and (1+ ∥xn∥)mP(xn) → 0 as n → ∞. By Proposition 2.9
that mP(xn) = ⟨x∗n, u(xn)⟩ for some x∗n ∈ ∂φλ(xn) and u(xn) ∈ (xn − P) ∩ B̄(0, 1). So, we have

⟨x∗n, xn − y⟩ ⩽ ⟨x∗n, u(xn)⟩ for all y ∈ P, ∥xn − y∥ < 1. (4.5)

Let yn = xn +
1

2∥xn∥xn for n ⩾ 1. Then, yn ∈ P, ∥xn − yn∥ < 1. And so, by (4.5) we have

(1 + ∥xn∥)⟨x∗n, xn − yn⟩ = − (1 + ∥xn∥)
2∥xn∥

⟨x∗n, xn⟩

= − (1 + ∥xn∥)
2∥xn∥

(
⟨A(xn), xn⟩ − λ|xn|qq +

∫
Ω

jo(z, xn(z);−xn(z))dz
)

⩽ (1 + ∥xn∥)⟨x∗n, u(xn)⟩ =: εn with εn ↓ 0.
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So we obtain

−
(
⟨A(xn), xn⟩ − λ|xn|qq +

∫
Ω

jo(z, xn(z);−xn(z))dz
)
⩽

2∥xn∥
(1 + ∥xn∥)

εn.

which leads

−∥Dxn∥p
p + λ|xn|qq −

∫
Ω

jo(z, xn(z);−xn(z))dz ⩽
2∥xn∥

(1 + ∥xn∥)
εn = ε′n, ε′n ↓ 0. (4.6)

Assume without loss of generality that ε′n ⩽ 1 for all n. Since |φλ(xn)| ⩽ M1 for all n ⩾ 1, we
have

1
p
∥Dxn∥p

p −
λ

q
|xn|qq −

∫
Ω

j(z, xn(z))dz ⩽ M1. (4.7)

By (4.6) and (4.7) we obtain that if ∥xn∥ ⩾ 1,(
µ

p
− 1
)
∥Dxn∥p

p − λ

(
µ

q
− 1
)
|xn|qq −

∫
Ω

(
µj(z, xn(z)) + jo(z, xn(z);−xn(z))

)
dz

⩽ µM1 + ε′n.
(4.8)

By (Hj) (ii)(iii) we have for some β1 > 0 (see [27, 2531]),∫
Ω

(
µj(z, xn(z)) + jo(z, xn(z);−xn(z))

)
dz ⩾ −β1. (4.9)

It follows from (4.8) and (4.9) that for n ⩾ 1,(µ

p
− 1
)
−

λcq
1

λ
q
p
1

(
µ

q
− 1
) ∥Dxn∥p

p ⩽ µM1 + 1 + β1.

Then, we infer that {xn} ⊂ W1,p
0 (Ω) is bounded. So, by Lemma 4.7 we see that {xn} has a

convergent subsequence. Thus, φλ satisfies the condition (CPS)P.
Now we show that φλ satisfies the condition (CPS)D for any ordered interval D ⊂ X.

Let {xn} ⊂ D be such that |φλ(xn)| ⩽ M2 for some M2 > 0 and (1 + ∥xn∥)mD(xn) → 0
as n → ∞. Obviously, we see that {|xn|µ} is bounded. Take s > 1 such that r < s <

min
{

p∗, p max{N,p}+µ)
min{N,p}

}
. By (Hj) (ii) we have for a.e. x ∈ Ω, and z ∈ R,

j(x, z) ⩽ c2 + c3|z|s, c2, c3 > 0.

Take

θ =

{ p∗(s−µ)
s(p∗−µ)

, N > p,

1 − µ
s , N ⩽ p.

Then we have 0 < θ < 1, and
1
s
=

1 − θ

µ
+

θ

p∗
.

Thus, by using the interpolation inequality and the Sobolev embedding theorem, we obtain

|xn|s ⩽ |xn|1−θ
µ |xn|θp∗ ⩽ c4∥xn∥θ for some c4 > 0.
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Since |φλ(xn)| ⩽ M1, Ls(Ω) ↪→ Lp(Ω) and Ls(Ω) ↪→ Lq(Ω), by using the well known Young’s
inequality we have

1
p
∥Dxn∥p

p ⩽
1
q
|xn|qq + c2|Ω|+ c3|xn|ss + M1

⩽ c5 + c6|xn|ss ⩽ c7 + c8∥Dxn∥θs
p .

If N > p, then Ns < p(N + µ), and so we have

θs =
p∗(s − µ)

p∗ − µ
=

pN
N − p

· (s − µ)(N − p)
pN − Nµ + pµ

<
pN

N − p
· (s − µ)(N − p)

Ns − Nµ
= p.

If N ⩽ p, then s < p + µ. So,

θs =
(

1 − µ

s

)
s = s − µ < p.

Thus, in both cases we have θs < p. Consequently, {∥xn∥} is bounded. So, by Lemma 4.6
we see that {xn} has a convergent subsequence. Thus, φλ satisfies the condition (CPS)D. The
proof is complete.

By the condition (Hj)(iv), we may take ρ+ > 1 and λ+ > 0 such that

max ∂j(x, M
1

p−1
+ e) <

M+

2ρ+
and λ+(M+)

q−p
p−1 ∥e∥q−1

∞ <
1

2ρ+
.

Then we have for λ ∈ (0, λ+),

ρ−1
+

(
− ∆p(M

1
p−1
+ e)

)
> λ|M

1
p−1
+ e|q−2(M

1
p−1
+ e) + max ∂j(x, M

1
p−1
+ e) a.e. in Ω. (4.10)

Similarly, there exist ρ− > 1, λ− > 0 such that for λ ∈ (0, λ−),

ρ−
(
− ∆p(M

1
p−1
− e)

)
< λ|M

1
p−1
− e|q−2(M

1
p−1
− e) + min ∂j(x, M

1
p−1
− e) a.e. in Ω.

Let ρ = min{ρ+, ρ−} and λ∗ = min{λ−, λ+, λ̃}. For each λ ∈ (0, λ∗), let

ε0(λ) =

(
λ

1
p−q

(ρλ1)
1

p−q ∥ũ1∥∞

)p−1

.

Then for each ε ∈ (0, ε0(λ)), we have

ρ
(
− ∆p(ε

1
p−1 ũ1)

)
= ρελ1ũp−1

1 < λ(ε
1

p−1 ũ1)
q−1

⩽ λ(ε
1

p−1 ũ1)
q−1 + min ∂j(x, ε

1
p−1 ũ1) a.e. in Ω,

(4.11)

and

ρ−1(− ∆p(−ε
1

p−1 ũ1)
)
= −ελ1|ũ1|p−2ũ1

> −λ|ε
1

p−1 ū1|q−2ε
1

p−1 ũ1 + max ∂j(x,−ε
1

p−1 ũ1) a.e. in Ω.

Since ũ1, e ∈ P1, there exists ε1(λ) ∈ (0, ε0(λ)) such that for each λ ∈ (0, λ∗) and ε ∈ (0, ε1(λ)),

M
1

p−1
− e ≪ −ε

1
p−1 ũ1 ≪ 0 ≪ ε

1
p−1 ũ1 ≪ M

1
p−1
+ e.

Let
u0 = M

1
p−1
− e, v0 = −ε

1
p−1 ũ1, u1 = ε

1
p−1 ũ1, v1 = M

1
p−1
+ e (4.12)

and D1 = [u0, v1], D2 = [u0, v0], D3 = [u1, v1].
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Lemma 4.9.

1) There exists R0 > 0 such that for λ ∈ (0, λ∗),

sup
u∈SR0∩E1

φλ(u) < φ(0). (4.13)

2) Let lε = Sε ∩ E1 such that lε ∩ G2 ̸= ∅ and lε ∩ G3 ̸= ∅. Then there exits ε̄0 > 0 such that
α(ε) := maxu∈lε φλ(u) < 0 for ε ∈ (0, ε̄0).

Proof. 1) The proof is similar to claim 3 of Theorem 3.1 in [27]. For almost all x ∈ Ω and
all z ∈ R, the function s 7→ 1

sµ j(x, sz) is locally Lipschitz on (0,+∞). Using the mean value
theorem for locally Lipschitz functions, for s > 1 we can find θ ∈ (1, s) such that

1
sµ

j(x, sz)− j(x, z) ∈
(
− µ

θµ+1 j(x, θz) +
1
θµ

∂z j(x, θz)z
)
(s − 1)

=
s − 1
θµ+1

(
− µj(x, θz) + ∂z j(x, θz)θz

)
.

By (Hj) (iii), for almost all x ∈ Ω and all z ⩾ M, we have

1
sµ

j(x, sz)− j(x, z) ⩾
s − 1
θµ+1

(
− µj(x, θz)− jo(x, θz;−θz)

)
⩾ 0.

Then for almost all x ∈ Ω and all z ⩾ M, we have

j(x, z) = j
(

x,
z
M

M
)
⩾
( z

M

)µ
j(x, M) ⩾

( z
M

)µ
inf
x∈Ω

j(x, M).

Take p1 ∈ (p, µ). So, it is seen that for a given η > 0 we can find a constant cη > 0 such that

j(x, z) ⩾
η

p
zp1 − cη for a.e. x ∈ Ω. (4.14)

Let ū ∈ S1 := {u ∈ W1,p
0 (Ω) : ∥Du∥p = 1}. It follows from (4.14) that for t ∈ [0,+∞),

φλ(tū) =
1
p
∥D(tū)∥p

p −
λtq

q
|ū|qq −

∫
Ω

j
(
x, tū(x)

)
dx

⩽
tp

p
− λtq

q
|ū|qq −

ηtp1

p
|ū|p1

p1 + cη |Ω|.
(4.15)

This implies that
lim

t→+∞
φλ(tū) = −∞.

Since E1 ∩ S1 is compact, there exists R0 > 0 such that (4.13) holds.
2) For each u ∈ lε, let ū = u

∥u∥ ∈ S1. Since j(x, z) ⩾ 0 for a.e. x ∈ Ω and z ∈ R, as in the
proof of (4.15) we have

φλ(εū) =
1
p
∥D(εū)∥p

p −
λεq

q
|ū|qq −

∫
Ω

j
(
x, ū(x)

)
dx

⩽
εp

p
− λεq

q
|ū|qq

Thus, there exists ε̄0 > 0 such that α(ε) < 0 for ε ∈ (0, ε̄0). The proof is complete.
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Lemma 4.10. φλ is outwardly directed on ±P, Di and ±P ∩ Di for i = 1, 2, 3 and λ ∈ (0, λ∗).
Moreover, φλ has no critical point at ∂E(±P1), and ∂E(Di ∩ E) for i = 1, 2, 3 and λ ∈ (0, λ∗), where
Di be defined by (4.12).

Proof. We only prove that φλ is outwardly directed on [u1, v1] and has no critical point on
∂E([u1, v1] ∩ E) for λ ∈ (0, λ∗). In the same way we can show other cases.

Assume to the contrary that ∂E([u1, v1] ∩ E) ∩ Kλ ̸= ∅. Take u ∈ ∂E([u1, v1] ∩ E) ∩ Kλ.
Then we have u = (−∆p)−1(λ|u|q−2u + w) for some w ∈ N(u). It follows from u1, v1 ∈ E and
u1 ⩽ u ⩽ v1 that u ∈ L∞(Ω). Then we have by (4.10) and (4.11),

−∆pu = λ|u|q−2u + w ⩾ λ|u|q−2u + min ∂j(x, u)

⩾ λ|u1|q−2u1 + min ∂j(x, u1) ⩾ ρ
(
− ∆pu1

)
,

and

−∆pu = λ|u|q−2u + w ⩽ λ|u|q−2u + max ∂j(x, u)

⩽ λ|v1|q−2v1 + max ∂j(x, v1) ⩽ ρ−1(− ∆pv1
)
.

As a consequence of the weak comparison theorem [35] we obtain u ⩾ ρ
1

p−1 u1 ≫ u1 and

v1 ⩾ ρ
1

p−1 u ≫ u. This implies that u ∈ int([u1, v1] ∩ E), which is a contradiction. Hence, φλ

has no critical point on ∂E([u1, v1] ∩ E).
The following elementary inequality is well known:

(
|y|p−2y − |h|p−2h, y − h

)
RN ⩾

{
c1(p)(|y|+ |h|)p−2|y − h|2 if 1 < p < 2,

c2(p)|y − h|p if p ⩾ 2

for all y, h ∈ RN , where c1(p), c2(p) > 0 are constants.
For u∗ = Au − λ|u|q−2u − w ∈ ∂φλ(u), we let v = (−∆p)−1(λ|u|q−2u + w), where w ∈

Lr′(Ω) and w ∈ ∂j(x, u). If u∗ ̸= 0, then u ̸= v, and so

⟨u∗, u − v⟩ = ⟨Au − λ|u|q−2u − w, u − v⟩
= ⟨Au + ∆pv, u − v⟩ = ⟨Au, u − v⟩+ ⟨∆pv, u − v⟩

=
∫

Ω
|∇u|p−2∇u · ∇(u − v) +

∫
Ω
(u − v)∆pv

=
∫

Ω
|∇u|p−2∇u · ∇(u − v)−

∫
Ω
|∇v|p−2∇v · ∇(u − v)

⩾

{
c1(p)

∫
Ω(|∇u|+ |∇v|)p−2|∇(u − v)|2 if 1 < p < 2,

c2(p)
∫

Ω |∇(u − v)|p if p ⩾ 2

> 0.

This implies that φλ is outwardly directed on [u1, v1]. The proof is complete.

Lemma 4.11. For any a, b ∈ R with a < b, Kλ ∩ φ−1
λ ([a, b]) is compact in E.

Proof. We follow some ideas in Lemma 3.2 and 3.3 in [3]. For each u ∈ Kλ ∩ φ−1
λ ([a, b]), it

follows from the proof of Lemma 4.6 that u = (−∆p)−1(λ|u|q−2u + w) for some w ∈ N(u). By
a similar way as the proof of Lemma 4.8 we can prove that Kλ ∩ φ−1

λ ([a, b]) is bounded in X.
Let

B(λ) :=
{

λ|u|q−2u + w : u ∈ Kλ ∩ φ−1
λ ([a, b]), w ∈ N(u)

}
.
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If p > N then X ↪→ L∞(Ω). So, Kλ ∩ φ−1
λ ([a, b]) is bounded in L∞(Ω) if p > N. It follows

the condition (Hj) (ii) that the set B(λ) is bounded in L∞(Ω). According to [21], there exists
0 < α < 1 and c1 > 0 such that

∥(−∆p)
−1u∥C1,α ⩽ c1∥u∥

1
p−1
∞ for all u ∈ L∞(Ω). (4.16)

Hence, Kλ ∩ φ−1
λ ([a, b]) is bounded in C1,α(Ω̄), and is compact in E.

If 1 < p ⩽ N, take p∗ > r̃ > (r−1)N
p . According to [14] we have

∥(−∆p)
−1u∥∞ ⩽ c2∥u∥

1
p−1

r̃ for all u ∈ Lr̃(Ω).

So, for each u ∈ Kλ ∩ φ−1
λ ([a, b]), u = (−∆p)−1(λ|u|q−2u + w) for some w ∈ N(u), we have

∥u∥∞ = ∥(−∆p)
−1(λ|u|q−2u + w)∥∞ ⩽ c2∥(λ|u|q−2u + w)∥

1
p−1

r̃ . (4.17)

It follows from the Sobolev embedding theorem and the condition (Hj) (ii) that the set B(λ)
is bounded in Lr̃(Ω). Thus, it follows from (4.17) that Kλ ∩ φ−1

λ ([a, b]) is bounded in L∞(Ω).
Then, by (4.16) , we see that Kλ ∩ φ−1

λ ([a, b]) is compact in E. The proof is complete.

Proof of Theorem 4.2. It follows from Lemmas 4.5∼4.11 that all conditions in Theorem 3.19
hold. According to Theorem 3.19, (4.1) has at least two positive solutions ū1, ū2, two nega-
tive solutions ū3, ū4, one sign-changing solution ū5 and one nontrivial solutions ū6. The proof
is complete.

Remark 4.12. There have been some papers studied the existence for sign-changing solutions
of differential inclusion problems; see [3, 8, 17, 36] and the references therein. For example, by
combing variational methods with truncation techniques the paper [17] obtained the existence
of positive, negative and nodal solutions to differential inclusion problems with a parameter.
Here, our method is different to that in [8, 17].

Remark 4.13. Here, we cannot be sure that the nontrivial solution ū6 is a sign-changing solu-
tion. How to get the nontrivial solution to be a sign-changing solution under the condition of
q < p is a problem that needs to be further discussed.

5 Appendix: Another proof of Proposition 2.9

Proof. We follow some ideas to show von Neumann–Sion Saddle-point Theorem. Set D =

∂φ(x0). Let X∗
w and Xw denote the spaces X∗ and X furnished their weak topology, respec-

tively. Then
(
(x0 − C)∩ B̄(0, 1)

)
is a sequentially compact set in the space Xw. Define h : D →

R by h(y∗) = sup
x∈
(
(x0−C)∩B̄(0,1)

)⟨y∗, x⟩ for y∗ ∈ D. Then h : D → R is lower weakly semi-

continuous. Note that D is a compact set of X∗
w. Hence, α = miny∗∈D maxx∈((x0−C)∩B̄(0,1))⟨y∗, x⟩

exists.
For each δ > 0 and x ∈

(
(x0 − C) ∩ B̄(0, 1)

)
, let gx(y∗) = ⟨y∗, x⟩ − α + δ for all y∗ ∈ D. For

each x ∈
(
(x0 − C) ∩ B̄(0, 1)

)
and ε > 0, let

Gx,ε = {y∗ ∈ D : gx(y∗) > ε}.
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Since gx is continuous in X∗
w, Gx,ε is an open subset in X∗

w for each x ∈
(
(x0 − C) ∩ B̄(0, 1)

)
and ε > 0. Note that the inequalities

gx(y∗) ⩽ 0, ∀x ∈
(
(x0 − C) ∩ B̄(0, 1)

)
has no solution in D. Then, for each y∗ ∈ D, there at least exist x ∈

(
(x0 − C) ∩ B̄(0, 1)

)
such

that gx(y∗) > 0. Hence, A = {Gx,ε : x ∈
(
(x0 − C) ∩ B̄(0, 1)

)
, ε > 0} is an open cover of D

in X∗
w. Since D is compact in X∗

w, then there exist finite sets in A , say Gx1,ε1 , Gx2,ε2 , . . . , Gxm,εm ,
such that D ⊂ ⋃m

i=1 Gxi ,εi . Let ε0 = min{ε1, ε2, . . . , εm}. Then we have D ⊂ ⋃m
i=1 Gxi ,ε0 .

Let T : D → Rm be defined by

T(y∗) =
(

gx1(y
∗), gx2(y

∗), . . . , gxm(y
∗)
)
.

Set A = {(y1, y2, . . . , ym) : yi < ε0, i = 1, 2, . . . , m}. Then, we have co
(
T(D)

)
∩ A = ∅. In

fact, for any y = (y1, y2, . . . , ym) ∈ co
(
T(D)

)
, there exist z1, z2, . . . , zγ ∈ T(D) and ti ⩾ 0 for

1 ⩽ i ⩽ γ, ∑m
i=1 ti = 1 such that y = ∑γ

i=1 tizi. Moreover, for each zi ∈ T(D), 1 ⩽ i ⩽ γ, there
exist y∗i (1 ⩽ i ⩽ γ) such that

zi =
(

gx1(y
∗
i ), gx2(y

∗
i ), . . . , gxm(y

∗
i )
)
, i = 1, 2, . . . , γ.

Thus, we have

yj =
γ

∑
i=1

tigxj(y
∗
i ) = gxj

(
γ

∑
i=1

tiy∗i

)
, j = 1, 2, . . . , m.

Since ∑γ
i=1 tiy∗i ∈ D, then there exists j0 ∈ {1, 2, . . . , m} such that yj0 = gxj0

(
∑γ

i=1 tiy∗i
)
> ε0.

This implies that y ̸∈ A, and so co (T(D)) ∩ A = ∅.
By using the Eidelheit convex separation theorem, there exists λ′

1, λ′
2, . . . , λ′

n, such that
∑m

i+1 λ′
iyi ⩽ 1 for all (y1, y2, . . . , ym) ∈ A, and ∑m

i=1 λ′
igxi(y

∗) ⩾ 1 for each y∗ ∈ D and T(y∗) =(
gx1(y

∗), gx2(y
∗), . . . , gxm(y∗)

)
∈ T(D). It is easy to see that λ′

i ⩾ 0 and (λ′
1, λ′

2, . . . , λ′
m) ̸=

(0, 0, . . . , 0). Let λ = ∑m
i=1 λ′

i and λi =
λ′

i
λ for i = 1, 2, . . . , m. Then we have for all y∗ ∈ D,

g(y∗) :=
m

∑
i=1

λigxi(y
∗) ⩾

1
λ
> 0.

Note that

g(y∗) =
m

∑
i=1

λi
(
⟨y∗, xi⟩ − α + δ

)
=

〈
y∗,

m

∑
i=1

λixi

〉
− α + δ.

Thus, we have for all y∗ ∈ D, 〈
y∗,

m

∑
i=1

λixi

〉
> α − δ.

So, we have

min
y∗∈D

〈
y∗,

m

∑
i=1

λixi

〉
⩾ α − δ.

Since δ > 0 is arbitrarily given, we have

max
x∈
(
(x0−C)∩B̄(0,1)

)min
y∗∈D

⟨y∗, x⟩ ⩾ α.
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On the other hand, we have

min
z∗∈D

⟨z∗, x⟩ ⩽ ⟨y∗, x⟩, ∀y∗ ∈ D, x ∈
(
(x0 − C) ∩ B̄(0, 1)

)
,

and so
max

x∈
(
(x0−C)∩B̄(0,1)

)min
z∗∈D

⟨z∗, x⟩ ⩽ max
x∈
(
(x0−C)∩B̄(0,1)

)⟨y∗, x⟩.

Hence,
max

x∈
(
(x0−C)∩B̄(0,1)

)min
z∗∈D

⟨z∗, x⟩ ⩽ min
y∗∈D

max
x∈
(
(x0−C)∩B̄(0,1)

)⟨y∗, x⟩ = α.

Then we have

max
x∈
(
(x0−C)∩B̄(0,1)

)min
y∗∈D

⟨y∗, x⟩ = min
y∗∈D

max
x∈
(
(x0−C)∩B̄(0,1)

)⟨y∗, x⟩ = α.

Moreover, there exists (x∗0 , x0) ∈ D ×
(
(x0 − C) ∩ B̄(0, 1)

)
such that

max
x∈
(
(x0−C)∩B̄(0,1)

)min
y∗∈D

⟨y∗, x⟩ = ⟨x∗0 , x0⟩ = min
y∗∈D

max
x∈
(
(x0−C)∩B̄(0,1)

)⟨y∗, x⟩.

This implies that for all x ∈
(
(x0 − C) ∩ B̄(0, 1)

)
and y∗ ∈ D,

⟨x∗0 , x⟩ ⩽ ⟨x∗0 , x0⟩ ⩽ ⟨y∗, x0⟩.

The proof is complete.
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