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Abstract. We study the multiparameter p-Laplacian Dirichlet problem

(@p(u'(x))) + AlkuP= + Y aui) — i bui =0, —1<x<1,
u(—=1)=u(l) =0,

where p > 1, ¢,(y) = |y|" v, (¢p('))" is the one-dimensional p-Laplacian, A > 0
and y > 0 are two bifurcation parameters. We assume thatk > 0,0 < p—1 < ¢q; <
< - < gu<rn<mn<- ---<rmn>1a=1a >0fori=12...,m
and by =1,b; >0forj=1,2,...,n. We mainly prove that, on the (A, ||u]|,,)-plane, the
bifurcation diagram consists of a strictly decreasing curve for # = 0, and always consists
of a C-shaped curve for fixed y > 0. We then study the structures and evolution of the
bifurcation diagrams with varying u > 0.

Keywords: bifurcation diagram, evolution, positive solution, p-Laplacian, C-shaped
bifurcation curve, time map.

2020 Mathematics Subject Classification: 34B18, 74G35.

1 Introduction

In this paper we study the structures and evolution of bifurcation diagrams for the multipa-
rameter p-Laplacian Dirichlet problem

(1.1)

where p > 1, ¢,(y) = |y|" "y, (¢,(1'))" is the one-dimensional p-Laplacian, and A > 0 and
u > 0 are two bifurcation parameters. We assume that the nonlinearity

m
Sepa () = AkuP ™ ) au®) —py b (1.2)
i=1 =1
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is a generalized polynomial (see [9]) satisfying

{kzo,0<p—l<q1<q2<-~<qm<r1<r2<---<rn,m,nzl, (13)

ap=1,a;>0fori=1,2,...,mand by =1, b; >0forj=1,2,...,n

This problem arises in the study of non-Newtonian fluids, nonlinear diffusion problems,
and population dynamics of one species. The quantity p is a characteristic of the medium.
Media with 1 < p < 2 are called pseudoplastics fluids and those with p > 2 are called
dilatant. If p = 2, they are Newtonian fluids (see, e.g., Diaz [3,4] and their bibliographies).
In population dynamics, in (1.1), the one-dimensional p-Laplacian operator (¢, (1’ ))/ acts as
the diffusive mechanism describing the migration of u throughout the habitat (—1,1) which
is assumed to be surrounded by a completely hostile boundary {+1}. In (1.1), the reaction
term A(kuP~! 4 YL auf) — p Y bju'i is the growth rate of the population, which consists
of a source term A (kuP~' + Y3 ; a;u®) and an absorption term p 7 ; bju"i. Note that, by (1.3),
if p > 0, the absorption term u 2;7:1 bju'i is dominated by the source term when u near 0*
and dominate the source term when u is large enough, and the domination of the absorption
term over the source term is assumed to be strictly increasing on (0, c0). Murray [11] suggested
using diffusion of the form p in the study of diffusion-kinetic enzymes problems. By a positive
solution to p-Laplacian problem (1.1) with general p > 1, we mean a positive function u €
C'[-1,1] with ¢,(u') € C'[—1,1] satisfying (1.1). Let Z = {x € [-1,1] : u/(x) = 0}. We note
that it is easy to show that, if u is a positive solution of (1.1), then u € C?[-1,1]if 1 < p <2
and u € C([~1,1] \ Z) if p > 2. For the proof we refer to [1, Lemma 6].

To study bifurcation diagrams of positive solutions of (1.1), (1.3), it is important to study
the shape of nonlinearity f;, 1(#) on (0,0) in the beginning. We show that there exist three
positive numbers B, 1 > ;0 > Yy,a such that fi, 2 (u) with A, u > 0 satisfies (1.4), (1.9), and
(1.11) stated behind. That is, positive numbers f, » > ;1 > ¥, are the unique positive zero,
critical point, and p-inflection point of f , 1 (1) on (0, o), respectively. First, we easily observe
that, for fi, 1 (u) with A, u > 0 satisfying (1.3), the number of sign changes in the sequence of
coefficients for the generalized polynomial fi, (1)

(Ak, Aay, Aay, ..., Ady, —uby, —pby, ..., —uby)

is 1. Applying Laguerre’s Theorem [10] (see also [9, Theorem 4.7]) on the number of positive
zeros to the generalized polynomial fi, 1(u), we obtain that there exists a unique positive
number f, 1 such that

feua(u) >0 on (0,B,1),
S (0) = frur(Bur) =0, (1.4)
fepua(u) <0 on (B, 00).

We set B,—0 = oo if u = 0. Notice that, by (1.3), it is easy to see that, for fixed A > 0,

lim y,\ = 0. (1.5)
In addition,
for fixed y > 0, B, is a continuous, strictly increasing function of A on (0, o) (1.6)

and

for fixed A > 0, B, is a continuous, strictly decreasing function of y on (0, ). (1.7)
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Secondly, we compute that

m n
feppr(w) =21 (p— DkuP™2+ Y aiqu® | —u Y bjrjuli=t (1.8)
i=1 j=1

Thus again, similarly, applying (1.3) and Laguerre’s Theorem [10] on the number of positive
zeros to the generalized polynomial f,iy 4 (1) in (1.8), we obtain that there exists a unique positive
number g,y < By,» such that

Sipa () >0 on (0,8y0),
flé,y,)x(u)(g%)\) =0, (19)
flé,y,)\(u) <0 on (gy,)t/ .B]/l,)\)'

So fiu(u) with A, u > 0 is increasing-decreasing on (0, 8,,1). Thirdly, we compute that
- 1 . 1
(P —=2) fipn () —ufi,a(u) =AY aigi(p =1 —g)ut™" —pu Y bir(p—1—rjui", (1.10)
i=1 j=1

inwhichp—-1—g; <0fori=1,2,...,mand p—1 —1; <0 for j =1,2,...,n. Thus again,
applying (1.3) and Laguerre’s Theorem [10] on the number of positive zeros to the generalized
polynomial (p —2)fi,, ,(u) — ufi!, ; (u) in (1.10), we obtain that there exists a unique positive
number 7y, 1 < {1 such that

(P = 2) frpn () —uf, 2 (1) <0 on (0,7,,),
(p - z)fli,y,)\(r)/}l,/\) - uflgy,)\(’)/y,/\) =0, (1.11)
(9= D)ff (1) — 1l (1) > O 0m (3, By

In this case fj 1 (u) with A, 4 > 0 is said to be p-convex-concave on (0, B,,1)-

Note that, in (1.1), AkuP~! is the p-linear term for generalized polynomial nonlinearity
fiu if bifurcation parameter k > 0. If k = 0, then fi , 1 has no p-linear term. In this paper we
are concerned only with positive solutions u of (1.1), (1.3) satisfying

=00 ifu=0,

(1.12)
<oco ifu>0.

0 <lulle < Bpa {

Positive solutions u of (1.1), (1.3) satisfying (1.12) are called classical positive solutions. Note
that positive solutions u of (1.1), (1.3) satisfying ||u||,, = B, are called flat-core positive solu-
tions.

For problem (1.1), (1.3), we study evolutionary bifurcation diagrams S, , on the (A, [|u]|,)-
plane defined by:

loo

Spiu = 1A [[ualle) : A > 0 and u, is a (classical) positive solution of (1.1), (1.3)}, p > 0.
(1.13)
First, when p = 0 and fi,—oa(u) = A(kuP™' + YL, auf), we study S,i,—o on the
(A, |Ju]|)-plane in the next proposition. We let

- — P if k
A= (pl> <7Tcsc 71) <o k>0, (1.14)
k p p =oo ifk=0.
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Proposition 1.1 (See Figs. 2.1-2.2 depicted behind). Let p > 1. Consider p-Laplacian problem
(1.1), (1.3) with y = 0 and fi,—o(u) = A(kuP~t + Y% au) > 0 on (0,00). Then the bifurcation
diagram S, x o satisfies the following assertions (i)—(ii):
(i) On the (A, ||u||,,)-plane, Sy —o emanates from the positive ||u|,-axis as A — 0%, tends to
the point (,0) = (%) (5 csc %)p, 0) if k > 0 and tends to the positive A-axis as A — oo if
k = 0, and consists of a continuous, strictly decreasing curve.

(ii) Moreover, ifk =0,m=1,q9=q1 > p—1and fr—ou—oa (1) = AuT > 0on (0,00), then

Spr=op=o = { (A l11allee) = (epaa® ™17, a), & = |lur |, > 0},

where
1

-1 14
= (=) e ur TG | 15
Cl’"i - ( p (q + ) |:r(pq;-(2qp+1q)1) > s ( . )

and T'(t) = fooo x!~le=*dx is the usual gamma function.

Proof. (I) We prove part (i). To study S, ,—o for p-Laplacian problem (1.1), (1.3) with u = 0,
we apply the time-map method for which the time-map formula takes the form as follows:

p—1\"" 1
AVP = () / - ———du = Tr(a) fora = [[ulle >0, (1.16)
P 0 [Fa) = F(w)]?
where .
fu) = fopmopmt(u) = kub= 1+ Y au
i=1
and F(u fo t)dt; see, e.g., [2, Lemmas 2.1 and 2.2] for the derivation of the time map

formula T( ) in (1. 16). We have that positive solution u, (x) of p-Laplacian problem (1.1), (1.3)
with p = 0 corresponds to ||u,]|, = « > 0 satisfying (1.16), e.g., [13, p. 382]. It is easy to
compute that, by (1.3),

lim f_(u) kuP=t 4+ Y1 i k=0 . f(u) _ kuP= + Y gl .
u—0t uP=t up~1 - u—soo yP—1 upb—1 ’
and .
(p—1)f(u) _”f :Eﬂl —1—4g,)u" <0 on (0,00).
i=1
Thus, by [13, (1.7), (1.9) and (4.4)], we have that lim, o+ T7() (pT) /p% cscl € (0, 0],

limy o0 Tr(a) = 0, and Tf(a) is a strictly decreasing function on (0, ). So part (i) directly
follows from (1.13) and (1.16).

(II) We prove part (ii). We have that f(u) = u9, g > p—1> 0and F(u) = [’ f(t)
—L-u9%1. It can be computed that

q+
e = (P=1) 7 ! d
o) = <p> /o Fla)— EQ) 77
_(p—1\ " 1
- (P) (q—|—1)1/r’/0 i _uq+l]1/lﬂdu

1

_ (7’_1>1/p (q+1)1-7p !r(pf’l)r(q“)] W

pa+2p—q—1
I( p(g+1) )
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by [6, p. 212, formula 855.42] or using symbolic manipulator Mathematica 11.0. Thus by (1.15)
and (1.16), we obtain that

)]’ = (P L 1- (p)(qﬂ) i1
A=) = S+ Plr(pq w7

= cpquf T, (1.17)

So part (ii) holds.
The proof of Proposition 1.1 is now complete. O

2 Main results

The main results in this paper are next Theorem 2.1 and Theorem 2.2 for problem (1.1), (1.3)
with 1 < p <2 and p > 2, respectively. In Theorems 2.1-2.2 with any fixed y > 0, we prove
that, on the (A, [|ul|,,)-plane, the bifurcation diagram S, , always consists of a continuous,
C-shaped curve with exactly one (right) turning point at some point (A*, ||uy+||,). While the
upper branch of each C-shaped bifurcation diagram S, is unbounded if 1 < p < 2 and is
bounded if p > 2. We then study the structures and evolution of bifurcation diagrams S ,
with varying u > 0; see Fig. 2.1 with 1 < p < 2 and Fig. 2.2 with p > 2. Theorem 2.1 and
Theorem 2.2 substantially improve [14, Corollary 2.2] and [14, Corollary 2.4], respectively. Cf.
[14, Corollary 2.2] with 1 < p < 2 and [14, Corollary 2.4] with p > 2 for details. Also see
Remark 3.2 stated behind.

e Sy 1<p<2,k>0

\

H>0

0 (A,0) A

Figure 2.1: Evolutionary bifurcation diagrams S, for (1.1), (1.3) with fixed
p € (1,2], k > 0 and varying u > 0.

Theorem 2.1 (See Fig. 2.1). Let 1 < p < 2and k > 0. Consider p-Laplacian problem (1.1), (1.3) with
varying u > 0. Then the bifurcation diagram S, ,, consists of a continuous curve on the (A, ||u/|,)-
plane and the following assertions (i)—(v) hold:

(i) For p = 0, S, xu—o emanates from the positive ||ul| -axis as A — 07, tends to the point
(A,0) = ((’%1) (% csc %)p, 0) if k > 0 and tends to the positive A-axis as A — oo if k = 0, and
consists of a strictly decreasing curve.
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(ii) For any fixed p > 0, S, always starts at the point (1,0) = ((£) (% 7) ,0)ifk >0
and emanates from the positive A-axis as A — oo if k = 0 (that is, (A,0) = (oo 0) if k = 0).
Sp iy 18 a C-shaped curve with exactly one turning point at some point (A%, |[u+||,,) satisfying

0 <A <A and 0< flupo < Bune

In addition, the upper branch of Sy, tends to infinity when A — oo. Thus, (1.1), (1.3) has
exactly two (classical) positive solutions for A* < A < A, exactly one (classical) positive solution
for A = A*and A > A, and no (classical) positive solution for 0 < A < A*.

(iii) For any nonnegative y1 < pa, Sp iy, lies on the right hand side of S 1., (S0 Sy, and Sy k1,
do not intersect.)

(iv) For the turning points (A*, ||[ur+||,) of Spxu with pu > 0, A* is a continuous, strictly increasing
function of u > 0, |[u+||., is a continuous function of u > 0,

oo

- —1 P
;}E{Jh(/\*' lua<||,) = (0,00) and ;}an}o(/\*’ lur]l) = (A,0) = <<pk> (7; CSCZ) ,O>.
In particular, when k = 0,m =1, n =1, g=q > p—1,r =r > q, and frour(u) =
Auf — pu”, then ||\uy- ||, is a strictly decreasing function of u > 0.

() Whenk=0,m=1,n=1,qg=q >p—1,r=r>q,and fr—gux(u) = Aul — pu’, then
all points (A, |[u||,) € Spr=o,u satisfy

1 1
- A\ 74
0< (57" <l <pua=(3) CRY

where cp,q is defined in (1.15).

24l

A

Figure 2.2: Evolutionary bifurcation diagrams S, for (1.1), (1.3) with fixed
p > 2,k > 0and varying u > 0.

Theorem 2.2 (See Fig. 2.2). Let p > 2 and k > 0. Consider one-dimensional p-Laplacian problem
(1.1), (1.3) with varying y > 0. Then the bifurcation diagram S, x , consists of a continuous curve on
the (A, |||, )-plane and the following assertions (i)—(vi) hold:
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(i) For p = 0, S, xu—o emanates from the positive ||ul| -axis as A — 07, tends to the point
(A,0) = ((qu) (% csc %)p, 0) if k > 0 and tends to the positive A-axis as A — oo if k = 0, and
consists of a strictly decreasing curve.

(ii) For any fixed p > 0, S, starts at the same point (1,0) = ((7) (5 csc%)p,O) ifk >0
and emanates from the positive |u||-axis as A — 07 if k = 0 (that is, (A,0) = (o0,0) if
k = 0), ends at some point (A, ||vz]|,,) satisfying 0 < A < coand 0 < [[vx |, = v5(0) = B, 5
satisfying fi ., 5(B,x) = 0 (that is, v (x) = lim,_ 3~ va(x) is a flat-core positive solution
of problem (1.1), (1.3), see part (a) stated below for (classical) positive solutions v, (x) with
A* < A < A). Moreover, Sy is a C-shaped curve with exactly one turning point at some point

(A%, ||up+|| ) satisfying

0<A* <min(A,A) and 0 < [lur|lo < |05l = Bpui-

Moreover, there exists a unique positive ft = fi(p,k,q;,7j,a;,b;) < oo ifk > 0and fi = oo if
k = 0 such that:

(@) If0 < u < fi, then (A* <) A < A such that problem (1.1), (1.3) has exactly two (classical)
positive solutions uy, vy with uy < vy satisfying |[up [l < [[Valle < By 3 for A* <A <
):\, exactly one (classical) positive solution u, satisfying |[uxlle < By, 5 foi A= A and
A < A < A, and no (classical) positive solution for 0 < A < A* and A > A. In addition,
lim) 3 luall = 0and lim, 5 [|oall = [0l = By 13-

(b) If u = fi, then (A* <) A = A such that problem (1.1), (1.3) has exactly two (classical)
positive solutions uy, vy with uy < vy satisfying [[uall, < [[valle < Bz for A" <A <
A, exactly one (classical) positive solution uy satisfying ||up||e < B, 5 for A = A%, and no
(classical) positive solution for 0 < A < A* and A > A. In addition, lim, 5 |[uy||, =0
and lim)_ 5 [[0z]|e = (|73l = By -

(c) If u > i, then (A* <) A < A such that problem (1.1), (1.3) has exactly two (classical)
positive solutions uy, vy with uy < vy satisfying [[ua |l < [[valle < Bz for A" <A <

o

A, exactly one (classical) positive solution u) satisfying ||u,]|, < B for A = A" and
exactly one (classical) positive solution v, satisfying ||va[|o < B, 3 for A <A <A, and no
(classical) positive solution for 0 < A < A* and A > A. In addition, lim, 5 |[u,||, =0
and lim, 5 [|0a[| oo = |93l = By -

(iii) For any nonnegative py < pa, Sy, lies on the right hand side of S 1., (S0 Sp ., and Sy i,
do not intersect.)

(iv) For the ending points (A, ||vx||.) of Spjp with p > 0, A is a continuous, strictly increasing
unction of u > 0, ||v; ||, is a continuous, strictly decreasing function of u > 0,
ti w>0,|vill, 1 ti trictly d ng ti u>0

lim (A, ||os = (0, d lim (A, ||os = (00,0). 2.2
Jim (A, o5l) = (0,09) and lim (3, Jo]..) = (2,0) (2.2)

(v) For the turning points (A*, ||ux<|| ) of Spxu with p > 0, A* is a continuous, strictly increasing
function of u > 0, ||ux+||, is a continuous function of u > 0,

oo

im (1" _ im (A" o= (P (T ™Y
im (1% i ) = (0,00) and fim (1% ) = (1,0) = (B3 ) (Fese ) 0).

H—
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(i) Whenk =0,m=1,n=1,q=q >p—1,r=r>q,and fi_o,(u) = Aul — pu’, then
all points (A, |[url|o) € Spr=ou satisfy (2.1).

Remark 2.3 (See Fig. 2.2). By Theorem 2.2, for fixed p € (2,00) and k > 0, it is easy to see that,
when i — 0, S, ,, converges to the half-line [A, o) on the positive A-axis.

3 Lemmas

To prove Theorems 2.1-2.2 for p-Laplacian problem (1.1), (1.3), we need the following Lemmas
3.1 and 3.3-3.12. In particular, Theorems 2.1-2.2 is based on Lemma 3.1 which is due to Wang
and Yeh [14]. Wang and Yeh [14] considered the p-Laplacian Dirichlet problem with one
parameter A:

(o' (x) + falu(x)) =0, -1 <x <1, o)
u(—1) = u(1) = 0. '
They assumed that the nonlinearity
fau) = Ag(u) — h(u), (3.2)

where functions g,k € C[0,00) N C?(0,00) satisfy hypotheses (H1)-(H4) if 1 < p < 2 and
satisfy hypotheses (H1)-(H5) if p > 2:

(H1) ¢(0) =h(0) =0, g(u), h(u) > 0 on (0,00), and

(H2) The positive function h(u)/g(u) is strictly increasing on (0, c0), and

lim M:O, limM:oo.
u=0+ g(u) u=veo g(u4)

H3) (p—2)g' (1) —ug”(u) <0on (0,00) and (p —2)1' (u) — uh”(u) < 0 on (0, ).

(H4) The positive function [(p — 2)h'(u) — uh” (u)] / [(p — 2)g' (1) — ug” (u)] is strictly increas-
ing on (0, c0), and
(p = 2)W (1) — uh”(u) (p = 2)I' (1) — uh"(u)

lim =0, lim = c0.
u—0t (p —2)g'(u) — ug”(u) u—eo (p —2)g'(u) — ug"(u)

(H5) There exists a positive number p* > p — 1 such that g(u)/u?" is strictly decreasing on
(0,00) and h(u)/uP" is strictly increasing on (0, c0). In addition, for each fixed s € (0,1),

h(su) (h(u)g(su)
1 (g )

is a strictly increasing function of u on (0, %), and

L g (sw)

I gluph(su) © (o)
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Notice that, for p-Laplacian problem (3.1), hypotheses (H1)-(H2) imply that, for each fixed
A > 0, there exists a unique positive number §, such that

fr(u) = Ag(u) —h(u) >0 on (0,Bx),
f1(0) = Ag(0) —h(0) = 0and fr(Br) = Ag(Br) —h(Br) =0,
fa(u) = Ag(u) —h(u) <0 on (By, ).

Moreover, the number B, is a continuous, strictly increasing function of A on (0,c0),
limy_,o+ pA = 0 and lim)_,, By = oo. See [14, (1.4)—(1.5)]. Also, hypotheses (H1)—-(H4) im-
ply that, for each fixed A > 0, the function f,(u) with A > 0 is p-convex-concave on (0, B, ).
More precisely, there exists a unique positive number 7y, < 8, such that

(p—2)fy(u) —ufy(u) <0 on (0 YA),
(P—2)fi(’m) n 1) =
(p—2)fi(u) —ufy(u) >0 on (’m,ﬁA)

See [14, (1.6)]. In [14], Wang and Yeh are concerned only with positive solutions u of (3.1)
satisfying 0 < ||u||,, < Ba- Let

. — P if m§ >0,
A= P gl (ﬁcsc n) < 1 o > (3.3)
my p p =oo if my=0.

For f)(u) = Ag(u) — h(u) in (3.2), we define F) (1) = [, fa(t)dt and

Ta(a) = (p;l)l/’”/ [Fa(a) — Fa(u)]YPdu  for0 < a < Bj.
0

Lemma 3.1. Consider p-Laplacian problem (3.1) with p > 1. Then the following assertions (i)—(ii)

hold:

(i) ([14, Theorem 2.1 and Fig. 1]) Let 1 < p < 2. If fa(u) = Ag(u) —h(u), g, h € C[0,00) N
C%(0,00) satisfy (H1)—(H4). Then the bifurcation diagram consists of a continuous, C-shaped
curve on the (A, ||ul|,)-plane. More precisely, the there exists a positive number A* < A such
that (1.1) has exactly two positive solutions uy, vy with uy < vy for A* < A < A, exactly one
positive solution vy for A = A* and A > A, and no positive solution for 0 < A < A*. Moreover,
Hm, 41— [[ur]le = 0 and limy o ||0p || = 0.

(ii) ([14, Theorem 2.3 and Fig. 31) Let p > 2. If fa(u) = Ag(u) — h(u), g, h € C[0,00) N C2(0, 00)
satisfy (H1)—(H5). Then the bifurcation diagram consists of a continuous, C-shaped curve on the
(A, ||u|| o )-plane. More precisely, there exist three positive numbers A* < A and By satisfying
A < A (< o) and f;(B;) = 0and lima_w; T5 («) = 1 such that:

(a) (See [14, Fig. 3(a)~(b)) If A < A (< o0), then (1.1) has exactly two positive solutions
uy, vy with uy < vy for A* < A < A, exactly one positive solution u, for A = A* and
A < A < A, and no positive solution for 0 < A < A* and for A > A (if A < o).

(b) (See [14, Fig.3(c)~(d)]) If A < A, then (1.1) has exactly two positive solutions u,, vy
with uy < vy for A* < A < A exactly one positive solution v, for A = A* and for
A <A< A(fA > A), and no positive solution for 0 < A < A* and A > A. Moreover,
hm}\*);\* Hu)\Hoo = 0and lim)\%;\_ HU/\HOO = ﬁ}\
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Remark 3.2. To Lemma 3.1(i)-(ii), Wang and Yeh [14, Corollaries 2.2 and 2.4] gave examples
of generalized polynomial nonlinearities for

falu) =Ag(u) —h(u) = AkuP~t +ul) —u’

satisfying r > g > p —1 > 0 and k > 0, which is a special case of

S (1) = <kup Ty Za u"f) — ) bl
=1

defined in (1.2) satisfying (1.3).

For p-Laplacian problem (1.1), (1.3) with two parameters y and A and f ,, A (1) defined in
(1.2), we define the time map formula as follows:

_1\Vp
T (a) = (pl> / du 7 for 0 < a < By, (34)
p 0 [Fpa(a) — Fopa(u)]

where B, is defined in (1.4) and

Fipa(u / feua(t) (3.5)

We deﬁne fky Au) = Ag(u) yﬁ( ) where g(u) = kuP~' + YL audi, h(u) = LI bu”,
= [y g(t)dt and H(u) = [, h(
We suppose that u%;\( ) isa (class1ca1) positive solution of p-Laplacian problem (1.1), (1.3)
satisfying (1.12). Then (classical) positive solution u,,,(x) corresponds to |[u, ||, = « and

1\ Vr
T (a) = (’9> / du =1 for0<a<pun  (36)
o [F — B ()]

P [Fiop (&) = Fipup ()]
See, e.g., [8, (3.9)].
Recall the number A = (%1) (Z 7 s 7 ) defined in (1.14).

Lemma 3.3. Consider p-Laplacian problem (1.1), (1.3) with p > 1, A > 0 and u > 0. Then the
following assertions (i)—(ii) hold:

(i) limy o+ Tya(a) = (%)1/1’ and Ty, («) has exactly an critical point at some aj, ), a minimum,
on (0, By,). Moreover,
lim T,a(x) =c0 ifl<p<2.

aﬁﬂw

(ii) There exist two positive numbers C < D < By, » such that C < a;, , < D where C = C(k,u, M),
D = D(k, u, \) satisfy

(P =D fiur(C) = Cfiur(C) =0 and  pE (D) = Dfiyaqy(D) =0, (37)

respectively. Cf. [14, (3.10) and (3.11)]. Then T, , («) < 0 for & € (0,C] and T}, , (a) > 0 for
n e [D, ABV/A)‘

Proof. Parts (i) and (ii) simply follow by (1.4), (1.11), and slight modification of the proofs of
[14, Lemmas 3.1 and 3.2]. We omit the detailed proofs here. O
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We show comparison results for T, (a) in the next lemma; cf. [7, Lemma 3.3(i)—(ii)].
Notice that, for any fixed p > 0 and 0 < A1 < Ay, By, < By, by (1.6), and for any fixed
A>0and 0 < H1 < Mz, :B}lz,)\ < ,Bm,)\ by (17)

Lemma 3.4. Consider p-Laplacian problem (1.1), (1.3) with p > 1. Then the following assertions
(i)—(i1) hold:

(i) For any fixed p > 0and 0 < Ay < Ay, Typ (&) > Typ, (&) for 0 < a < By 4,

(ii) For any fixed A > 0and 0 < py < p2, Ty, a () < Ty a (&) for 0 < o < By a0

Proof. The proofs of parts (i)—(ii) follow by modification of those of [7, Lemma 3.3(i)—(ii)]. We
omit them here. O

Lemma 3.5. Consider p-Laplacian problem (1.1), (1.3) with p > 1. Then the following assertions
(i)—(ii) hold:

(i) For any fixed p > 0 and 0 < Ay < Ay, Ty a(«) is a continuous function of A € [A1, A for
O<a< 5%)\1‘

(ii) For any fixed A > 0 and 0 < py < pa, Ty () is a continuous function of yu € [py, po] for
O<a< ;B}lzl/\‘

Proof. The proofs of parts (i)—(ii) follow by modification of those of [7, Lemma 3.4(i)—(ii)]. We
omit them here. O

*

By Lemma 3.3(i), T,,(«) has exactly one critical point at some LAY

(0, ‘B%/\). Let

a minimum, on

m(p,A) = Ty,A(a;,A) = aer(%liﬁn“ Ty ().
Pu,

Lemma 3.6. Consider p-Laplacian problem (1.1), (1.3) with p > 1. Then the following assertions
(i)—(ii) hold:

(i) For any fixed y € (0,00), there exists a unique A* > 0 such that m(p, A*) = 1.

(ii) For any fixed A € (0, A), there exists a unique u* > 0 such that m(p*,A) = 1.
Moreover, for any fixed A > A and y > 0, m(p,A) < 1.

Proof. (I) We prove part (ii). We have that lim, . T;—o (¢) = 0, which follows from Proposi-
tion 1.1(i) and since lim, o+ Ty A (#) = Ty («). So we can find a number y; > 0 such that
m(p1,A) = minge(,p, 1) T, (a) < 1. In addition, we have that lim,_,o- Ty (x) > 1, which
follows from Lemma 3.3(i) for 0 < A < A. By (3.7), we compute and obtain that

) ri—p+1 <z
A Y bj(rj —p+1)C" _ ;’1:1 bj ]r]-+1 D7

oo Lhiai(gi—p+1CE v g q";_ﬁl D’

So, for fixed A € (0,A), we have that limy, ;0 zx;‘l/)\ = 0 since limy, ;o C = limy, ;o D = 0 and
zx;:/\ € (C,D) by Lemma 3.3(ii). Hence we can find a number p, > 0 such that m(uz, A) =
min,e (o, ,) Ty () > 1.
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Next, we set positive numbers a; = infye[m,m] oc;;’)\ and apy = SUP ¢ 11y, 15] uc;’A > wq. If
@y = ap, then &}, = ay = ap for all y € [p1, p2]. Thus Ty,a(a1) = m(p2,A) > 1 and
Ty (a1) = m(pu1,A) < 1. So, by Lemma 3.5(ii) and the Intermediate Value Theorem, there
exists p* € (p1, p2) such that

m(p*,A) = Ty p (1) = 1.

By Lemma 3.4(ii), m(p,A) = T, (a1) is strictly increasing in u € [y, 2], and hence p* is
unique.

While if &3 < &y, we first show that m(u,A) is a continuous function of yu on [u1, y2] as
follows. By Lemma 3.4(ii) and Lemma 3.5(ii), for each p; < p» and fixed a € (0, By, 1), Tya(at)
is a continuous, strictly increasing function of y on (p1, pi2). So for any fixed ji € [p1, 42|, by
the Dini Theorem [12, p. 195], it is easy to see that

hm( min Tyl)\(zx)> = min Ty (a). (3.8)

= \ w€laq,az] 0 € o,z
Since for any y € [p1, 2], the minimum of T}, y(«) occurs at ) € [a1,a2]. So

m(p,A) = min T, ()= min T,,(«) forpu € [pu,pal. (3.9)

ae(O,‘B},/\) a€[wq,00]

By (3.8) and (3.9), lim,,,;; m(u, A) = m(ji, A). Hence m(p,A) is a continuous function of y on
(111, p2]. By the Intermediate Value Theorem, there exists p* € (1, pi2) such that m(u*,A) = 1.
Moreover, since m(y, A) is strictly increasing in p € [p1, pi2], we obtain that p* is unique.

For any fixed A > A and p > 0. By Lemma 3.3, we have lim, o+ Tjx () < 1 and
m(p,A) < 1.

By above, part (ii) holds.

(I) The proof of part (i) is similar to that of part (ii). We omit it here.

The proof of Lemma 3.6 is now complete. O

Lemma 3.7 (See Theorems 2.1-2.2 and Figs. 2.1-2.2). Consider p-Laplacian problem (1.1), (1.3)
with p > 1. Then, for the turning points (A*, ||u«||,) of Spk,u With varying y > 0, A* is a continuous,
strictly increasing function of yu > 0. Moreover, lim,,_,o+ A* = 0 and lim;,_, A* = A.

Proof. For fixed pp > pu1; > 0, by Lemma 3.6(i), there exists A;(y2) > 0 (resp. Aj(p1) > 0)
such that T}, x;(a) (re.sp. .Tm,)Ll*(zx)) has exactly one minimum point ay, \; € (0, By,1;) (resp.
Ay 07 € (0, /3;41,A{)) satisfying Tyz,Az(“yz,Aﬁ) =1 (resp. TMM(“#W\T) = 1). Observe that a, s €
(0, Burr3) S (0, By nz)- So we obtain that

-1 /p ra A - ~ B
Tuas(oeg) = (£50) [5G @ang) — G0) = pa(Filng) — ()]

_ 1/ Ry 05 ) ) )
< (ppl) p/o [/\é(G(Dém,A;) —G(u)) — VZ(H("‘#M;) — H(u))] p gy,

= Tuo 25 (pp05)
=1.

So

min Ty]r)L; (zx) < Tmﬂ; (06142,/\;) <1 (310)

ac (Ofﬁ;zl/)xi )
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For any a € (0, B;,,,1;), we have that

Tm,)q‘ (0‘) > min Tyl A (‘X) = Ly az (Dﬁyl,/\ﬂ =1 (3.11)
(0B, ax)

By (3.10), (3.11) and Lemma 3.4(i), we obtain Aj(p1) < A3(p2). By Lemma 3.6, we obtain
A*((0,00)) = (0,A). Hence A*(u) : (0,00) — (0, A) is a continuous, strictly increasing function.
Moreover, lim,, g+ A* (i) = 0 and lim;, ;e A*(pt) = A.

The proof of Lemma 3.7 is now complete. O

Lemma 3.8 (See Theorems 2.1-2.2 and Figs. 2.1-2.2). Consider p-Laplacian problem (1.1), (1.3)
with p > 1 and k > 0. Then, for the turning points (A, |[ur-||o,) of Spx, with varying u > 0,

L}SV ) is a continuous, strictly decreasing function of u > 0. Moreover, limy ot A*;”) = oo and

: M)
hmPHOo T” =0.

Proof. For fixed py > 1 > 0, we let Ny = % and N, = % Then

Ty 2 () Ula= () lloo) =1 = Ty po () lttrs () ll o)
= TH1/N1H1(H”A*(;41)H0°)

_ 1/p (e " oo ) ~ )
= <ppl> /0 (1) [N 1 (G ([lup gy lloo) = G (1)) — pa (H (||t () loo) — H (14))] 1p 4y
(2 1/p p—1 1/p
a (Vl) ( p >

(|27 " [loo i ) )

></O () (N2 (G ([ ) loo) — G(1)) = 2 (L ([14e ) o) — F ()] P

1/p
Ha
- (y) T (162 1)

> T]iz,Nlﬂz(Hu/\*(m)HOO)
since pp > p1 > 0. If A*(p2) > Nipia, then Ty Ny, ([[10as i) loo) = Typrs i) (ltta () lloo) =
Top 2% () ([42% () [l o) By Lemma 3.4(i) and Lemma 3.3(i), which leads to a contradiction since
Ty 2 (1) (HuA* (42) ||oo) > Ty Nujip ([ iy [|0) . Hence we obtain A*(p2) < Nipa. So

Ny = M) g A ()
K2 H1

By Lemma 3.7, we obtain that A*(u) is a continuous function of p > 0. Hence %(”) is a
continuous, strictly decreasing function of y > 0.

We prove lim,, o+ /\*P(f’ ) = o by method of contradiction. Suppose lim, o+ A*;E” ) < oo, then

there exists a positive N3 > lim, o+ A*%(lﬂ ) such that

(17
ylggl+ (l‘) Ty=1,A=Ns (H“A*(y)“oo)

1/p . 1/p
() ()
p—=0" \ Y p

||MA*;, lloo . 3
< [ NG it ) = G0)) = (A2 ) — )]l
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_1>1/P

[ (G ) — G (0)) — () — 0]t

A\
=
3
N
< FlIm
~
—
S~
<
N
=
~ 3

% () ll o ) )
x [T )G e o) = ) = At o) — FLG))] e

= nggl Ty ([ () llo)-

By Lemma 3.3(i), there exist two fixed positive numbers a;n, and Ly, such that

Ty=1,0=N;(a1,n;) = L1 N, is an absolute minimum on (0, B1,n,). So

1= tim Tyrolinelo) > lim (5) Teeam(negle) = im (4] Ly =<

which leads to a contradiction. Hence lim,, o+ A*;SV) = oo.

Similarly, we prove lim;, %(”) = 0 by method of contradiction. Suppose lim;, e %(”) >
0, then there exists a positive Ny such that Ny < lim, ;e )‘T(”) By Lemma 3.3(i), there exist
two fixed positive numbers a1y, and Ly, such that Tyzl,A:N4("‘1,N4) = Ly, is an absolute

minimum on (0, B1,y,). We then need the next claim.
Claim A. limyg)oo T}[,A* (1) (0(1,]\]4) Z limyg)oo T]l,/\* (1) ( Hu/\* (1) ||oo)

Proof of Claim A. Since Ny < lim . %

all u > po, Ny < ( . By (1.4) and (1.6), for all u > po, we have 1N, < B, A0 . For u >0,
by (1.4), we have ﬁl v = = By (n) Since fk1 v  (Bureny) = yfk,,u,)\* (ﬁwﬁ ) = 0. Hence,
for all g > pp, 0 < 0c1,N4 < ,31,1\]4 < B (u)- By Lemma 3.3(i), Lemma 3.6(i) and (3.6), for

all H > Ho, We have T}l,)\*(#) (0(1,]\]4) > Ty,/\*(y)(‘lu/\*(y) ||oo) Moreover, limyﬁoo Ty,A*(y)(”‘l,M) >
limy—eo Ty () (|42 () [|0) - So Claim A holds.

We thus have that

there exists a positive number pg such that, for

1 1/p
}}1_1)1(}0 <y) Ty:l,/\:N4 (“1,1\]4)

-1

m (1) (1) [ G ) — Gl — (itaan) — Fa ) e

> lim (:{)”p(”;l)w [ m”)«;(mm —G(w) — (Hn,) - Aw)|  du

_ 1/p o1,N _ _
= Jim (P50) [ 06w - Gl — (Bt x,) — )
= lim T A (u )(061,1\]4)

U—0

> ngr.}o Ty,/\*(y)(Hu/\*(y) ||0°) (by Claim A)

=1,
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which leads to a contradiction since

1 1/p 1 1/p
}}51}0 <V) Ty=10=n, (a1,n,) = ;glgo (V) Ling = 0.

Hence lim, %(”) =0.

The proof of Lemma 3.8 is now complete. O

Lemma 3.9 (See Theorems 2.1-2.2 and Figs. 2.1-2.2). Consider p-Laplacian problem (1.1), (1.3)
with p > 1and k > 0. Then, for the turning points (A, [[uy+||,) of Spx . with varying y > 0,

C < [luyl. < D, (3.12)

where C = C(k, u, A*(n)), D = D(k, pu, A*(n)) satisfy

(P - 1)fk,;t,A*(y)(C) - Cfli,y,)\*(y)(c) =0 and ka,y,A*(y)(D) - ka,y,A*(y)(D) =0, (3-13)

respectively. Moreover, lim,,_,o+ ||t ||, = 00 and limy, e [|up+ ||, = 0.

Proof. By Lemma 3.3(ii) and (3.6), it is easy to see that C < |ju,«||, < D. Equations in (3.13)
follow by Egs. (3.7) directly. By (3.13), (1.2) and (3.5), we then compute and obtain that
) ri—p+1 .
A(p) Tl —p+1)CT i b DY

Y R (T e O

in whichrj—p+1>0forj=12...,nand g;—p+1>0fori=1,2,...,m Thus, by
applying Lemma 3.8 and (1.3), we have that lim, .o+ C = lim;, ,0+ D = o0 and lim; ;o C =
lim, o D = 0. Hence lim,_,o+ [[up+]o, = 00 and limy e | up+]|, = 0 by (3.12).

The proof of Lemma 3.9 is now complete. O

oo

Lemma 3.10. Consider p-Laplacian problem (1.1), (1.3) with p > 2 and k > 0. Then the following
assertions (i)—(ii) hold:

(i) For any fixed y > 0, lim,, Sp Ty («) is a continuous, strictly decreasing function of A on
W
(0, 00). Moreover,

Iim Iim T, (a) =00 and lim lim T, ,(a) =0.
A=0T ap V’A( ) Ao asp W\( )

(ii) For any fixed A > 0, lim, B T, () is a continuous, strictly increasing function of y on
(0, 00). Moreover,

Iim lim T,)(e¢) =0 and lim lim T, ,(a) = co.
H—=0"amsp,, wa(®) =000 sp, (%)

nA

Proof. (I) We prove part (i) where

gu) =ku? '+ Y au¥ and h(u)=p) by’ (withm,n>1and pu > 0)
i=1 =1



16 T.-Y. Hsieh and S.-H. Wang

satisfy (1.3). We take p* = @ > p — 1. Then it is easy to see that s g strictly decreasing

uf
h(u)
up*

on (0,00) and is strictly increasing on (0, o). For each fixed s € (0,1),

h(su) [h(u)g(su) 3 1} _ h(u)g(su) ;h(su)gw)
uP=g(u)

a;bi(s% — s ul i 4 pukuP =LY bi(sP~ — sT )i
j H j=1Y]

~:
IE

It

ub=Y(kup=t + Y auf)

is a strictly increasing function of u on (0,00) and lim,_,c ZEZ%%E?Z% = sfn " € (1,00) since
s € (0,1) and g, < ry. So g, h satisfy (H5). For A € (0, 0), by (3.4), we obtain that

lim T]/l,)\(“)
tx—>ﬁ;w\
1/p ,a w -1/p
o p—1 /{ ]
= 1 F—- £)dt d
i (UL e
_ 1/p ah —1/p
— lim (pl> U (ﬁ”’A)g(t)—h(t)dt] du
ap,, \ P o Lu 8(Bunr)

(since fi 1 (u) = Ag(u) — h(u) and by (1.4))

- i (750) e [ [[ St -]

(let u=wav and t =uas)

1 -1/p

_ 1/p * 1 T . (h
(51) e e [ [ () ],
v

8By, /0 §(Bua) (sw) (sa)”
1-1/p

(PN e U] e (M(Bua)g(s8)  h(sa)
_< ; ) Bur " P/O / lim s (g(ﬁw(sa)p* (m)f’*)ds_ do

(by (H5) and the Monotone Convergence Theorem)

_1/P
_(p—1 1/p 1 Lh(sBun) h(ﬁyr)\)g(sﬁw\)_
_< ! ) /0[/ Bin <g<ﬁm>h<sﬁm 1) ds] . (.14

By (H5) and since B, is strictly increasing in A € (0, ), we obtain that lim, ;- Tj,(«) is a
M,

strictly decreasing function of A on (0, o).
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For any number A € (0, 0), by (3.14), we obtain that

_71/;7
Tt — 1 (2= ] B (1B
Jim Jim Tuate) = i (£5°) /o{/v o (e 1)®| #
r 1-1/p
_(p—1 e . h(S:By,/\) h(ﬁy,A)g<5ﬁy,A)
() . m, g (st ) s

(by (H5) and the Monotone Convergence Theorem)

—1/P
(PP | RGsBug) (B8 (5Bu.)
- (%) /o/ o (s Y ds] d”

= lim T},,Ao(oc).

a%ﬁ;{l\o

So we obtain that lim,_, ;- Ty, («) is a continuous function of A on (0, o).
W

Finally, we prove lim, .o+ limoHﬁf\ Tya(x) = oo and lim) limpH/SfA T,(x) = 0. By
M/ Ho
(3.14), we obtain that
N s (B )geB) ) L]
lim lim T, («) = lim (V_> / / sﬂfiA ( Buar)8(sBua _1> s o
A—0+ oz—>‘B;//\ A—0+ p 0 v IB;IZ)L g(,By,)\)h(Sﬁy,/\)

q-1/p

C(p=INYP | h(sBua) (h(Bua)g(sBun)
_< p > /0 |:/U )‘lggh ,Bflj\l (g(ﬁy,)\)h(sﬁy,/\) 1) as i

and
- _1/P
_I\NVP | f1p h
lim lm Tya(#) = lim <pl> / / (Sf"f)< Eﬁ’“gigﬁ’“; —1) ds|  do
00 K ﬁw\ o0 p 0 4 ﬁﬂ,/\ 8 1514,)\ :B,M,)\
q-1/p

(PN h(sBua) (h(Bua)g(sBun)
()L [t (s )]

by (H5) and the Monotone Convergence Theorem. For each fixed s € (0,1), we have that, by
(H5),

h(sBun) (h(ﬁm)g(Sﬁm) )= h(sBun) (h(ﬁu,ng(sﬁu,n 1) -0

ALO* ,BZ;\l g(ﬁ;t,/\)h(sﬁy,/\) _ﬁ;:,)\—>0+ ‘BZ;\l g(ﬁy,)\)h(s.ﬁy,/\)

and
; h(sﬁﬂlA) h(ﬁu,)\>g(5ﬁy,)\>_ — L h@ﬁﬂ)\) h(ﬁy,)\)g(slgix,/\)_ ~ o
A g (S ~) =, B (i ~) =

So lim_,o+ lim Ty (&) = oo and limy o, lim T, r(x) = 0.

a—)ﬁ;/A “_>/S;;,/\ 2%

(I) The proof of part (ii) is similar to that of part (i). We omit it here.
The proof of Lemma 3.10 is now complete. O
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Lemma 3.11. Consider p-Laplacian problem (1.1), (1.3) with p > 2 and k > 0. Then the following
assertions (i)—(ii) hold:

(i) For any fixed y € (0,00), there exists a unique A > 0 such that lim T,5(x) =1.

a—)ﬁ;ﬂ

(ii) For any fixed A € (0,00), there exists a unique ji > 0 such that lim Top(a) = 1.

a—)ﬁ}fm

Proof. (I) We prove part (i). For any fixed u > 0, by Lemma 3.10(i) and the Intermediate Value
Theorem, there exists a unique A > 0 such that lim,_, g Ta(e) =1
wA ’

(IT) We prove part (ii). For any fixed A > 0, by Lemma 3.10(ii) and the Intermediate Value
Theorem, there exists a unique jI > 0 such that lim,_,5- Ty (a) = 1.
Hr

The proof of Lemma 3.11 is now complete. O

Lemma 3.12 (See Theorem 2.2 and Fig. 2.2). Consider p-Laplacian problem (1.1), (1.3) with p > 2
and k > 0. Then, for the ending points (A, ||vy|l.) of Spxu with varying u > 0, A is a continuous,
strictly increasing function of p > 0. Moreover, lim,, o+ A =0 and limy e A = .

Proof. For fixed pz > p1 > 0, by Lemma 3.10(i), lim,_,5- T, 5 (¢) > lim,_5- T, 5 (a) =

B B 12k #M
1. If A; > Ay, then by Lemma 3.10(i), limﬂHﬁf . Tm’;\l((x) < limpﬁﬁf . Tyzi\z(“) = 1, which
K2 H2\2

leads to a contradiction. So we obtain A; < A,. By Lemma 3.11, we obtain A((0, %)) = (0, ).
Hence A(u) : (0,00) — (0,00) is a continuous, strictly increasing function of y# > 0. Moreover,
limPHm A =0and limy_m A = oo.

The proof of Lemma 3.12 is now complete. O

4 Proofs of main results

Proof of Theorem 2.1. Let1 < p <2 and k > 0.

(I)(a) We prove that, for any fixed p > 0, the bifurcation diagram S, , consists of a
continuous curve on the (A, ||u||,)-plane. For any fixed > 0 and A > 0, it is easy to see that
T, («) defined in (3.4) is a continuous function of « € (0, 8,,1). By Lemma 3.4(i) and Lemma
3.6(i), we have that, for any fixed y > 0, the set {a € (0,B,,1) : Tya(x) = 1forall A > 0} is
connected. Thus, by Lemma 3.5(i), for any fixed p > 0, Sp/k/;, consists of a continuous curve
on the (A, ||u||,)-plane.

(I(b) Part (i) follows from Proposition 1.1(i).

(IT) We prove part (ii) where nonlinearities

gu) =ku? '+ Y au¥ and h(u)=p) bu’i (withu >0)
i=1 =1

satisfy (1.3). We prove that g,/ satisfy (H1)—(H4). It is first easy to see that g, € C[0,00) N
C?%(0, 00) satisfy (H1) with mg = lim,_,o+ ig =k > 0. Hence, by (3.3), A = (pT_l) (% csc %)p =
A. By (1.3), it is easy to see that the function

h(u)  PXabu’ (4> 0)
g(u)  kuP 14 Y auf #

is positive and strictly increasing on (0, o) and satisfies that
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Thus g, h satisfy (H2). It is clear that, by (1.3),

(p—2)¢" (1) —ug”(u) = Zalq, —1-— qi)uqi’l <0 on (0,00),

i=1
(p —2)W (u) —uh"(u) = u Zb ri(p—1—r)ui"t <0 on (0,00).

Thus g, h satisfy (H3). Finally, by (1.3), we compute that

(P — Z)h/(u) — uh//(u) o 2 2;1:1 b]'rj(p —1—- T’j)urffl

(p—2)8'(u) —ug"(u) T aigi(p—1—g;)udi~?
o U Z?:l b]T](p —1- r]_)ur]
it aiqi(p —1—q;)ut

which is positive and strictly increasing on (0, o0) and satisfies that

e (W) ) (p = 2 () — k()
w0t (p —2)g" (u) —ug"(u) umeo (p—2)g (u) —ug"(u)
So g, h satisfy (H4). By above, we conclude that g, /i satisfy (H1)—-(H4). So part (ii) follows from
Lemma 3.1(i).
(IIT) We prove part (iii). Consider any nonnegative y1 < pp. If, on the (A, ||u]|)-plane,
bifurcation diagrams S, s ,,, and S, ,, attain a fixed number ||u||,, = & for any feasible & > 0
at A = A; > 0and A = Ay > 0, respectively. Then by (3.6), we have the following equalities:

(x>0

T @ = (222) [ a(6) ~ Gu)) — (@) ~ A VPdu =1, @

_I\NVpr ra
Ty, (&) = <”p1) /0 M2(G@®) — G(u) — wo(A@®) — Hw))] VPdu=1.  (42)
Suppose that A; > A, since 0 < 1 < pp and A > A, we have that
M(G(&) = G(u)) — p(H(@&) — H(u)) > A2(G(&) — G(u)) — po(H(@) — H(u)).

Thus Ty, A, (&) < Ty, a,(&), which leads to a contradiction since the above equality (4.1) for
Ty, 0, (&) and equality (4.2) for T, A,(a) are both equal to 1. So A; < A;. Hence, for any
nonnegative y1 < p, on the (A, [|u||)-plane, S, ,, lies on the right hand side of S, ;.

(IV) We prove part (iv). By Lemma 3.7, A*(u) : (0,00) — (0,A) is a continuous, strictly
increasing function. Moreover, lim,,_,o+ A*(1) = 0 and lim, ;e A* () = A. It is easy to show
that [[u:||, (= H”W\* ) is a continuous function of x > 0. By Lemma 3.9, we have that
lim,, o+ [|tp+ ||, = 00 and limy o [[tir+ ||, = 0.

In particular, whenk =0, m=1,n=1,qg=q1 >p—1,r=r; > g, and kaO,y,A(”) =
AuT — pu’, we let u = u,, , be a (classical) positive solution of (1.1), (1.3). Then the change of

variables e
™ —q-1 r—p+l
U (x) = (2) v(y%)mrp—q)x)

transforms u,, ) into a solution v of

(pp(0'(x)) +07—v" =0, ~L<x<L,
v(—L) =v(L) =0,
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with
p—q—1 r—p+1

L= purt=aAve=a, (4.4)

Cf. [5, p. 463]. For p-Laplacian problem (4.3) with1 < p <2and 0 < p —1 < g < r, we define
the time map formula as follows:

- _(pr-1 Vp ra dov
T(a) = <p) /0 T Fo for0<a <1, (4.5)

where F(0) = [ f(t)dt and f(v) = v7 — v". By [14, Lemma 3.1], there exist two fixed positive
numbers ||v*||, and L* such that T(a) has exactly one critical point, an absolute minimum
T(|[o*||,) = L*, on (0,1). Thus, by (4.4),

and hence

So we get that

ANV A W
WM@=<V> 1%l = (L) 1 o).

Since r > p — 1, ||up+ ||, is a continuous, strictly decreasing function of y > 0.
(V) We prove part (v). We consider 0 < « < 8,1 and have that

_I\NYr a
Toa(@) = (21) 7 ["NG (@) - G)

. 1/p .« - -
<(ﬂf>.Awam—QW—mmm—mwwwwznﬂw

By (3.4), (1.16) and (1.17), we obtain that

Al/pTy:O,A(“) = Tf(“) = (Cp,q“piliq)l/p-
a1
If Ty—oa(x) =1, then a = (cqu> "7 Then by (3.6) and Proposition 1.1(ii), we obtain that

1
Cpg ) a—r
0< (1) < flunlls < B

1
since T7(«) is a strictly decreasing function on (0,c0) and Tu—on ((22)777) = 1. So (2.1)
holds.
The proof of Theorem 2.1 is now complete. ]

Proof of Theorem 2.2. Let p > 2 and k > 0.

(I)(a) We have that, for any fixed p > 0, the bifurcation diagram S, , consists of a contin-
uous curve on the (A, ||u||,)-plane. The proof is exactly the same as that given in part (I)(a) of
the proof of Theorem 2.1 with 1 < p < 2. So we omit it here.

(I)(b) Part (i) follows from Proposition 1.1(i).
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(I)(a) We prove part (ii) where

g(u) = kub~t 4 Y au® and  h(u) =p)_ bu'i  (with u > 0)
i=1 =1

satisfy (1.3). We prove that g, h satisfy (H1)-(H5). We first notice that the proofs of g, h
satisfying (H1)-(H4) when p > 2 are exactly the same as those of g, & satisfying (H1)—-(H4)
when 1 < p < 2, given in part (II) of the proof of Theorem 2.1. So we omit them here. We
then show that g, h satisfy (H5). We take the number p* = q’”zﬁ > p —1by (1.3). It is easy to
see that

m
gu(:i) = kuP~1F 4 ) auT P is strictly decreasing on (0, %)
=1

1=

and

h L .
Lf:i) =p ) bu/i"F s strictly increasing on (0, o).
j=1

For each fixed s € (0,1), we compute that

h(su) {h(u)g(su) ) 1] _ (u)glsu) — h(su)g(w)
w1 | g(u)h(su) up Tg(u)

_ wyir, 2;7:1 aibj(s%' e ‘ukuP—l 2}7:1 bj(sp—l — s )uli
uP T (kuP =T+ Ly aguh)

which is a strictly increasing function of # on (0, o) and satisfies that

o h()g(su)

— oqm—Tn
U—00 g(u h(su) s < (1/ OO)

since s € (0,1) and g, < rn. So g h satisfy (H5). By above, we conclude that g, & satisfy
(H1)—(H5). So part (ii) follows from Lemma 3.1(ii).
(I)(b) By Lemma 3.10(ii), we have that

lim lim T, ;(a) =0, lim lim T, ;(a) = o0

i i -
u—0 D‘H‘BW’\ p—o0 a%ﬁ’d

and lim, ,5- T, ;(a) is a continuous, strictly increasing function of y on (0,00). So by the
pA

Intermediate Value Theorem, there exists a positive number fi such that lim,_, B Toa(a) <1
M
ifo<u<p, hmaﬁﬁ;’/_\ T,a(a)=1if p =1, and hrnDH[;;,Z Toa(a) > 1ifp> g

For each fixed k > Oand p > 0, lim T, 3(«) = 1by Lemma 3.1(ii) and lim,_, By Ty (a)

zx—>5;/}\
is a continuous, strictly decreasing function of A on (0, o) by Lemma 3.10(i). Hence we obtain
that A < Aif0<u<g, A=Aifu=f,and A < Aif u > .

For each # > 0 and k = 0, we have A = co. By Lemma 3.10(i), lim, e limaﬁﬁh Tya(a) = 0.
Hence hm“_)ﬁ;,x T, 2(a) = 0. Since limm_ﬂ};x T,;(x) =1by Lemma 3.1(ii) and lima_ﬂg;’/\ Ty ()
is a continuous, strictly decreasing function of A on (0, 0) by Lemma 3.10(i), we obtain that
A< Aand fi = co.

(IIT) The proof of part (iii) of Theorem 2.2 is exactly the same as that of part (iii) of Theo-
rem 2.1. So we omit it here.
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(IV) We prove part (iv). By Lemma 3.12, A(u) : (0,00) — (0,00) is a continuous, strictly
increasing function. Moreover, lim, o+ A = 0 and limPHooX = oco. We let u = uy ) be a
(classical) positive solution of (1.1), (1.3). Then the change of variables

1
U (x) =o(prx)
transforms u,,, into a solution v of

{( gp(0'(x)) +

o(—L) = v(L)

’:\>»

Py ao%) =Y biv'i, —L<x<L,
(v + Y a0t Y1 b X (46)

with

==

L

ur.
Cf. [5, p. 463]. By Lemma 3.11(i), for any fixed p € (0,00), there exists a unique Ap) >0

such that lim T, 5y (x) = 1. Then there exists a unique 1 = AW~ 0 such that

zx%ﬁ;j u

()
1
hm”‘—’ﬁ;x(m Ty, (x) = u? and B = By For 0 <y <o,

lim T1171( )_I]/ll <‘u2 - lim T1772( )

a%ﬁﬂz Apa)

Hence 71 > 1, by Lemma 3.10(i). Similarly, for any fixed 7 € (0, c0), there exists a unique

pu > 0 such that lim,_, ;- Ty () = y% and B, 5.,y = P1y- It is clear that B is a continuous,
M 4

strictly increasing function of # on (0, o). Hence

Hv}‘(ﬂl)”"o - '8141,;\(141) =P > P = '8142,5\(]42) - ”U;\(ﬂz)”""'

So ||vj]le is a continuous, strictly decreasing function of y > 0. By Lemma 3.10(i),

lim,, o+ 17(p) = o0 and limy, ;o 7() = 0 since limaﬁﬁiq Ty () = y%. Hence

)E{)L 123 llew = thgh Buig = Hm Pry =
and
dim 3o leo = 1 By = Jin, ry = 0.

(V) The proof of part (v) of Theorem 2.2 is exactly the same as that of part (iv) of Theorem
2.1. So we omit it here.

(VI) The proof of part (vi) of Theorem 2.2 is exactly the same as that of part (v) of Theorem
2.1. So we omit it here.

The proof of Theorem 2.2 is now complete. ]

5 A final remark

For evolutionary bifurcation diagram S, on the (A, ||u[|,,)-plane studied in Theorems 2.1-
2.2, analogically, we also study evolutionary bifurcation diagrams X, x y on the (y, ||u||,,)-plane
defined by:

prk/)\ = {(.u/

MFHOO) ;1> 0and uy is a (classical) positive solution of (1.1), (1.3)} , A>0.
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Applying Theorems 2.1-2.2 and by modified analytic techniques used in the proof of [7, The-
orem 2.2], we obtain the following Theorem 5.1 and Fig. 5.1 with 1 < p < 2 and Theorem 5.2
and Fig. 5.2 with p > 2 for evolutionary bifurcation diagrams X, sy on the (i, [|u||,,)-plane.
We omit the proofs here.

I P=AAZA . Zpka 1<p<2 k>0

b
0 M

Figure 5.1: Evolutionary bifurcation diagrams £, ;) for (1.1), (1.3) with fixed
p € (1,2], k > 0 and varying A > 0.

Theorem 5.1 (See Fig. 5.1). Let 1 < p < 2 and k > 0. Consider p-Laplacian problem (1.1),
(1.3) with varying A > 0. Then the bifurcation diagram ¥, \ consists of a continuous curve on the
(u, |1 )-plane and the following assertions (i)—(iii) hold:

(i) If
— P ]
0<)\<7\:<p 1) (T[CSCT[> = l.fk>O’

(a) L, starts at some point (0,b) where b > 0, tends to the positive ||u|,,
and is a reversed C-shaped curve with exactly one turning point at some point (p*, o)
satisfying u* > 0 and H”V* « > b. More precisely, problem (1.1), (1.3) has exactly two
(classical) positive solutions uy, v, with u, < v, for 0 < p < p*, exactly one (classi-
cal) positive solution u,- for y = p*, and no (classical) positive solution for y > u*. In
addition, lim,, o+ ||u,||, = b and lim,, o+ ||o,|| . = co.

(b) For the starting points (0,b) of £, with 0 < A < A, b = b(A) is a continuous, strictly
decreasing function of A € (0,A), limy_,o+(0,b) = (0,00) and lim,_,;-(0,b) = (0,0).

(c) For the turning points (p*, ||u,-
increasing function of A € (0,A),

then:

-axis as y — 0%,

M;,L*

o) of Y0 With 0 < A < A, p* is a continuous, strictly
o, Is a continuous function of A € (0, A),

o) = (2,0).

In particular, whenk =0,m=1,n=1,qg=q >p—1,r=ry > g, and fk:(),y,A(u) =
At — pu’, then ||uy- ||, is a strictly decreasing function of A € (0, 7).

uw

im (%, |[u || ) = (0, d  lim (||,
dim (57, flupe |lo) = (0,00) and — Lim (47, |luy
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(i) If A > A, then X,y \ emanates from the positive ||u|,-axis as y — 0T, tends to the positive
p-axis as y — oo, and is a strictly monotone curve. More precisely, problem (1.1), (1.3) has
exactly one (classical) positive solution for u > 0.

(iii) For any positive Ay > A1, oz, lies on the right hand side of Xy 5, (S0 Ly i r, and Ly x 2, do
not intersect.)

U o

b -
0 H

Figure 5.2: Evolutionary bifurcation diagrams X, for (1.1), (1.3) with fixed
p > 2,k > 0and varying u > 0.

Theorem 5.2 (See Fig. 5.2). Let p > 2 and k > 0. Consider p-Laplacian problem (1.1), (1.3) with
varying A > 0. Then the bifurcation diagram ¥, » consists of a continuous curve on the (u, [|ul|,,)-
plane and the following assertions (i)—(iv) hold:

(i) If

_ p :
0<A<A= (p 1> <7Tcsc”) <oo ifk>0,
pop) |=e ifk=0,

then:

(a) X,k starts at some point (0,b) where b > 0, ends at some point (fi, vﬁHoo) satisfying
0<fi<ooand0 < |va||, =2a(0) = Ban satisfying fiur(Bua) = 0 (that is, vg(x) =
lim, . 5-va(x) is a flat-core positive solution of (1.1), (1.3), see below for (classical)
positive solutions vy (x) with fi < p < u*). Moreover, ¥, A is a reverse C-shaped curve
with exactly one turning point at some point (u*, ||u,+|| ) satisfying

O<p<p* and 0< |u,

o < llvalle = Ban-

More precisely, problem (1.1), (1.3) has exactly two (classical) positive solutions uy,, v, with
uy < vy for fi <y < p*, exactly one (classical) positive solution u,- for p = p* and 0 <
u < fi, and no (classical) positive solution for u > u*. In addition, lim,,_o+ |ju,||, = b
and limy - [|op o = [[o8 ]l = Bpar-
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(b) For the starting points (0,b) of X, with 0 < A < A, b = b(A) is a continuous, strictly
decreasing function of A € (0,A), limy_,+(0,b) = (0,00) and lim, _,;-(0,b) = (0,0).

(c) For the turning points (p*,

|| o) Of Zpjep with 0 < A < A, u* is a continuous, strictly

increasing function of A € (0,A), ||uy ||, is a continuous function of A € (0,A),
Ali_)f{)l+(]/l*, MH* oo) = (0,00) and Ali)l’/[\lﬁ(‘u*, MH* oo) = (O0,0)

In particular, whenk =0,m=1,n=1,qg=q >p—1,r=r > q,and fr_o,(u) =
Aul — pu”, then ||uy- ||, is a strictly decreasing function of A € (0, A).

(i) If A > A, then T,k emanates from the positive p-axis as y — co, and ends at some point
(71, ||vz|| ) in which vy is a flat-core positive solution. Moreover, ¥, » is a strictly monotone
curve. More precisely, problem (1.1), (1.3) has exactly one (classical) positive solution for u > fi.

(iii) For any positive Ay > A1, Xk A, lies on the right hand side of A, (S0 L r, and X i 5, do
not intersect.)

(iv) For the ending points (fi, ||vg||,) of ppr with A > 0, ji is a continuous, strictly increasing
function of A > 0, ||vg |, is a continuous, strictly decreasing function of A > 0,

UﬂHoo) = (O0,0)

tim (7 [losl) = (000) and lim (7
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