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Abstract. We study the multiparameter p-Laplacian Dirichlet problem{(
φp(u′(x))

)′
+ λ(kup−1 + ∑m

i=1 aiuqi )− µ ∑n
j=1 bju

rj = 0, − 1 < x < 1,

u(−1) = u(1) = 0,

where p > 1, φp(y) = |y|p−2 y,
(

φp(u′)
)′ is the one-dimensional p-Laplacian, λ > 0

and µ ≥ 0 are two bifurcation parameters. We assume that k ≥ 0, 0 < p − 1 < q1 <
q2 < · · · < qm < r1 < r2 < · · · < rn, m, n ≥ 1, a1 = 1, ai > 0 for i = 1, 2, . . . , m
and b1 = 1, bj > 0 for j = 1, 2, . . . , n. We mainly prove that, on the (λ, ∥u∥∞)-plane, the
bifurcation diagram consists of a strictly decreasing curve for µ = 0, and always consists
of a ⊂-shaped curve for fixed µ > 0. We then study the structures and evolution of the
bifurcation diagrams with varying µ ≥ 0.

Keywords: bifurcation diagram, evolution, positive solution, p-Laplacian, ⊂-shaped
bifurcation curve, time map.
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1 Introduction

In this paper we study the structures and evolution of bifurcation diagrams for the multipa-
rameter p-Laplacian Dirichlet problem{(

φp(u′(x))
)′
+ λ(kup−1 + ∑m

i=1 aiuqi)− µ ∑n
j=1 bjurj = 0, − 1 < x < 1,

u(−1) = u(1) = 0,
(1.1)

where p > 1, φp(y) = |y|p−2 y,
(

φp(u′)
)′ is the one-dimensional p-Laplacian, and λ > 0 and

µ ≥ 0 are two bifurcation parameters. We assume that the nonlinearity

fk,µ,λ(u) ≡ λ(kup−1 +
m

∑
i=1

aiuqi)− µ
n

∑
j=1

bjurj (1.2)
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is a generalized polynomial (see [9]) satisfying{
k ≥ 0, 0 < p − 1 < q1 < q2 < · · · < qm < r1 < r2 < · · · < rn, m, n ≥ 1,

a1 = 1, ai > 0 for i = 1, 2, . . . , m and b1 = 1, bj > 0 for j = 1, 2, . . . , n.
(1.3)

This problem arises in the study of non-Newtonian fluids, nonlinear diffusion problems,
and population dynamics of one species. The quantity p is a characteristic of the medium.
Media with 1 < p < 2 are called pseudoplastics fluids and those with p > 2 are called
dilatant. If p = 2, they are Newtonian fluids (see, e.g., Díaz [3, 4] and their bibliographies).
In population dynamics, in (1.1), the one-dimensional p-Laplacian operator

(
φp(u′)

)′ acts as
the diffusive mechanism describing the migration of u throughout the habitat (−1, 1) which
is assumed to be surrounded by a completely hostile boundary {±1}. In (1.1), the reaction
term λ(kup−1 + ∑m

i=1 aiuqi)− µ ∑n
j=1 bjurj is the growth rate of the population, which consists

of a source term λ(kup−1 + ∑m
i=1 aiuqi) and an absorption term µ ∑n

j=1 bjurj . Note that, by (1.3),
if µ > 0, the absorption term µ ∑n

j=1 bjurj is dominated by the source term when u near 0+

and dominate the source term when u is large enough, and the domination of the absorption
term over the source term is assumed to be strictly increasing on (0, ∞). Murray [11] suggested
using diffusion of the form p in the study of diffusion-kinetic enzymes problems. By a positive
solution to p-Laplacian problem (1.1) with general p > 1, we mean a positive function u ∈
C1[−1, 1] with φp(u′) ∈ C1[−1, 1] satisfying (1.1). Let Z = {x ∈ [−1, 1] : u′(x) = 0}. We note
that it is easy to show that, if u is a positive solution of (1.1), then u ∈ C2[−1, 1] if 1 < p ≤ 2
and u ∈ C2([−1, 1]∖ Z) if p > 2. For the proof we refer to [1, Lemma 6].

To study bifurcation diagrams of positive solutions of (1.1), (1.3), it is important to study
the shape of nonlinearity fk,µ,λ(u) on (0, ∞) in the beginning. We show that there exist three
positive numbers βµ,λ > ζµ,λ > γµ,λ such that fk,µ,λ(u) with λ, µ > 0 satisfies (1.4), (1.9), and
(1.11) stated behind. That is, positive numbers βµ,λ > ζµ,λ > γµ,λ are the unique positive zero,
critical point, and p-inflection point of fk,µ,λ(u) on (0, ∞), respectively. First, we easily observe
that, for fk,µ,λ(u) with λ, µ > 0 satisfying (1.3), the number of sign changes in the sequence of
coefficients for the generalized polynomial fk,µ,λ(u)

(λk, λa1, λa2, . . . , λam,−µb1,−µb2, . . . ,−µbn)

is 1. Applying Laguerre’s Theorem [10] (see also [9, Theorem 4.7]) on the number of positive
zeros to the generalized polynomial fk,µ,λ(u), we obtain that there exists a unique positive
number βµ,λ such that 

fk,µ,λ(u) > 0 on (0, βµ,λ),

fk,µ,λ(0) = fk,µ,λ(βµ,λ) = 0,

fk,µ,λ(u) < 0 on (βµ,λ, ∞).

(1.4)

We set βµ=0,λ = ∞ if µ = 0. Notice that, by (1.3), it is easy to see that, for fixed λ > 0,

lim
µ→∞

βµ,λ = 0. (1.5)

In addition,

for fixed µ > 0, βµ,λ is a continuous, strictly increasing function of λ on (0, ∞) (1.6)

and

for fixed λ > 0, βµ,λ is a continuous, strictly decreasing function of µ on (0, ∞). (1.7)



Structures and evolution of bifurcation diagrams for a p-Laplacian Dirichlet problem 3

Secondly, we compute that

f ′k,µ,λ(u) = λ

[
(p − 1)kup−2 +

m

∑
i=1

aiqiuqi−1

]
− µ

n

∑
j=1

bjrjurj−1. (1.8)

Thus again, similarly, applying (1.3) and Laguerre’s Theorem [10] on the number of positive
zeros to the generalized polynomial f ′k,µ,λ(u) in (1.8), we obtain that there exists a unique positive
number ζµ,λ < βµ,λ such that 

f ′k,µ,λ(u) > 0 on (0, ζµ,λ),

f ′k,µ,λ(u)(ζµ,λ) = 0,

f ′k,µ,λ(u) < 0 on (ζµ,λ, βµ,λ).

(1.9)

So fk,µ,λ(u) with λ, µ > 0 is increasing-decreasing on (0, βµ,λ). Thirdly, we compute that

(p − 2) f ′k,µ,λ(u)− u f ′′k,µ,λ(u) = λ
m

∑
i=1

aiqi(p − 1 − qi)uqi−1 − µ
n

∑
j=1

bjrj(p − 1 − rj)urj−1, (1.10)

in which p − 1 − qi < 0 for i = 1, 2, . . . , m and p − 1 − rj < 0 for j = 1, 2, . . . , n. Thus again,
applying (1.3) and Laguerre’s Theorem [10] on the number of positive zeros to the generalized
polynomial (p − 2) f ′k,µ,λ(u)− u f ′′k,µ,λ(u) in (1.10), we obtain that there exists a unique positive
number γµ,λ < ζµ,λ such that

(p − 2) f ′k,µ,λ(u)− u f ′′k,µ,λ(u) < 0 on (0, γµ,λ),

(p − 2) f ′k,µ,λ(γµ,λ)− u f ′′k,µ,λ(γµ,λ) = 0,

(p − 2) f ′k,µ,λ(u)− u f ′′k,µ,λ(u) > 0 on (γµ,λ, βµ,λ).

(1.11)

In this case fk,µ,λ(u) with λ, µ > 0 is said to be p-convex-concave on (0, βµ,λ).
Note that, in (1.1), λkup−1 is the p-linear term for generalized polynomial nonlinearity

fk,µ,λ if bifurcation parameter k > 0. If k = 0, then fk,µ,λ has no p-linear term. In this paper we
are concerned only with positive solutions u of (1.1), (1.3) satisfying

0 < ∥u∥∞ < βµ,λ

{
= ∞ if µ = 0,

< ∞ if µ > 0.
(1.12)

Positive solutions u of (1.1), (1.3) satisfying (1.12) are called classical positive solutions. Note
that positive solutions u of (1.1), (1.3) satisfying ∥u∥∞ = βµ,λ are called flat-core positive solu-
tions.

For problem (1.1), (1.3), we study evolutionary bifurcation diagrams Sp,k,µ on the (λ, ∥u∥∞)-
plane defined by:

Sp,k,µ = {(λ, ∥uλ∥∞) : λ > 0 and uλ is a (classical) positive solution of (1.1), (1.3)} , µ ≥ 0.
(1.13)

First, when µ = 0 and fk,µ=0,λ(u) ≡ λ(kup−1 + ∑m
i=1 aiuqi), we study Sp,k,µ=0 on the

(λ, ∥u∥∞)-plane in the next proposition. We let

λ̄ ≡
(

p − 1
k

)(
π

p
csc

π

p

)p
{
< ∞ if k > 0,

= ∞ if k = 0.
(1.14)
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Proposition 1.1 (See Figs. 2.1–2.2 depicted behind). Let p > 1. Consider p-Laplacian problem
(1.1), (1.3) with µ = 0 and fk,µ=0,λ(u) = λ(kup−1 + ∑m

i=1 aiuqi) > 0 on (0, ∞). Then the bifurcation
diagram Sp,k,µ=0 satisfies the following assertions (i)–(ii):

(i) On the (λ, ∥u∥∞)-plane, Sp,k,µ=0 emanates from the positive ∥u∥∞-axis as λ → 0+, tends to
the point (λ̄, 0) =

(( p−1
k

)(
π
p csc π

p

)p, 0
)

if k > 0 and tends to the positive λ-axis as λ → ∞ if
k = 0, and consists of a continuous, strictly decreasing curve.

(ii) Moreover, if k = 0, m = 1, q ≡ q1 > p − 1 and fk=0,µ=0,λ(u) ≡ λuq > 0 on (0, ∞), then

Sp,k=0,µ=0 =
{
(λ, ∥uλ∥∞) = (cp,qαp−q−1, α), α = ∥uλ∥∞ > 0

}
,

where

cp,q ≡
(

p − 1
p

)
(q + 1)1−p

Γ( p−1
p )Γ( 1

q+1 )

Γ( pq+2p−q−1
p(q+1) )

p

> 0, (1.15)

and Γ(t) ≡
∫ ∞

0 xt−1e−xdx is the usual gamma function.

Proof. (I) We prove part (i). To study Sp,k,µ=0 for p-Laplacian problem (1.1), (1.3) with µ = 0,
we apply the time-map method for which the time-map formula takes the form as follows:

λ1/p =

(
p − 1

p

)1/p ∫ α

0

1

[F̄(α)− F̄(u)]1/p du ≡ T f̄ (α) for α = ∥u∥∞ > 0, (1.16)

where

f̄ (u) ≡ fk,µ=0,λ=1(u) = kup−1 +
m

∑
i=1

aiuqi

and F̄(u) ≡
∫ u

0 f̄ (t)dt; see, e.g., [2, Lemmas 2.1 and 2.2] for the derivation of the time map
formula T(α) in (1.16). We have that positive solution uλ(x) of p-Laplacian problem (1.1), (1.3)
with µ = 0 corresponds to ∥uλ∥∞ = α > 0 satisfying (1.16), e.g., [13, p. 382]. It is easy to
compute that, by (1.3),

lim
u→0+

f̄ (u)
up−1 =

kup−1 + ∑m
i=1 aiuqi

up−1 = k ≥ 0, lim
u→∞

f̄ (u)
up−1 =

kup−1 + ∑m
i=1 aiuqi

up−1 = ∞,

and

(p − 1) f̄ (u)− u f̄ ′(u) =
m

∑
i=1

ai(p − 1 − qi)u
qi < 0 on (0, ∞).

Thus, by [13, (1.7), (1.9) and (4.4)], we have that limα→0+ T f̄ (α) =
( p−1

k

)1/p π
p csc π

p ∈ (0, ∞],
limα→∞ T f̄ (α) = 0, and T f̄ (α) is a strictly decreasing function on (0, ∞). So part (i) directly
follows from (1.13) and (1.16).

(II) We prove part (ii). We have that f̄ (u) = uq, q > p − 1 > 0 and F̄(u) ≡
∫ u

0 f̄ (t)dt =
1

q+1 uq+1. It can be computed that

T f̄ (α) =

(
p − 1

p

)1/p ∫ α

0

1

[F̄(α)− F̄(u)]1/p du

=

(
p − 1

p

)1/p

(q + 1)1/p
∫ α

0

1

[αq+1 − uq+1]
1/p du

=

(
p − 1

p

)1/p

(q + 1)(1−p)/p

Γ( p−1
p )Γ( 1

q+1 )

Γ( pq+2p−q−1
p(q+1) )

 α
p−q−1

p
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by [6, p. 212, formula 855.42] or using symbolic manipulator Mathematica 11.0. Thus by (1.15)
and (1.16), we obtain that

λ =
[

T f̄ (α)
]p

= (
p − 1

p
)(q + 1)1−p

Γ( p−1
p )Γ( 1

q+1 )

Γ( pq+2p−q−1
p(q+1) )

p

αp−q−1

= cp,qαp−q−1. (1.17)

So part (ii) holds.
The proof of Proposition 1.1 is now complete.

2 Main results

The main results in this paper are next Theorem 2.1 and Theorem 2.2 for problem (1.1), (1.3)
with 1 < p ≤ 2 and p > 2, respectively. In Theorems 2.1–2.2 with any fixed µ > 0, we prove
that, on the (λ, ∥u∥∞)-plane, the bifurcation diagram Sp,k,µ always consists of a continuous,
⊂-shaped curve with exactly one (right) turning point at some point (λ∗, ∥uλ∗∥∞). While the
upper branch of each ⊂-shaped bifurcation diagram Sp,k,µ is unbounded if 1 < p ≤ 2 and is
bounded if p > 2. We then study the structures and evolution of bifurcation diagrams Sp,k,µ
with varying µ ≥ 0; see Fig. 2.1 with 1 < p ≤ 2 and Fig. 2.2 with p > 2. Theorem 2.1 and
Theorem 2.2 substantially improve [14, Corollary 2.2] and [14, Corollary 2.4], respectively. Cf.
[14, Corollary 2.2] with 1 < p ≤ 2 and [14, Corollary 2.4] with p > 2 for details. Also see
Remark 3.2 stated behind.

Figure 2.1: Evolutionary bifurcation diagrams Sp,k,µ for (1.1), (1.3) with fixed
p ∈ (1, 2], k ≥ 0 and varying µ ≥ 0.

Theorem 2.1 (See Fig. 2.1). Let 1 < p ≤ 2 and k ≥ 0. Consider p-Laplacian problem (1.1), (1.3) with
varying µ ≥ 0. Then the bifurcation diagram Sp,k,µ consists of a continuous curve on the (λ, ∥u∥∞)-
plane and the following assertions (i)–(v) hold:

(i) For µ = 0, Sp,k,µ=0 emanates from the positive ∥u∥∞-axis as λ → 0+, tends to the point
(λ̄, 0) =

(( p−1
k

)(
π
p csc π

p

)p, 0
)

if k > 0 and tends to the positive λ-axis as λ → ∞ if k = 0, and
consists of a strictly decreasing curve.
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(ii) For any fixed µ > 0, Sp,k,µ always starts at the point (λ̄, 0) =
(( p−1

k

)(
π
p csc π

p

)p, 0
)

if k > 0
and emanates from the positive λ-axis as λ → ∞ if k = 0 (that is, (λ̄, 0) = (∞, 0) if k = 0).
Sp,k,µ is a ⊂-shaped curve with exactly one turning point at some point (λ∗, ∥uλ∗∥∞) satisfying

0 < λ∗ < λ̄ and 0 < ∥uλ∗∥∞ < βµ,λ∗ .

In addition, the upper branch of Sp,k,µ tends to infinity when λ → ∞. Thus, (1.1), (1.3) has
exactly two (classical) positive solutions for λ∗ < λ < λ̄, exactly one (classical) positive solution
for λ = λ∗ and λ ≥ λ̄, and no (classical) positive solution for 0 < λ < λ∗.

(iii) For any nonnegative µ1 < µ2, Sp,k,µ2 lies on the right hand side of Sp,k,µ1 . (So Sp,k,µ1 and Sp,k,µ2

do not intersect.)

(iv) For the turning points (λ∗, ∥uλ∗∥∞) of Sp,k,µ with µ > 0, λ∗ is a continuous, strictly increasing
function of µ > 0, ∥uλ∗∥∞ is a continuous function of µ > 0,

lim
µ→0+

(λ∗, ∥uλ∗∥∞) = (0, ∞) and lim
µ→∞

(λ∗, ∥uλ∗∥∞) = (λ̄, 0) =
((

p − 1
k

)(
π

p
csc

π

p

)p

, 0
)

.

In particular, when k = 0, m = 1, n = 1, q ≡ q1 > p − 1, r ≡ r1 > q, and fk=0,µ,λ(u) =

λuq − µur, then ∥uλ∗∥∞ is a strictly decreasing function of µ > 0.

(v) When k = 0, m = 1, n = 1, q ≡ q1 > p − 1, r ≡ r1 > q, and fk=0,µ,λ(u) = λuq − µur, then
all points (λ, ∥uλ∥∞) ∈ Sp,k=0,µ satisfy

0 <
( cp,q

λ

) 1
q−p+1

< ∥uλ∥∞ < βµ,λ =

(
λ

µ

) 1
r−q

, (2.1)

where cp,q is defined in (1.15).

Figure 2.2: Evolutionary bifurcation diagrams Sp,k,µ for (1.1), (1.3) with fixed
p > 2, k ≥ 0 and varying µ ≥ 0.

Theorem 2.2 (See Fig. 2.2). Let p > 2 and k ≥ 0. Consider one-dimensional p-Laplacian problem
(1.1), (1.3) with varying µ ≥ 0. Then the bifurcation diagram Sp,k,µ consists of a continuous curve on
the (λ, ∥u∥∞)-plane and the following assertions (i)–(vi) hold:
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(i) For µ = 0, Sp,k,µ=0 emanates from the positive ∥u∥∞-axis as λ → 0+, tends to the point
(λ̄, 0) =

(( p−1
k

)(
π
p csc π

p

)p, 0
)

if k > 0 and tends to the positive λ-axis as λ → ∞ if k = 0, and
consists of a strictly decreasing curve.

(ii) For any fixed µ > 0, Sp,k,µ starts at the same point (λ̄, 0) =
(( p−1

k

)(
π
p csc π

p

)p, 0
)

if k > 0
and emanates from the positive ∥u∥∞-axis as λ → 0+ if k = 0 (that is, (λ̄, 0) = (∞, 0) if
k = 0), ends at some point

(
λ̃, ∥vλ̃∥∞

)
satisfying 0 < λ̃ < ∞ and 0 < ∥vλ̃∥∞ = vλ̃(0) = βµ,λ̃

satisfying fk,µ,λ̃(βµ,λ̃) = 0 (that is, vλ̃(x) ≡ limλ→λ̃− vλ(x) is a flat-core positive solution
of problem (1.1), (1.3), see part (a) stated below for (classical) positive solutions vλ(x) with
λ∗ < λ < λ̃). Moreover, Sp,k,µ is a ⊂-shaped curve with exactly one turning point at some point
(λ∗, ∥uλ∗∥∞) satisfying

0 < λ∗ < min(λ̄, λ̃) and 0 < ∥uλ∗∥∞ < ∥vλ̃∥∞ = βµ,λ̃.

Moreover, there exists a unique positive µ̂ = µ̂(p, k, qi, rj, ai, bj) < ∞ if k > 0 and µ̂ = ∞ if
k = 0 such that:

(a) If 0 < µ < µ̂, then (λ∗ <) λ̃ < λ̄ such that problem (1.1), (1.3) has exactly two (classical)
positive solutions uλ, vλ with uλ < vλ satisfying ∥uλ∥∞ < ∥vλ∥∞ < βµ,λ̃ for λ∗ < λ <

λ̃, exactly one (classical) positive solution uλ satisfying ∥uλ∥∞ < βµ,λ̃ for λ = λ∗ and
λ̃ ≤ λ < λ̄, and no (classical) positive solution for 0 < λ < λ∗ and λ ≥ λ̄. In addition,
limλ→λ̄− ∥uλ∥∞ = 0 and limλ→λ̃− ∥vλ∥∞ = ∥vλ̃∥∞ = βµ,λ̃.

(b) If µ = µ̂, then (λ∗ <) λ̃ = λ̄ such that problem (1.1), (1.3) has exactly two (classical)
positive solutions uλ, vλ with uλ < vλ satisfying ∥uλ∥∞ < ∥vλ∥∞ < βµ,λ̃ for λ∗ < λ <

λ̄, exactly one (classical) positive solution uλ satisfying ∥uλ∥∞ < βµ,λ̃ for λ = λ∗, and no
(classical) positive solution for 0 < λ < λ∗ and λ ≥ λ̄. In addition, limλ→λ̄− ∥uλ∥∞ = 0
and limλ→λ̃− ∥vλ∥∞ = ∥vλ̃∥∞ = βµ,λ̃.

(c) If µ > µ̂, then (λ∗ <) λ̄ < λ̃ such that problem (1.1), (1.3) has exactly two (classical)
positive solutions uλ, vλ with uλ < vλ satisfying ∥uλ∥∞ < ∥vλ∥∞ < βµ,λ̃ for λ∗ < λ <

λ̄, exactly one (classical) positive solution uλ satisfying ∥uλ∥∞ < βµ,λ̃ for λ = λ∗ and
exactly one (classical) positive solution vλ satisfying ∥vλ∥∞ < βµ,λ̃ for λ̄ ≤ λ < λ̃, and no
(classical) positive solution for 0 < λ < λ∗ and λ ≥ λ̃. In addition, limλ→λ̄− ∥uλ∥∞ = 0
and limλ→λ̃− ∥vλ∥∞ = ∥vλ̃∥∞ = βµ,λ̃.

(iii) For any nonnegative µ1 < µ2, Sp,k,µ2 lies on the right hand side of Sp,k,µ1 . (So Sp,k,µ1 and Sp,k,µ2

do not intersect.)

(iv) For the ending points
(
λ̃, ∥vλ̃∥∞

)
of Sp,k,µ with µ > 0, λ̃ is a continuous, strictly increasing

function of µ > 0, ∥vλ̃∥∞ is a continuous, strictly decreasing function of µ > 0,

lim
µ→0+

(
λ̃, ∥vλ̃∥∞

)
= (0, ∞) and lim

µ→∞

(
λ̃, ∥vλ̃∥∞

)
= (∞, 0). (2.2)

(v) For the turning points (λ∗, ∥uλ∗∥∞) of Sp,k,µ with µ > 0, λ∗ is a continuous, strictly increasing
function of µ > 0, ∥uλ∗∥∞ is a continuous function of µ > 0,

lim
µ→0+

(λ∗, ∥uλ∗∥∞) = (0, ∞) and lim
µ→∞

(λ∗, ∥uλ∗∥∞) = (λ̄, 0) =
((

p − 1
k

)(
π

p
csc

π

p

)p

, 0
)

.
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(vi) When k = 0, m = 1, n = 1, q ≡ q1 > p − 1, r ≡ r1 > q, and fk=0,µ,λ(u) = λuq − µur, then
all points (λ, ∥uλ∥∞) ∈ Sp,k=0,µ satisfy (2.1).

Remark 2.3 (See Fig. 2.2). By Theorem 2.2, for fixed p ∈ (2, ∞) and k > 0, it is easy to see that,
when µ → ∞, Sp,k,µ converges to the half-line [λ̄, ∞) on the positive λ-axis.

3 Lemmas

To prove Theorems 2.1–2.2 for p-Laplacian problem (1.1), (1.3), we need the following Lemmas
3.1 and 3.3–3.12. In particular, Theorems 2.1–2.2 is based on Lemma 3.1 which is due to Wang
and Yeh [14]. Wang and Yeh [14] considered the p-Laplacian Dirichlet problem with one
parameter λ: {(

φp(u′(x))
)′
+ fλ(u(x)) = 0, −1 < x < 1,

u(−1) = u(1) = 0.
(3.1)

They assumed that the nonlinearity

fλ(u) ≡ λg(u)− h(u), (3.2)

where functions g, h ∈ C[0, ∞) ∩ C2(0, ∞) satisfy hypotheses (H1)–(H4) if 1 < p ≤ 2 and
satisfy hypotheses (H1)–(H5) if p > 2:

(H1) g(0) = h(0) = 0, g(u), h(u) > 0 on (0, ∞), and

0 = lim
u→0+

h(u)
up−1 ≤ mg

0 ≡ lim
u→0+

g(u)
up−1 < ∞.

(H2) The positive function h(u)/g(u) is strictly increasing on (0, ∞), and

lim
u→0+

h(u)
g(u)

= 0, lim
u→∞

h(u)
g(u)

= ∞.

(H3) (p − 2)g′(u)− ug′′(u) < 0 on (0, ∞) and (p − 2)h′(u)− uh′′(u) < 0 on (0, ∞).

(H4) The positive function [(p − 2)h′(u)− uh′′(u)] / [(p − 2)g′(u)− ug′′(u)] is strictly increas-
ing on (0, ∞), and

lim
u→0+

(p − 2)h′(u)− uh′′(u)
(p − 2)g′(u)− ug′′(u)

= 0, lim
u→∞

(p − 2)h′(u)− uh′′(u)
(p − 2)g′(u)− ug′′(u)

= ∞.

(H5) There exists a positive number p∗ > p − 1 such that g(u)/up∗ is strictly decreasing on
(0, ∞) and h(u)/up∗ is strictly increasing on (0, ∞). In addition, for each fixed s ∈ (0, 1),

h(su)
up−1

(
h(u)g(su)
g(u)h(su)

− 1
)

is a strictly increasing function of u on (0, ∞), and

lim
u→∞

h(u)g(su)
g(u)h(su)

∈ (1, ∞].
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Notice that, for p-Laplacian problem (3.1), hypotheses (H1)–(H2) imply that, for each fixed
λ > 0, there exists a unique positive number βλ such that

fλ(u) = λg(u)− h(u) > 0 on (0, βλ),

fλ(0) = λg(0)− h(0) = 0 and fλ(βλ) = λg(βλ)− h(βλ) = 0,

fλ(u) = λg(u)− h(u) < 0 on (βλ, ∞).

Moreover, the number βλ is a continuous, strictly increasing function of λ on (0, ∞),
limλ→0+ βλ = 0 and limλ→∞ βλ = ∞. See [14, (1.4)–(1.5)]. Also, hypotheses (H1)–(H4) im-
ply that, for each fixed λ > 0, the function fλ(u) with λ > 0 is p-convex-concave on (0, βλ).
More precisely, there exists a unique positive number γλ < βλ such that

(p − 2) f ′λ(u)− u f ′′λ (u) < 0 on (0, γλ),

(p − 2) f ′λ(γλ)− γλ f ′′λ (γλ) = 0,

(p − 2) f ′λ(u)− u f ′′λ (u) > 0 on (γλ, βλ).

See [14, (1.6)]. In [14], Wang and Yeh are concerned only with positive solutions u of (3.1)
satisfying 0 < ∥u∥∞ < βλ. Let

λ̂ ≡
(

p − 1
mg

0

)(
π

p
csc

π

p

)p
{
< ∞ if mg

0 > 0,

= ∞ if mg
0 = 0.

(3.3)

For fλ(u) = λg(u)− h(u) in (3.2), we define Fλ(u) =
∫ u

0 fλ(t)dt and

Tλ(α) = (
p − 1

p
)1/p

∫ α

0
[Fλ(α)− Fλ(u)]−1/pdu for 0 < α < βλ.

Lemma 3.1. Consider p-Laplacian problem (3.1) with p > 1. Then the following assertions (i)–(ii)
hold:

(i) ([14, Theorem 2.1 and Fig. 1]) Let 1 < p ≤ 2. If fλ(u) = λg(u) − h(u), g, h ∈ C[0, ∞) ∩
C2(0, ∞) satisfy (H1)–(H4). Then the bifurcation diagram consists of a continuous, ⊂-shaped
curve on the (λ, ∥u∥∞)-plane. More precisely, the there exists a positive number λ∗ < λ̂ such
that (1.1) has exactly two positive solutions uλ, vλ with uλ < vλ for λ∗ < λ < λ̂, exactly one
positive solution vλ for λ = λ∗ and λ ≥ λ̂, and no positive solution for 0 < λ < λ∗. Moreover,
limλ→λ̂− ∥uλ∥∞ = 0 and limλ→∞ ∥vλ∥∞ = ∞.

(ii) ([14, Theorem 2.3 and Fig. 3]) Let p > 2. If fλ(u) = λg(u)− h(u), g, h ∈ C[0, ∞) ∩ C2(0, ∞)

satisfy (H1)–(H5). Then the bifurcation diagram consists of a continuous, ⊂-shaped curve on the
(λ, ∥u∥∞)-plane. More precisely, there exist three positive numbers λ∗ < λ̃ and βλ̃ satisfying
λ∗ < λ̂ (≤ ∞) and fλ̃(βλ̃) = 0 and limα→β−

λ̃
Tλ̃(α) = 1 such that:

(a) (See [14, Fig. 3(a)–(b)]) If λ̃ < λ̂ (≤ ∞), then (1.1) has exactly two positive solutions
uλ, vλ with uλ < vλ for λ∗ < λ < λ̃, exactly one positive solution uλ for λ = λ∗ and
λ̃ ≤ λ < λ̂, and no positive solution for 0 < λ < λ∗ and for λ ≥ λ̂ (if λ̂ < ∞).

(b) (See [14, Fig.3(c)–(d)]) If λ̂ ≤ λ̃, then (1.1) has exactly two positive solutions uλ, vλ

with uλ < vλ for λ∗ < λ < λ̂, exactly one positive solution vλ for λ = λ∗ and for
λ̂ ≤ λ < λ̃ (if λ̃ > λ̂), and no positive solution for 0 < λ < λ∗ and λ ≥ λ̃. Moreover,
limλ→λ̂− ∥uλ∥∞ = 0 and limλ→λ̃− ∥vλ∥∞ = βλ̃.
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Remark 3.2. To Lemma 3.1(i)–(ii), Wang and Yeh [14, Corollaries 2.2 and 2.4] gave examples
of generalized polynomial nonlinearities for

fλ(u) = λg(u)− h(u) = λ(kup−1 + uq)− ur

satisfying r > q > p − 1 > 0 and k ≥ 0, which is a special case of

fk,µ,λ(u) = λ

(
kup−1 +

m

∑
i=1

aiuqi

)
− µ

n

∑
j=1

bjurj

defined in (1.2) satisfying (1.3).

For p-Laplacian problem (1.1), (1.3) with two parameters µ and λ and fk,µ,λ(u) defined in
(1.2), we define the time map formula as follows:

Tµ,λ(α) =

(
p − 1

p

)1/p ∫ α

0

du[
Fk,µ,λ(α)− Fk,µ,λ(u)

]1/p for 0 < α < βµ,λ, (3.4)

where βµ,λ is defined in (1.4) and

Fk,µ,λ(u) =
∫ u

0
fk,µ,λ(t)dt. (3.5)

We define fk,µ,λ(u) = λg(u) − µh̃(u) where g(u) = kup−1 + ∑m
i=1 aiuqi , h̃(u) = ∑n

j=1 bjurj ,
G(u) =

∫ u
0 g(t)dt and H̃(u) =

∫ u
0 h̃(t)dt.

We suppose that uµ,λ(x) is a (classical) positive solution of p-Laplacian problem (1.1), (1.3)
satisfying (1.12). Then (classical) positive solution uµ,λ(x) corresponds to

∥∥uµ,λ
∥∥

∞ = α and

Tµ,λ(α) =

(
p − 1

p

)1/p ∫ α

0

du[
Fk,µ,λ(α)− Fk,µ,λ(u)

]1/p = 1 for 0 < α < βµ,λ. (3.6)

See, e.g., [8, (3.9)].
Recall the number λ̄ =

( p−1
k

)(
π
p csc π

p

)p defined in (1.14).

Lemma 3.3. Consider p-Laplacian problem (1.1), (1.3) with p > 1, λ > 0 and µ > 0. Then the
following assertions (i)–(ii) hold:

(i) limα→0+ Tµ,λ(α) = ( λ̄
λ )

1/p and Tµ,λ(α) has exactly an critical point at some α∗
µ,λ, a minimum,

on (0, βµ,λ). Moreover,
lim

α→β−
µ,λ

Tµ,λ(α) = ∞ if 1 ≤ p < 2.

(ii) There exist two positive numbers C < D < βµ,λ such that C < α∗
µ,λ < D where C = C(k, µ, λ),

D = D(k, µ, λ) satisfy

(p − 1) fk,µ,λ(µ)(C)− C f ′k,µ,λ(µ)(C) = 0 and pFk,µ,λ(µ)(D)− D fk,µ,λ(µ)(D) = 0, (3.7)

respectively. Cf. [14, (3.10) and (3.11)]. Then T′
µ,λ(α) < 0 for α ∈ (0, C] and T′

µ,λ(α) > 0 for
α ∈ [D, βµ,λ).

Proof. Parts (i) and (ii) simply follow by (1.4), (1.11), and slight modification of the proofs of
[14, Lemmas 3.1 and 3.2]. We omit the detailed proofs here.
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We show comparison results for Tµ,λ(α) in the next lemma; cf. [7, Lemma 3.3(i)–(ii)].
Notice that, for any fixed µ > 0 and 0 < λ1 < λ2, βµ,λ1 < βµ,λ2 by (1.6), and for any fixed
λ > 0 and 0 < µ1 < µ2, βµ2,λ < βµ1,λ by (1.7).

Lemma 3.4. Consider p-Laplacian problem (1.1), (1.3) with p > 1. Then the following assertions
(i)–(ii) hold:

(i) For any fixed µ > 0 and 0 < λ1 < λ2, Tµ,λ1(α) > Tµ,λ2(α) for 0 < α < βµ,λ1 .

(ii) For any fixed λ > 0 and 0 < µ1 < µ2, Tµ1,λ(α) < Tµ2,λ(α) for 0 < α < βµ2,λ.

Proof. The proofs of parts (i)–(ii) follow by modification of those of [7, Lemma 3.3(i)–(ii)]. We
omit them here.

Lemma 3.5. Consider p-Laplacian problem (1.1), (1.3) with p > 1. Then the following assertions
(i)–(ii) hold:

(i) For any fixed µ ≥ 0 and 0 < λ1 < λ2, Tµ,λ(α) is a continuous function of λ ∈ [λ1, λ2] for
0 < α < βµ,λ1 .

(ii) For any fixed λ > 0 and 0 ≤ µ1 < µ2, Tµ,λ(α) is a continuous function of µ ∈ [µ1, µ2] for
0 < α < βµ2,λ.

Proof. The proofs of parts (i)–(ii) follow by modification of those of [7, Lemma 3.4(i)–(ii)]. We
omit them here.

By Lemma 3.3(i), Tµ,λ(α) has exactly one critical point at some α∗
µ,λ, a minimum, on

(0, βµ,λ). Let
m(µ, λ) ≡ Tµ,λ(α

∗
µ,λ) = min

α∈(0,βµ,λ)
Tµ,λ(α).

Lemma 3.6. Consider p-Laplacian problem (1.1), (1.3) with p > 1. Then the following assertions
(i)–(ii) hold:

(i) For any fixed µ ∈ (0, ∞), there exists a unique λ∗ > 0 such that m(µ, λ∗) = 1.

(ii) For any fixed λ ∈ (0, λ̄), there exists a unique µ∗ > 0 such that m(µ∗, λ) = 1.

Moreover, for any fixed λ ≥ λ̄ and µ > 0, m(µ, λ) < 1.

Proof. (I) We prove part (ii). We have that limα→∞ Tµ=0,λ(α) = 0, which follows from Proposi-
tion 1.1(i) and since limµ→0+ Tµ,λ(α) = Tµ=0,λ(α). So we can find a number µ1 > 0 such that
m(µ1, λ) = minα∈(0,βµ1,λ) Tµ1,λ(α) < 1. In addition, we have that limα→0+ Tµ,λ(α) > 1, which
follows from Lemma 3.3(i) for 0 < λ < λ̄. By (3.7), we compute and obtain that

λ

µ
=

∑n
j=1 bj(rj − p + 1)Crj

∑m
i=1 ai(qi − p + 1)Cqi

=
∑n

j=1 bj
rj−p+1

rj+1 Drj

∑m
i=1 ai

qi−p+1
qi+1 Dqi

.

So, for fixed λ ∈ (0, λ̄), we have that limµ→∞ α∗
µ,λ = 0 since limµ→∞ C = limµ→∞ D = 0 and

α∗
µ,λ ∈ (C, D) by Lemma 3.3(ii). Hence we can find a number µ2 > 0 such that m(µ2, λ) =

minα∈(0,βµ2,λ) Tµ2,λ(α) > 1.
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Next, we set positive numbers α1 ≡ infµ∈[µ1,µ2] α∗
µ,λ and α2 ≡ supµ∈[µ1,µ2]

α∗
µ,λ ≥ α1. If

α1 = α2, then α∗
µ,λ = α1 = α2 for all µ ∈ [µ1, µ2]. Thus Tµ2,λ(α1) = m(µ2, λ) > 1 and

Tµ1,λ(α1) = m(µ1, λ) < 1. So, by Lemma 3.5(ii) and the Intermediate Value Theorem, there
exists µ∗ ∈ (µ1, µ2) such that

m(µ∗, λ) = Tµ∗,λ(α1) = 1.

By Lemma 3.4(ii), m(µ, λ) = Tµ,λ(α1) is strictly increasing in µ ∈ [µ1, µ2], and hence µ∗ is
unique.

While if α1 < α2, we first show that m(µ, λ) is a continuous function of µ on [µ1, µ2] as
follows. By Lemma 3.4(ii) and Lemma 3.5(ii), for each µ1 < µ2 and fixed α ∈ (0, βµ2,λ), Tµ,λ(α)

is a continuous, strictly increasing function of µ on (µ1, µ2). So for any fixed µ̌ ∈ [µ1, µ2], by
the Dini Theorem [12, p. 195], it is easy to see that

lim
µ→µ̌

(
min

α∈[α1,α2]
Tµ,λ(α)

)
= min

α∈[α1,α2]
Tµ̌,λ(α). (3.8)

Since for any µ ∈ [µ1, µ2], the minimum of Tµ,λ(α) occurs at α∗
µ,λ ∈ [α1, α2]. So

m(µ, λ) = min
α∈(0,βµ,λ)

Tµ,λ(α) = min
α∈[α1,α2]

Tµ,λ(α) for µ ∈ [µ1, µ2]. (3.9)

By (3.8) and (3.9), limµ→µ̌ m(µ, λ) = m(µ̌, λ). Hence m(µ, λ) is a continuous function of µ on
[µ1, µ2]. By the Intermediate Value Theorem, there exists µ∗ ∈ (µ1, µ2) such that m(µ∗, λ) = 1.
Moreover, since m(µ, λ) is strictly increasing in µ ∈ [µ1, µ2], we obtain that µ∗ is unique.

For any fixed λ ≥ λ̄ and µ > 0. By Lemma 3.3, we have limα→0+ Tµ,λ(α) ≤ 1 and
m(µ, λ) < 1.

By above, part (ii) holds.
(II) The proof of part (i) is similar to that of part (ii). We omit it here.
The proof of Lemma 3.6 is now complete.

Lemma 3.7 (See Theorems 2.1–2.2 and Figs. 2.1–2.2). Consider p-Laplacian problem (1.1), (1.3)
with p > 1. Then, for the turning points (λ∗, ∥uλ∗∥∞) of Sp,k,µ with varying µ > 0, λ∗ is a continuous,
strictly increasing function of µ > 0. Moreover, limµ→0+ λ∗ = 0 and limµ→∞ λ∗ = λ̄.

Proof. For fixed µ2 > µ1 > 0, by Lemma 3.6(i), there exists λ∗
2(µ2) > 0 (resp. λ∗

1(µ1) > 0)
such that Tµ2,λ∗

2
(α) (resp. Tµ1,λ∗

1
(α)) has exactly one minimum point αµ2,λ∗

2
∈ (0, βµ2,λ∗

2
) (resp.

αµ1,λ∗
1
∈ (0, βµ1,λ∗

1
)) satisfying Tµ2,λ∗

2
(αµ2,λ∗

2
) = 1 (resp. Tµ1,λ∗

1
(αµ1,λ∗

1
) = 1). Observe that αµ2,λ∗

2
∈

(0, βµ2,λ∗
2
) ⊊ (0, βµ1,λ∗

2
). So we obtain that

Tµ1,λ∗
2
(αµ2,λ∗

2
) =

(
p − 1

p

)1/p ∫ αµ2,λ∗2

0
[λ∗

2(G(αµ2,λ∗
2
)− G(u))− µ1(H̃(αµ2,λ∗

2
)− H̃(u))]−1/pdu

<

(
p − 1

p

)1/p ∫ αµ2,λ∗2

0
[λ∗

2(G(αµ2,λ∗
2
)− G(u))− µ2(H̃(αµ2,λ∗

2
)− H̃(u))]−1/pdu

= Tµ2,λ∗
2
(αµ2,λ∗

2
)

= 1.

So
min

α∈(0,βµ1,λ∗2
)
Tµ1,λ∗

2
(α) ≤ Tµ1,λ∗

2
(αµ2,λ∗

2
) < 1. (3.10)
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For any α ∈ (0, βµ1,λ∗
1
), we have that

Tµ1,λ∗
1
(α) ≥ min

α∈(0,βµ1,λ∗1
)
Tµ1,λ∗

1
(α) = Tµ1,λ∗

1
(αµ1,λ∗

1
) = 1. (3.11)

By (3.10), (3.11) and Lemma 3.4(i), we obtain λ∗
1(µ1) < λ∗

2(µ2). By Lemma 3.6, we obtain
λ∗((0, ∞)) = (0, λ̄). Hence λ∗(µ) : (0, ∞) → (0, λ̄) is a continuous, strictly increasing function.
Moreover, limµ→0+ λ∗(µ) = 0 and limµ→∞ λ∗(µ) = λ̄.

The proof of Lemma 3.7 is now complete.

Lemma 3.8 (See Theorems 2.1–2.2 and Figs. 2.1–2.2). Consider p-Laplacian problem (1.1), (1.3)
with p > 1 and k ≥ 0. Then, for the turning points (λ∗, ∥uλ∗∥∞) of Sp,k,µ with varying µ > 0,
λ∗(µ)

µ is a continuous, strictly decreasing function of µ > 0. Moreover, limµ→0+
λ∗(µ)

µ = ∞ and

limµ→∞
λ∗(µ)

µ = 0.

Proof. For fixed µ2 > µ1 > 0, we let N1 ≡ λ∗(µ1)
µ1

and N2 ≡ λ∗(µ2)
µ2

. Then

Tµ2,λ∗(µ2)(∥uλ∗(µ2)∥∞) = 1 = Tµ1,λ∗(µ1)(∥uλ∗(µ1)∥∞)

= Tµ1,N1µ1(∥uλ∗(µ1)∥∞)

=

(
p − 1

p

)1/p∫ ∥uλ∗(µ1)
∥∞

0
[N1µ1(G(∥uλ∗(µ1)∥∞)−G(u))−µ1(H̃(∥uλ∗(µ1)∥∞)− H̃(u))]−1/pdu

=

(
µ2

µ1

)1/p ( p − 1
p

)1/p

×
∫ ∥uλ∗(µ1)

∥∞

0
[N1µ2(G(∥uλ∗(µ1)∥∞)− G(u))− µ2(H̃(∥uλ∗(µ1)∥∞)− H̃(u))]−1/pdu

=

(
µ2

µ1

)1/p

Tµ2,N1µ2(∥uλ∗(µ1)∥∞)

> Tµ2,N1µ2(∥uλ∗(µ1)∥∞)

since µ2 > µ1 > 0. If λ∗(µ2) ≥ N1µ2, then Tµ2,N1µ2(∥uλ∗(µ1)∥∞) ≥ Tµ2,λ∗(µ2)(∥uλ∗(µ1)∥∞) ≥
Tµ2,λ∗(µ2)(∥uλ∗(µ2)∥∞) by Lemma 3.4(i) and Lemma 3.3(i), which leads to a contradiction since
Tµ2,λ∗(µ2)(∥uλ∗(µ2)∥∞) > Tµ2,N1µ2(∥uλ∗(µ1)∥∞). Hence we obtain λ∗(µ2) < N1µ2. So

N2 =
λ∗(µ2)

µ2
< N1 =

λ∗(µ1)

µ1
.

By Lemma 3.7, we obtain that λ∗(µ) is a continuous function of µ > 0. Hence λ∗(µ)
µ is a

continuous, strictly decreasing function of µ > 0.
We prove limµ→0+

λ∗(µ)
µ = ∞ by method of contradiction. Suppose limµ→0+

λ∗(µ)
µ < ∞, then

there exists a positive N3 > limµ→0+
λ∗(µ)

µ such that

lim
µ→0+

(
1
µ

)1/p

Tµ=1,λ=N3

(
∥uλ∗(µ)∥∞

)
= lim

µ→0+

(
1
µ

)1/p ( p − 1
p

)1/p

×
∫ ∥uλ∗(µ)∥∞

0
[N3(G(∥uλ∗(µ)∥∞)− G(u))− (H̃(∥uλ∗(µ)∥∞)− H̃(u))]−1/pdu
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< lim
µ→0+

(
1
µ

)1/p ( p − 1
p

)1/p

×
∫ ∥uλ∗(µ)∥∞

0
[
λ∗(µ)

µ
(G(∥uλ∗(µ)∥∞)− G(u))− (H̃(∥uλ∗(µ)∥∞)− H̃(u))]−1/pdu

= lim
µ→0+

(
p − 1

p

)1/p

×
∫ ∥uλ∗(µ)∥∞

0
[λ∗(µ)(G(∥uλ∗(µ)∥∞)− G(u))− µ(H̃(∥uλ∗(µ)∥∞)− H̃(u))]−1/pdu

= lim
µ→0+

Tµ,λ∗(µ)(∥uλ∗(µ)∥∞).

By Lemma 3.3(i), there exist two fixed positive numbers α1,N3 and L1,N3 such that
Tµ=1,λ=N3(α1,N3) = L1,N3 is an absolute minimum on (0, β1,N3). So

1 = lim
µ→0+

Tµ,λ∗(µ)(∥uλ∗(µ)∥∞) > lim
µ→0+

(
1
µ

)1/p

Tµ=1,λ=N3(∥uλ∗(µ)∥∞) ≥ lim
µ→0+

(
1
µ

)1/p

L1,N3 = ∞,

which leads to a contradiction. Hence limµ→0+
λ∗(µ)

µ = ∞.

Similarly, we prove limµ→∞
λ∗(µ)

µ = 0 by method of contradiction. Suppose limµ→∞
λ∗(µ)

µ >

0, then there exists a positive N4 such that N4 < limµ→∞
λ∗(µ)

µ . By Lemma 3.3(i), there exist
two fixed positive numbers α1,N4 and L1,N4 such that Tµ=1,λ=N4(α1,N4) = L1,N4 is an absolute
minimum on (0, β1,N4). We then need the next claim.

Claim A. limµ→∞ Tµ,λ∗(µ)(α1,N4) ≥ limµ→∞ Tµ,λ∗(µ)(∥uλ∗(µ)∥∞).

Proof of Claim A. Since N4 < limµ→∞
λ∗(µ)

µ , there exists a positive number µ0 such that, for

all µ > µ0, N4 < λ∗(µ)
µ . By (1.4) and (1.6), for all µ > µ0, we have β1,N4 < β

1, λ∗(µ)
µ

. For µ > 0,

by (1.4), we have β
1, λ∗(µ)

µ

= βµ,λ∗(µ) since f
k,1, λ∗(µ)

µ

(βµ,λ∗(µ)) = 1
µ fk,µ,λ∗(µ)(βµ,λ∗(µ)) = 0. Hence,

for all µ > µ0, 0 < α1,N4 < β1,N4 < βµ,λ∗(µ). By Lemma 3.3(i), Lemma 3.6(i) and (3.6), for
all µ > µ0, we have Tµ,λ∗(µ)(α1,N4) ≥ Tµ,λ∗(µ)(∥uλ∗(µ)∥∞). Moreover, limµ→∞ Tµ,λ∗(µ)(α1,N4) ≥
limµ→∞ Tµ,λ∗(µ)(∥uλ∗(µ)∥∞). So Claim A holds.

We thus have that

lim
µ→∞

(
1
µ

)1/p

Tµ=1,λ=N4(α1,N4)

= lim
µ→∞

(
1
µ

)1/p( p − 1
p

)1/p∫ α1,N4

0
[N4(G(α1,N4)− G(u))− (H̃(α1,N4)− H̃(u))]−1/pdu

> lim
µ→∞

(
1
µ

)1/p( p − 1
p

)1/p∫ α1,N4

0

[
λ∗(µ)

µ
(G(α1,N4)− G(u))− (H̃(α1,N4)− H̃(u))

]−1/p

du

= lim
µ→∞

(
p − 1

p

)1/p ∫ α1,N4

0
[λ∗(µ)(G(α1,N4)− G(u))− µ(H̃(α1,N4)− H̃(u))]−1/pdu

= lim
µ→∞

Tµ,λ∗(µ)(α1,N4)

≥ lim
µ→∞

Tµ,λ∗(µ)(∥uλ∗(µ)∥∞) (by Claim A)

= 1,
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which leads to a contradiction since

lim
µ→∞

(
1
µ

)1/p

Tµ=1,λ=N4(α1,N4) = lim
µ→∞

(
1
µ

)1/p

L1,N4 = 0.

Hence limµ→∞
λ∗(µ)

µ = 0.

The proof of Lemma 3.8 is now complete.

Lemma 3.9 (See Theorems 2.1–2.2 and Figs. 2.1–2.2). Consider p-Laplacian problem (1.1), (1.3)
with p > 1 and k ≥ 0. Then, for the turning points (λ∗, ∥uλ∗∥∞) of Sp,k,µ with varying µ > 0,

C < ∥uλ∗∥∞ < D, (3.12)

where C = C(k, µ, λ∗(µ)), D = D(k, µ, λ∗(µ)) satisfy

(p − 1) fk,µ,λ∗(µ)(C)− C f ′k,µ,λ∗(µ)(C) = 0 and pFk,µ,λ∗(µ)(D)− D fk,µ,λ∗(µ)(D) = 0, (3.13)

respectively. Moreover, limµ→0+ ∥uλ∗∥∞ = ∞ and limµ→∞ ∥uλ∗∥∞ = 0.

Proof. By Lemma 3.3(ii) and (3.6), it is easy to see that C < ∥uλ∗∥∞ < D. Equations in (3.13)
follow by Eqs. (3.7) directly. By (3.13), (1.2) and (3.5), we then compute and obtain that

λ∗(µ)

µ
=

∑n
j=1 bj(rj − p + 1)Crj

∑m
i=1 ai(qi − p + 1)Cqi

=
∑n

j=1 bj
rj−p+1

rj+1 Drj

∑m
i=1 ai

qi−p+1
qi+1 Dqi

,

in which rj − p + 1 > 0 for j = 1, 2, . . . , n and qi − p + 1 > 0 for i = 1, 2, . . . , m. Thus, by
applying Lemma 3.8 and (1.3), we have that limµ→0+ C = limµ→0+ D = ∞ and limµ→∞ C =

limµ→∞ D = 0. Hence limµ→0+ ∥uλ∗∥∞ = ∞ and limµ→∞ ∥uλ∗∥∞ = 0 by (3.12).
The proof of Lemma 3.9 is now complete.

Lemma 3.10. Consider p-Laplacian problem (1.1), (1.3) with p > 2 and k ≥ 0. Then the following
assertions (i)–(ii) hold:

(i) For any fixed µ > 0, limα→β−
µ,λ

Tµ,λ(α) is a continuous, strictly decreasing function of λ on

(0, ∞). Moreover,

lim
λ→0+

lim
α→β−

µ,λ

Tµ,λ(α) = ∞ and lim
λ→∞

lim
α→β−

µ,λ

Tµ,λ(α) = 0.

(ii) For any fixed λ > 0, limα→β−
µ,λ

Tµ,λ(α) is a continuous, strictly increasing function of µ on

(0, ∞). Moreover,

lim
µ→0+

lim
α→β−

µ,λ

Tµ,λ(α) = 0 and lim
µ→∞

lim
α→β−

µ,λ

Tµ,λ(α) = ∞.

Proof. (I) We prove part (i) where

g(u) = kup−1 +
m

∑
i=1

aiuqi and h(u) = µ
n

∑
j=1

bjurj (with m, n ≥ 1 and µ > 0)
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satisfy (1.3). We take p∗ = qm+r1
2 > p − 1. Then it is easy to see that g(u)

up∗ is strictly decreasing

on (0, ∞) and h(u)
up∗ is strictly increasing on (0, ∞). For each fixed s ∈ (0, 1),

h(su)
up−1

[
h(u)g(su)
g(u)h(su)

− 1
]
=

h(u)g(su)− h(su)g(u)
up−1g(u)

=

µ
m
∑

i=1

n
∑

j=1
aibj(sqi − srj)uqi+rj + µkup−1 ∑n

j=1 bj(sp−1 − srj)urj

up−1(kup−1 + ∑m
i=1 aiuqi)

is a strictly increasing function of u on (0, ∞) and limu→∞
h(u)g(su)
g(u)h(su) = sqm−rn ∈ (1, ∞) since

s ∈ (0, 1) and qm < rn. So g, h satisfy (H5). For λ ∈ (0, ∞), by (3.4), we obtain that

lim
α→β−

µ,λ

Tµ,λ(α)

= lim
α→β−

µ,λ

(
p − 1

p

)1/p ∫ α

0

[∫ α

u
fk,µ,λ(t)dt

]−1/p

du

= lim
α→β−

µ,λ

(
p − 1

p

)1/p ∫ α

0

[∫ α

u

h(βµ,λ)

g(βµ,λ)
g(t)− h(t)dt

]−1/p

du

(since fk,µ,λ(u) = λg(u)− h(u) and by (1.4))

= lim
α→β−

µ,λ

(
p − 1

p

)1/p

α(p−1)/p
∫ 1

0

[∫ 1

v

h(βµ,λ)

g(βµ,λ)
g(sα)− h(sα)ds

]−1/p

dv

(let u = αv and t = αs )

=

(
p − 1

p

)1/p

β
(p−1−p∗)/p
µ,λ lim

α→β−
µ,λ

∫ 1

0

[∫ 1

v
sp∗
(

h(βµ,λ)g(sα)

g(βµ,λ) (sα)p∗ −
h(sα)

(sα)p∗

)
ds

]−1/p

dv

=

(
p − 1

p

)1/p

β
(p−1−p∗)/p
µ,λ

∫ 1

0

[∫ 1

v
lim

α→β−
µ,λ

sp∗
(

h(βµ,λ)g(sα)

g(βµ,λ) (sα)p∗ −
h(sα)

(sα)p∗

)
ds

]−1/p

dv

(by (H5) and the Monotone Convergence Theorem)

=

(
p − 1

p

)1/p ∫ 1

0

∫ 1

v

h(sβµ,λ)

β
p−1
µ,λ

(
h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1
)

ds

−1/p

dv. (3.14)

By (H5) and since βµ,λ is strictly increasing in λ ∈ (0, ∞), we obtain that limα→β−
µ,λ

Tµ,λ(α) is a

strictly decreasing function of λ on (0, ∞).
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For any number λ0 ∈ (0, ∞), by (3.14), we obtain that

lim
λ→λ0

lim
α→β−

µ,λ

Tµ,λ(α) = lim
λ→λ0

(
p − 1

p

)1/p ∫ 1

0

∫ 1

v

h(sβµ,λ)

β
p−1
µ,λ

(
h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1
)

ds

−1/p

dv

=

(
p − 1

p

)1/p ∫ 1

0

∫ 1

v
lim

λ→λ0

h(sβµ,λ)

β
p−1
µ,λ

(
h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1
)

ds

−1/p

dv

(by (H5) and the Monotone Convergence Theorem)

=

(
p − 1

p

)1/p ∫ 1

0

∫ 1

v

h(sβµ,λ0)

β
p−1
µ,λ0

(
h(βµ,λ0)g(sβµ,λ0)

g(βµ,λ0)h(sβµ,λ0)
− 1
)

ds

−1/p

dv

= lim
α→β−

µ,λ0

Tµ,λ0(α).

So we obtain that limα→β−
µ,λ

Tµ,λ(α) is a continuous function of λ on (0, ∞).

Finally, we prove limλ→0+ limα→β−
µ,λ

Tµ,λ(α) = ∞ and limλ→∞ limα→β−
µ,λ

Tµ,λ(α) = 0. By
(3.14), we obtain that

lim
λ→0+

lim
α→β−

µ,λ

Tµ,λ(α) = lim
λ→0+

(
p − 1

p

)1/p ∫ 1

0

∫ 1

v

h(sβµ,λ)

β
p−1
µ,λ

(
h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1
)

ds

−1/p

dv

=

(
p − 1

p

)1/p ∫ 1

0

∫ 1

v
lim

λ→0+

h(sβµ,λ)

β
p−1
µ,λ

(
h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1
)

ds

−1/p

dv

and

lim
λ→∞

lim
α→β−

µ,λ

Tµ,λ(α) = lim
λ→∞

(
p − 1

p

)1/p ∫ 1

0

∫ 1

v

h(sβµ,λ)

β
p−1
µ,λ

(
h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1
)

ds

−1/p

dv

=

(
p − 1

p

)1/p ∫ 1

0

∫ 1

v
lim

λ→∞

h(sβµ,λ)

β
p−1
µ,λ

(
h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1
)

ds

−1/p

dv

by (H5) and the Monotone Convergence Theorem. For each fixed s ∈ (0, 1), we have that, by
(H5),

lim
λ→0+

h(sβµ,λ)

β
p−1
µ,λ

(
h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1
)
= lim

βµ,λ→0+

h(sβµ,λ)

β
p−1
µ,λ

(
h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1
)
= 0

and

lim
λ→∞

h(sβµ,λ)

β
p−1
µ,λ

(
h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1
)
= lim

βµ,λ→∞

h(sβµ,λ)

β
p−1
µ,λ

(
h(βµ,λ)g(sβµ,λ)

g(βµ,λ)h(sβµ,λ)
− 1
)
= ∞.

So limλ→0+ limα→β−
µ,λ

Tµ,λ(α) = ∞ and limλ→∞ limα→β−
µ,λ

Tµ,λ(α) = 0.
(II) The proof of part (ii) is similar to that of part (i). We omit it here.
The proof of Lemma 3.10 is now complete.
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Lemma 3.11. Consider p-Laplacian problem (1.1), (1.3) with p > 2 and k ≥ 0. Then the following
assertions (i)–(ii) hold:

(i) For any fixed µ ∈ (0, ∞), there exists a unique λ̃ > 0 such that limα→β−
µ,λ̃

Tµ,λ̃(α) = 1.

(ii) For any fixed λ ∈ (0, ∞), there exists a unique µ̃ > 0 such that limα→β−
µ̃,λ

Tµ̃,λ(α) = 1.

Proof. (I) We prove part (i). For any fixed µ > 0, by Lemma 3.10(i) and the Intermediate Value
Theorem, there exists a unique λ̃ > 0 such that limα→β−

µ,λ̃
Tµ,λ̃(α) = 1.

(II) We prove part (ii). For any fixed λ > 0, by Lemma 3.10(ii) and the Intermediate Value
Theorem, there exists a unique µ̃ > 0 such that limα→β−

µ̃,λ
Tµ̃,λ(α) = 1.

The proof of Lemma 3.11 is now complete.

Lemma 3.12 (See Theorem 2.2 and Fig. 2.2). Consider p-Laplacian problem (1.1), (1.3) with p > 2
and k ≥ 0. Then, for the ending points

(
λ̃, ∥vλ̃∥∞

)
of Sp,k,µ with varying µ > 0, λ̃ is a continuous,

strictly increasing function of µ > 0. Moreover, limµ→0+ λ̃ = 0 and limµ→∞ λ̃ = ∞.

Proof. For fixed µ2 > µ1 > 0, by Lemma 3.10(ii), limα→β−
µ2 λ̃1

Tµ2,λ̃1
(α) > limα→β−

µ1,λ̃1
Tµ1,λ̃1

(α) =

1. If λ̃1 ≥ λ̃2, then by Lemma 3.10(i), limα→β−
µ2,λ̃1

Tµ2,λ̃1
(α) ≤ limα→β−

µ2,λ̃2
Tµ2,λ̃2

(α) = 1, which

leads to a contradiction. So we obtain λ̃1 < λ̃2. By Lemma 3.11, we obtain λ̃((0, ∞)) = (0, ∞).
Hence λ̃(µ) : (0, ∞) → (0, ∞) is a continuous, strictly increasing function of µ > 0. Moreover,
limµ→0+ λ̃ = 0 and limµ→∞ λ̃ = ∞.

The proof of Lemma 3.12 is now complete.

4 Proofs of main results

Proof of Theorem 2.1. Let 1 < p ≤ 2 and k ≥ 0.
(I)(a) We prove that, for any fixed µ > 0, the bifurcation diagram Sp,k,µ consists of a

continuous curve on the (λ, ∥u∥∞)-plane. For any fixed µ > 0 and λ > 0, it is easy to see that
Tµ,λ(α) defined in (3.4) is a continuous function of α ∈ (0, βµ,λ). By Lemma 3.4(i) and Lemma
3.6(i), we have that, for any fixed µ > 0, the set {α ∈ (0, βµ,λ) : Tµ,λ(α) = 1 for all λ > 0} is
connected. Thus, by Lemma 3.5(i), for any fixed µ > 0, Sp,k,µ consists of a continuous curve
on the (λ, ∥u∥∞)-plane.

(I)(b) Part (i) follows from Proposition 1.1(i).
(II) We prove part (ii) where nonlinearities

g(u) = kup−1 +
m

∑
i=1

aiuqi and h(u) = µ
n

∑
j=1

bjurj (with µ > 0)

satisfy (1.3). We prove that g, h satisfy (H1)–(H4). It is first easy to see that g, h ∈ C[0, ∞) ∩
C2(0, ∞) satisfy (H1) with mg

0 ≡ limu→0+
g(u)
up−1 = k ≥ 0. Hence, by (3.3), λ̂ =

( p−1
k

)(
π
p csc π

p

)p
=

λ̄. By (1.3), it is easy to see that the function

h(u)
g(u)

=
µ ∑n

j=1 bjurj

kup−1 + ∑m
i=1 aiuqi

(µ > 0)

is positive and strictly increasing on (0, ∞) and satisfies that

lim
u→0+

h(u)
g(u)

= 0 and lim
u→∞

h(u)
g(u)

= ∞.
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Thus g, h satisfy (H2). It is clear that, by (1.3),

(p − 2)g′(u)− ug′′(u) =
m

∑
i=1

aiqi(p − 1 − qi)uqi−1 < 0 on (0, ∞),

(p − 2)h′(u)− uh′′(u) = µ
n

∑
j=1

bjrj(p − 1 − rj)urj−1 < 0 on (0, ∞).

Thus g, h satisfy (H3). Finally, by (1.3), we compute that

(p − 2)h′(u)− uh′′(u)
(p − 2)g′(u)− ug′′(u)

=
µ ∑n

j=1 bjrj(p − 1 − rj)urj−1

∑m
i=1 aiqi(p − 1 − qi)uqi−1 (µ > 0)

=
µ ∑n

j=1 bjrj(p − 1 − rj)urj

∑m
i=1 aiqi(p − 1 − qi)uqi

which is positive and strictly increasing on (0, ∞) and satisfies that

lim
u→0+

(p − 2)h′(u)− uh′′(u)
(p − 2)g′(u)− ug′′(u)

= 0 and lim
u→∞

(p − 2)h′(u)− uh′′(u)
(p − 2)g′(u)− ug′′(u)

= ∞.

So g, h satisfy (H4). By above, we conclude that g, h satisfy (H1)–(H4). So part (ii) follows from
Lemma 3.1(i).

(III) We prove part (iii). Consider any nonnegative µ1 < µ2. If, on the (λ, ∥u∥∞)-plane,
bifurcation diagrams Sp,k,µ1 and Sp,k,µ2 attain a fixed number ∥u∥∞ = ᾱ for any feasible ᾱ > 0
at λ = λ1 > 0 and λ = λ2 > 0, respectively. Then by (3.6), we have the following equalities:

Tµ1,λ1(ᾱ) =

(
p − 1

p

)1/p ∫ ᾱ

0
[λ1(G(ᾱ)− G(u))− µ1(H̃(ᾱ)− H̃(u))]−1/pdu = 1, (4.1)

Tµ2,λ2(ᾱ) =

(
p − 1

p

)1/p ∫ ᾱ

0
[λ2(G(ᾱ)− G(u))− µ2(H̃(ᾱ)− H̃(u))]−1/pdu = 1. (4.2)

Suppose that λ1 ≥ λ2, since 0 < µ1 < µ2 and λ1 ≥ λ2, we have that

λ1(G(ᾱ)− G(u))− µ1(H̃(ᾱ)− H̃(u)) > λ2(G(ᾱ)− G(u))− µ2(H̃(ᾱ)− H̃(u)).

Thus Tµ1,λ1(ᾱ) < Tµ2,λ2(ᾱ), which leads to a contradiction since the above equality (4.1) for
Tµ1,λ1(ᾱ) and equality (4.2) for Tµ2,λ2(ᾱ) are both equal to 1. So λ1 < λ2. Hence, for any
nonnegative µ1 < µ2, on the (λ, ∥u∥∞)-plane, Sp,k,µ2 lies on the right hand side of Sp,k,µ1 .

(IV) We prove part (iv). By Lemma 3.7, λ∗(µ) : (0, ∞) → (0, λ̄) is a continuous, strictly
increasing function. Moreover, limµ→0+ λ∗(µ) = 0 and limµ→∞ λ∗(µ) = λ̄. It is easy to show
that ∥uλ∗∥∞ (=

∥∥uµ,λ∗
∥∥

∞) is a continuous function of µ > 0. By Lemma 3.9, we have that
limµ→0+ ∥uλ∗∥∞ = ∞ and limµ→∞ ∥uλ∗∥∞ = 0.

In particular, when k = 0, m = 1, n = 1, q ≡ q1 > p − 1, r ≡ r1 > q, and fk=0,µ,λ(u) =

λuq − µur, we let u = uµ,λ be a (classical) positive solution of (1.1), (1.3). Then the change of
variables

uµ,λ(x) =
(

λ

µ

)1/(r−q)

v(µ
p−q−1
p(r−q) λ

r−p+1
p(r−q) x)

transforms uµ,λ into a solution v of{(
φp(v′(x))

)′
+ vq − vr = 0, −L < x < L,

v(−L) = v(L) = 0,
(4.3)
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with
L ≡ µ

p−q−1
p(r−q) λ

r−p+1
p(r−q) . (4.4)

Cf. [5, p. 463]. For p-Laplacian problem (4.3) with 1 < p ≤ 2 and 0 < p − 1 < q < r, we define
the time map formula as follows:

T̃(α) =
(

p − 1
p

)1/p ∫ α

0

dv[
F̃(α)− F̃(v)

]1/p for 0 < α < 1, (4.5)

where F̃(v) ≡
∫ v

0 f̃ (t)dt and f̃ (v) ≡ vq − vr. By [14, Lemma 3.1], there exist two fixed positive
numbers ∥v∗∥∞ and L∗ such that T̃(α) has exactly one critical point, an absolute minimum
T̃(∥v∗∥∞) = L∗, on (0, 1). Thus, by (4.4),

L∗ = µ
p−q−1
p(r−q) (λ∗)

r−p+1
p(r−q) ,

and hence (
λ∗

µ

)1/(r−q)

= (L∗)
p

r−p+1 µ
1

p−1−r .

So we get that

∥uλ∗∥∞ =

(
λ∗

µ

)1/(r−q)

∥v∗∥∞ = (L∗)
p

r−p+1 µ
1

p−1−r ∥v∗∥∞ .

Since r > p − 1, ∥uλ∗∥∞ is a continuous, strictly decreasing function of µ > 0.
(V) We prove part (v). We consider 0 < α < βµ,λ and have that

Tµ=0,λ(α) =

(
p − 1

p

)1/p ∫ α

0
[λ(G(α)− G(u))]−1/pdu

<

(
p − 1

p

)1/p ∫ α

0
[λ(G(α)− G(u))− µ(H̃(α)− H̃(u))]−1/pdu = Tµ,λ(α).

By (3.4), (1.16) and (1.17), we obtain that

λ1/pTµ=0,λ(α) = T f̄ (α) = (cp,qαp−1−q)1/p.

If Tµ=0,λ(α) = 1, then α =
(

cp,q
λ

) 1
q−p+1

. Then by (3.6) and Proposition 1.1(ii), we obtain that

0 <
( cp,q

λ

) 1
q−p+1

< ∥uλ∥∞ < βµ,λ

since T f̄ (α) is a strictly decreasing function on (0, ∞) and Tµ=0,λ
(( cp,q

λ

) 1
q−p+1

)
= 1. So (2.1)

holds.
The proof of Theorem 2.1 is now complete.

Proof of Theorem 2.2. Let p > 2 and k ≥ 0.
(I)(a) We have that, for any fixed µ > 0, the bifurcation diagram Sp,k,µ consists of a contin-

uous curve on the (λ, ∥u∥∞)-plane. The proof is exactly the same as that given in part (I)(a) of
the proof of Theorem 2.1 with 1 < p ≤ 2. So we omit it here.

(I)(b) Part (i) follows from Proposition 1.1(i).
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(II)(a) We prove part (ii) where

g(u) = kup−1 +
m

∑
i=1

aiuqi and h(u) = µ
n

∑
j=1

bjurj (with µ > 0)

satisfy (1.3). We prove that g, h satisfy (H1)–(H5). We first notice that the proofs of g, h
satisfying (H1)–(H4) when p > 2 are exactly the same as those of g, h satisfying (H1)–(H4)
when 1 < p ≤ 2, given in part (II) of the proof of Theorem 2.1. So we omit them here. We
then show that g, h satisfy (H5). We take the number p∗ = qm+r1

2 > p − 1 by (1.3). It is easy to
see that

g(u)
up∗ = kup−1−p∗ +

m

∑
i=1

aiuqi−p∗ is strictly decreasing on (0, ∞)

and
h(u)
up∗ = µ

n

∑
j=1

bjurj−p∗ is strictly increasing on (0, ∞).

For each fixed s ∈ (0, 1), we compute that

h(su)
up−1

[
h(u)g(su)
g(u)h(su)

− 1
]
=

h(u)g(su)− h(su)g(u)
up−1g(u)

=
µ ∑m

i=1 ∑n
j=1 aibj(sqi − srj)uqi+rj + µkup−1 ∑n

j=1 bj(sp−1 − srj)urj

up−1(kup−1 + ∑m
i=1 aiuqi)

which is a strictly increasing function of u on (0, ∞) and satisfies that

lim
u→∞

h(u)g(su)
g(u)h(su)

= sqm−rn ∈ (1, ∞)

since s ∈ (0, 1) and qm < rn. So g, h satisfy (H5). By above, we conclude that g, h satisfy
(H1)–(H5). So part (ii) follows from Lemma 3.1(ii).

(II)(b) By Lemma 3.10(ii), we have that

lim
µ→0+

lim
α→β−

µ,λ̄

Tµ,λ̄(α) = 0, lim
µ→∞

lim
α→β−

µ,λ̄

Tµ,λ̄(α) = ∞

and limα→β−
µ,λ̄

Tµ,λ̄(α) is a continuous, strictly increasing function of µ on (0, ∞). So by the

Intermediate Value Theorem, there exists a positive number µ̂ such that limα→β−
µ,λ̄

Tµ,λ̄(α) < 1

if 0 < µ < µ̂, limα→β−
µ,λ̄

Tµ,λ̄(α) = 1 if µ = µ̂, and limα→β−
µ,λ̄

Tµ,λ̄(α) > 1 if µ > µ̂.

For each fixed k > 0 and µ > 0, limα→β−
µ,λ̃

Tµ,λ̃(α) = 1 by Lemma 3.1(ii) and limα→β−
µ,λ

Tµ,λ(α)

is a continuous, strictly decreasing function of λ on (0, ∞) by Lemma 3.10(i). Hence we obtain
that λ̃ < λ̄ if 0 < µ < µ̂, λ̃ = λ̄ if µ = µ̂, and λ̄ < λ̃ if µ > µ̂.

For each µ > 0 and k = 0, we have λ̄ = ∞. By Lemma 3.10(i), limλ→∞ limα→β−
µ,λ

Tµ,λ(α) = 0.

Hence limα→β−
µ,λ̄

Tµ,λ̄(α) = 0. Since limα→β−
µ,λ̃

Tµ,λ̃(α) = 1 by Lemma 3.1(ii) and limα→β−
µ,λ

Tµ,λ(α)

is a continuous, strictly decreasing function of λ on (0, ∞) by Lemma 3.10(i), we obtain that
λ̃ < λ̄ and µ̂ = ∞.

(III) The proof of part (iii) of Theorem 2.2 is exactly the same as that of part (iii) of Theo-
rem 2.1. So we omit it here.
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(IV) We prove part (iv). By Lemma 3.12, λ̃(µ) : (0, ∞) → (0, ∞) is a continuous, strictly
increasing function. Moreover, limµ→0+ λ̃ = 0 and limµ→∞ λ̃ = ∞. We let u = uµ,λ be a
(classical) positive solution of (1.1), (1.3). Then the change of variables

uµ,λ(x) = v(µ
1
p x)

transforms uµ,λ into a solution v of{(
φp(v′(x))

)′
+ λ

µ (kvp−1 + ∑m
i=1 aivqi)− ∑n

j=1 bjvrj , − L < x < L,

v(−L) = v(L) = 0,
(4.6)

with
L ≡ µ

1
p .

Cf. [5, p. 463]. By Lemma 3.11(i), for any fixed µ ∈ (0, ∞), there exists a unique λ̃(µ) > 0
such that limα→β−

µ,λ̃(µ)
Tµ,λ̃(µ)(α) = 1. Then there exists a unique η = λ̃(µ)

µ > 0 such that

limα→β−
µ,λ̃(µ)

T1,η(α) = µ
1
p and βµ,λ̃(µ) = β1,η . For 0 < µ1 < µ2,

lim
α→β−

µ1,λ̃(µ1)

T1,η1(α) = µ
1
p
1 < µ

1
p
2 = lim

α→β−
µ2,λ̃(µ2)

T1,η2(α).

Hence η1 > η2 by Lemma 3.10(i). Similarly, for any fixed η ∈ (0, ∞), there exists a unique

µ > 0 such that limα→β−
1,η

T1,η(α) = µ
1
p and βµ,λ̃(µ) = β1,η . It is clear that β1,η is a continuous,

strictly increasing function of η on (0, ∞). Hence

∥vλ̃(µ1)
∥∞ = βµ1,λ̃(µ1)

= β1,η1 > β1,η2 = βµ2,λ̃(µ2)
= ∥vλ̃(µ2)

∥∞.

So ∥vλ̃∥∞ is a continuous, strictly decreasing function of µ > 0. By Lemma 3.10(i),

limµ→0+ η(µ) = ∞ and limµ→∞ η(µ) = 0 since limα→β−
1,η

T1,η(α) = µ
1
p . Hence

lim
µ→0+

∥vλ̃(µ)∥∞ = lim
µ→0+

βµ,λ̃(µ) = lim
η→∞

β1,η = ∞

and
lim

µ→∞
∥vλ̃(µ)∥∞ = lim

µ→∞
βµ,λ̃(µ) = lim

η→0+
β1,η = 0.

(V) The proof of part (v) of Theorem 2.2 is exactly the same as that of part (iv) of Theorem
2.1. So we omit it here.

(VI) The proof of part (vi) of Theorem 2.2 is exactly the same as that of part (v) of Theorem
2.1. So we omit it here.

The proof of Theorem 2.2 is now complete.

5 A final remark

For evolutionary bifurcation diagram Sp,k,µ on the (λ, ∥u∥∞)-plane studied in Theorems 2.1–
2.2, analogically, we also study evolutionary bifurcation diagrams Σp,k,λ on the (µ, ∥u∥∞)-plane
defined by:

Σp,k,λ =
{
(µ,
∥∥uµ

∥∥
∞) : µ > 0 and uµ is a (classical) positive solution of (1.1), (1.3)

}
, λ > 0.
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Applying Theorems 2.1–2.2 and by modified analytic techniques used in the proof of [7, The-
orem 2.2], we obtain the following Theorem 5.1 and Fig. 5.1 with 1 < p ≤ 2 and Theorem 5.2
and Fig. 5.2 with p > 2 for evolutionary bifurcation diagrams Σp,k,λ on the (µ, ∥u∥∞)-plane.
We omit the proofs here.

Figure 5.1: Evolutionary bifurcation diagrams Σp,k,λ for (1.1), (1.3) with fixed
p ∈ (1, 2], k ≥ 0 and varying λ > 0.

Theorem 5.1 (See Fig. 5.1). Let 1 < p ≤ 2 and k ≥ 0. Consider p-Laplacian problem (1.1),
(1.3) with varying λ > 0. Then the bifurcation diagram Σp,k,λ consists of a continuous curve on the
(µ, ∥u∥∞)-plane and the following assertions (i)–(iii) hold:

(i) If

0 < λ < λ̄ =

(
p − 1

k

)(
π

p
csc

π

p

)p
{
< ∞ if k > 0,

= ∞ if k = 0,

then:

(a) Σp,k,λ starts at some point (0, b) where b > 0, tends to the positive ∥u∥∞-axis as µ → 0+,
and is a reversed ⊂-shaped curve with exactly one turning point at some point

(
µ∗,
∥∥uµ∗

∥∥
∞

)
satisfying µ∗ > 0 and

∥∥uµ∗
∥∥

∞ > b. More precisely, problem (1.1), (1.3) has exactly two
(classical) positive solutions uµ, vµ with uµ < vµ for 0 < µ < µ∗, exactly one (classi-
cal) positive solution uµ∗ for µ = µ∗, and no (classical) positive solution for µ > µ∗. In
addition, limµ→0+

∥∥uµ

∥∥
∞ = b and limµ→0+

∥∥vµ

∥∥
∞ = ∞.

(b) For the starting points (0, b) of Σp,k,λ with 0 < λ < λ̄, b = b(λ) is a continuous, strictly
decreasing function of λ ∈ (0, λ̄), limλ→0+(0, b) = (0, ∞) and limλ→λ̄−(0, b) = (0, 0).

(c) For the turning points
(
µ∗,
∥∥uµ∗

∥∥
∞

)
of Σp,k,λ with 0 < λ < λ̄, µ∗ is a continuous, strictly

increasing function of λ ∈ (0, λ̄),
∥∥uµ∗

∥∥
∞ is a continuous function of λ ∈ (0, λ̄),

lim
λ→0+

(µ∗,
∥∥uµ∗

∥∥
∞) = (0, ∞) and lim

λ→λ̄−
(µ∗,

∥∥uµ∗
∥∥

∞) = (∞, 0).

In particular, when k = 0, m = 1, n = 1, q ≡ q1 > p − 1, r ≡ r1 > q, and fk=0,µ,λ(u) =
λuq − µur, then

∥∥uµ∗
∥∥

∞ is a strictly decreasing function of λ ∈ (0, λ̄).
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(ii) If λ ≥ λ̄, then Σp,k,λ emanates from the positive ∥u∥∞-axis as µ → 0+, tends to the positive
µ-axis as µ → ∞, and is a strictly monotone curve. More precisely, problem (1.1), (1.3) has
exactly one (classical) positive solution for µ > 0.

(iii) For any positive λ2 > λ1, Σp,k,λ2 lies on the right hand side of Σp,k,λ1 . (So Σp,k,λ1 and Σp,k,λ2 do
not intersect.)

Figure 5.2: Evolutionary bifurcation diagrams Σp,k,λ for (1.1), (1.3) with fixed
p > 2, k ≥ 0 and varying µ ≥ 0.

Theorem 5.2 (See Fig. 5.2). Let p > 2 and k ≥ 0. Consider p-Laplacian problem (1.1), (1.3) with
varying λ > 0. Then the bifurcation diagram Σp,k,λ consists of a continuous curve on the (µ, ∥u∥∞)-
plane and the following assertions (i)–(iv) hold:

(i) If

0 < λ < λ̄ =

(
p − 1

k

)(
π

p
csc

π

p

)p
{
< ∞ if k > 0,

= ∞ if k = 0,

then:

(a) Σp,k,λ starts at some point (0, b) where b > 0, ends at some point
(
µ̃,
∥∥vµ̃

∥∥
∞

)
satisfying

0 < µ̃ < ∞ and 0 <
∥∥vµ̃

∥∥
∞ = vµ̃(0) = βµ̃,λ satisfying fk,µ̃,λ(βµ̃,λ) = 0 (that is, vµ̃(x) ≡

limλ→λ̃− vλ(x) is a flat-core positive solution of (1.1), (1.3), see below for (classical)
positive solutions vλ(x) with µ̃ < µ < µ∗). Moreover, Σp,k,λ is a reverse ⊂-shaped curve
with exactly one turning point at some point (µ∗,

∥∥uµ∗
∥∥

∞) satisfying

0 < µ̃ < µ∗ and 0 <
∥∥uµ∗

∥∥
∞ <

∥∥vµ̃

∥∥
∞ = βµ̃,λ.

More precisely, problem (1.1), (1.3) has exactly two (classical) positive solutions uµ, vµ with
uµ < vµ for µ̃ < µ < µ∗, exactly one (classical) positive solution uµ∗ for µ = µ∗ and 0 <

µ ≤ µ̃, and no (classical) positive solution for µ > µ∗. In addition, limµ→0+
∥∥uµ

∥∥
∞ = b

and limµ→µ̃−
∥∥vµ

∥∥
∞ =

∥∥vµ̃

∥∥
∞ = βµ̃,λ.
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(b) For the starting points (0, b) of Σp,k,λ with 0 < λ < λ̄, b = b(λ) is a continuous, strictly
decreasing function of λ ∈ (0, λ̄), limλ→0+(0, b) = (0, ∞) and limλ→λ̄−(0, b) = (0, 0).

(c) For the turning points
(
µ∗,
∥∥uµ∗

∥∥
∞

)
of Σp,k,λ with 0 < λ < λ̄, µ∗ is a continuous, strictly

increasing function of λ ∈ (0, λ̄),
∥∥uµ∗

∥∥
∞ is a continuous function of λ ∈ (0, λ̄),

lim
λ→0+

(µ∗,
∥∥uµ∗

∥∥
∞) = (0, ∞) and lim

λ→λ̄−
(µ∗,

∥∥uµ∗
∥∥

∞) = (∞, 0).

In particular, when k = 0, m = 1, n = 1, q ≡ q1 > p − 1, r ≡ r1 > q, and fk=0,µ,λ(u) =
λuq − µur, then

∥∥uµ∗
∥∥

∞ is a strictly decreasing function of λ ∈ (0, λ̄).

(ii) If λ ≥ λ̄, then Σp,k,λ emanates from the positive µ-axis as µ → ∞, and ends at some point(
µ̃,
∥∥vµ̃

∥∥
∞

)
in which vµ̃ is a flat-core positive solution. Moreover, Σp,k,λ is a strictly monotone

curve. More precisely, problem (1.1), (1.3) has exactly one (classical) positive solution for µ > µ̃.

(iii) For any positive λ2 > λ1, Σp,k,λ2 lies on the right hand side of Σp,k,λ1 . (So Σp,k,λ1 and Σp,k,λ2 do
not intersect.)

(iv) For the ending points
(
µ̃,
∥∥vµ̃

∥∥
∞

)
of Σp,k,λ with λ > 0, µ̃ is a continuous, strictly increasing

function of λ > 0,
∥∥vµ̃

∥∥
∞ is a continuous, strictly decreasing function of λ > 0,

lim
λ→0+

(
µ̃,
∥∥vµ̃

∥∥
∞

)
= (0, ∞) and lim

λ→∞

(
µ̃,
∥∥vµ̃

∥∥
∞

)
= (∞, 0).
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