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Abstract. Optimization problems are omnipresent in the mathematical modeling of real
world systems and cover a very extensive range of applications becoming apparent in
all branches of Economics, Finance, Materials Science, Astronomy, Physics, Structural
and Molecular Biology, Engineering, Computer Science, and Medicine. In this paper,
we aim to delve deeper into the multiplicity findings concerning a specific class of
quasilinear periodic boundary value problems. In fact, as an optimization problem, we
look for the critical points of the energy functional related to the problem. Utilizing a
corollary derived from Bonanno’s local minimum theorem, we investigate the existence
of a one solution under certain algebraic conditions on the nonlinear term. Additionally,
we explore conditions that lead to the existence of two solutions, incorporating the
classical Ambrosetti-Rabinowitz (AR) condition alongside algebraic criteria. Moreover,
by employing two critical point theorems one by Averna and Bonanno, and another by
Bonanno, we establish the existence of two and three solutions in a particular scenario.
To illustrate our findings, we provide an example.
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1 Introduction

The target of global optimization is to find the best solution of decision models, in presence
of the multiple local solutions. Optimization plays an ever-increasing role in mathematics,
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economics, engineering, health sciences, management and life sciences. Many optimization
problems have existence in the real world including space planning, networking, logistic man-
agement, financial planning, and risk management. The objective of this paper is to ascertain
the existence of solutions for the following quasilinear periodic boundary value problem{

−p(u′)u′′ + ζ(x)u = λ f (x, u(x)) + µg(x, u(x)), a.e. x ∈ [0, 1],

u(1)− u(0) = u′(1)− u′(0) = 0
(P f ,g

λ,µ)

where f , g : [0, 1] × R → R are L1-Carathéodory functions, λ is a positive parameter and
µ ≥ 0. We need the following assumptions:

(Q1) p : R → (0, ∞) is a continuous and nondecreasing on [0, ∞), there exist two positive
numbers M ≥ m such that

m ≤ p(x) ≤ M, ∀x ∈ R (1.1)

(Q2) ζ ∈ C([0, 1]) and there exist ζ1 ≥ ζ0 > 0 such that

ζ0 ≤ ζ(x) ≤ ζ1, ∀x ∈ [0, 1]. (1.2)

Exactly, as an optimization problem, we look for the critical points of the energy functional
related to the problem which are the solutions of the problem.

In recent years, various fixed-point theorems, critical points, and variational methods have
been effectively employed to explore the existence of solutions for quasilinear periodic bound-
ary value problems. References such as [2,9,14,17,20,21,23,26,27] and others have extensively
discussed this topic. For instance, Matzakos and Papageorgiou in [21] combined the varia-
tional method with techniques involving upper and lower solutions to establish the existence
of periodic solutions for quasilinear differential equations. Similarly, Papageorgiou and Pa-
palini in [23] utilized variational arguments, methods from the theory of nonlinear operators
of monotone type, and upper and lower solution techniques to demonstrate the existence of at
least two nontrivial solutions, one positive and the other negative for the following quasilinear
periodic problem {

−(|u′(x)|p−2u′(x))′ = f (x, u(x)) = 0, x ∈ [0, b],

u(0) = u(b), u′(0) = u′(b), 2 ≤ p < ∞

where f : T ×R → R is a function. In [14], the existence of at least three classical solutions for
a Dirichlet quasilinear elliptic system was established through the application of variational
methods and critical point theory. Similarly, in [17], the utilization of a recent three critical
points theorem by Bonanno and Marano led to the confirmation of at least three solutions for
quasilinear second order differential equation on a compact interval [a, b] ⊂ R{

−u′′ = (λ f (x, u) + g(u))h′(u), in (a, b),

u(a)− u(b) = 0

where f : [a, b]× R → R is an L1-Carathéodory function, g : R → R is a Lipschitz continuous
function, was discussed. Shen and Liu, in [26], utilized the symmetric mountain pass theorem
and genus properties in critical point theory to explore the existence of infinitely many solu-
tions for second-order quasilinear periodic boundary value problems with impulsive effects.
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Meanwhile, Wang et al., in [27], investigated the existence of at least three periodic solutions
for the problem (P f ,g

λ,µ) by employing appropriate hypotheses and a three critical points theo-
rem by Ricceri.

Additionally, in [15], variational methods and critical point theorems for smooth function-
als defined on reflexive Banach spaces were used to discuss the existence of at least three
solutions to an impulsive effects version of the problem (P f ,g

λ,µ). Furthermore, in [19], varia-
tional methods were employed to discuss the existence of at least three weak solutions for
the problem (P f ,g

λ,µ) in the case µ = 0. In [12], the investigation focused on the existence of
infinitely many classical solutions for an impulsive effects version of the problem (P f ,g

λ,µ) in the
case µ = 0, utilizing critical point theory. In [13], by using variational methods, the existence
of non-zero solutions and the existence of multiple solutions for positive parameter values for
the problem (P f ,g

λ,µ) in the case µ = 0, was discussed. Lastly, in [18], the existence of at least
one weak solution and infinitely many weak solutions for the problem (P f ,g

λ,µ) in the case µ = 0
was studied based on variational methods.

Our approach employs variational methods, with the primary tools being four local mini-
mum theorems for differentiable functionals. Specifically, we utilize a corollary of Bonanno’s
local minimum theorem to establish the existence of one solution under certain algebraic con-
ditions on the nonlinear terms, and two solutions for the problem under algebraic conditions
alongside the classical Ambrosetti–Rabinowitz (AR) condition on the nonlinear terms (refer
to [3]). Furthermore, by leveraging two critical point theorems, one by Averna and Bonanno,
and another by Bonanno, we ensure the existence of two and three solutions for the problem
(P f ,g

λ,µ) in the case µ = 0.
In comparison to previous findings, we introduce novel assumptions to establish the exis-

tence of solutions for the problem (P f ,g
λ,µ), thus extending recent related works.

Here, we present two specific cases of our main results focusing on scenarios with a single
impulse.

Theorem 1.1. Let ψ : R → R be a continuous function. Assume that there exist two positive constants
γ and η with the property √

2h(2η) + 2h(−2η) + 8ζ1η2

min{m, ζ0}
< γ

and

• there exist ν > 2 and R > 0 such that

0 < ν
∫ ξ

0
ψ(s)ds ≤ ξψ(ξ)

for all |ξ| ≥ R.

Then, for each

λ ∈
(

0,
min{m, ζ0}γ2

8
∫ γ

0 ψ(s)ds

)
and for every function g : [0, 1]× R → R satisfying the following condition:

• there exist ν > 2 and R > 0 such that

0 < ν
∫ ξ

0
g(x, s)ds ≤ ξg(x, ξ)

for all |ξ| ≥ R and for all x ∈ [0, 1],
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there exists δλ > 0, for each µ ∈ [0, δλ[, the problem{
−p(u′)u′′ + ζ(x)u = λe−tψ(x) + µg(x, u(x)), a.e. x ∈ [0, 1],

u(1)− u(0) = u′(1)− u′(0) = 0
(1.3)

admits at least two solutions u1 and u2 in{
u : [0, 1] → R : u is absolutely continuous, u(1) = u(0), u′ ∈ L2([0, 1]

}
such that

max
x∈[0,1]

|u1(x)| < γ.

Theorem 1.2. Assume that ψ : R → R is a nonnegative and continuous function. Moreover, assume
that

lim
ξ→0+

ψ(ξ)

ξ
= lim

|ξ|→∞

ψ(ξ)

|ξ| = 0

and there exists a positive constant η̄ such that
∫ η̄

0 ψ(s)ds > 0. Then, for each λ > λ∗ where

λ∗ =
1

4
∫ 3

4
1
4

θ(x)dx
inf
η̄>0

h(2η̄) + h(−2η̄) + 4ζ1η̄2∫ η̄
0 ψ(s)ds

,

the problem (1.3) in the case µ = 0, admits at least one nonnegative and one non zero solution in{
u : [0, 1] → R : u is absolutely continuous, u(1) = u(0), u′ ∈ L2([0, 1]

}
.

The structure of the paper is outlined as follows:
Section 2 presents our fundamental theorems and revisits relevant definitions. Section 3

discusses and proves the existence of one solution for the problem (P f ,g
λ,µ). Section 4 addresses

the existence of two solutions for the problem (P f ,g
λ,µ). Section 5 introduces a new multiplicity

result aimed at obtaining at least two and three solutions for the problem (P f ,g
λ,µ), specifically

in the case µ = 0.

2 Preliminaries

The main tools utilized to prove our results in Sections 3, 4, and 5 are the following theorems.
For the following notations and results, we refer the reader to [22, 24]. Let X be a real

Banach space. We say that a continuously Gâteaux differentiable functional J : X → R satis-
fies the Palais–Smale condition (abbreviated as (PS)-condition) if any sequence {un} such that
{J(un)} is bounded and limn→∞ ∥J′(un)∥X∗ = 0 has a convergent subsequence.

Let Φ, Ψ : X → R be two continuously Gâteaux differentiable functions. Set

J = Φ − Ψ,

and fix r1, r2 ∈ [−∞, ∞] with r1 < r2. We say that J satisfies the Palais–Smale condition cut off
lower at r1 and upper at r2(in short [r1](PS)[r2]-condition) if any sequence {un} such that {J(un)}
is bounded, limn→∞ ∥J′(un)∥X∗ = 0 and r1 < Φ(un) < r2 for all n ∈ N, has a convergent
subsequence.

Clearly, if r1 = −∞ and r2 = ∞ it coincides with the classical (PS)-condition. Moreover,
if r1 = −∞ and r2 ∈ R it is denoted by (PS)[r2], while if r1 ∈ R and r2 = ∞ it is denoted by
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[r1](PS). Indeed, if Φ and Ψ be two continuously Gâteaux differentiable functionals defined
on a real Banach space X and fix r ∈ R. The functional I = Φ − Ψ is said to verify the
Palais–Smale condition cut off upper at r (in short (PS)[r]) if any sequence {un}n∈N in X
such that {I(un)} is bounded, limn→∞ ∥I′(un)∥X∗ = 0 and Φ(un) < r for all n ∈ N, has
a convergent subsequence. Furthermore, if J satisfies [r1](PS)[r2]-condition, then it satisfies
[ϱ1](PS)[ϱ2]-condition for all ϱ1, ϱ2 ∈ [−∞, ∞] such that r1 ≤ ϱ1 < ϱ2 ≤ r2.

In particular, we deduce that if J satisfies the classical (PS)-condition, then it satisfies
[ϱ1](PS)[ϱ2]-condition for all ϱ1, ϱ2 ∈ [−∞, ∞] with ϱ1 < ϱ2.

In the proof of our main results, we will apply the following four theorems.

Theorem 2.1 ([7, Theorem 2.3]). Let X be a real Banach space and let Φ, Ψ : X → R be two
continuously Gâteaux differentiable functions such that infu∈X Φ(u) = Φ(0) = Ψ(0) = 0. Assume
that there exist r > 0 and ū ∈ X, with 0 < Φ(ū) < r, such that:

(a1)
supΦ(u)≤r Ψ(u)

r < Ψ(ū)
Φ(ū) ,

(a2) for each λ ∈
(Φ(ū)

Ψ(ū) , r
supΦ(u)≤r Ψ(u)

)
, the functional Iλ = Φ − λΨ satisfies (PS)[r]-condition.

Then, for each

λ ∈ Λr =

(
Φ(ū)
Ψ(ū)

,
r

supΦ(u)≤r Ψ(u)

)
,

there exists u0,λ ∈ Φ−1(0, r) such that Iλ(u0,λ) ≡ ϑX∗ and Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1(0, r).

Theorem 2.2 ([7, Theorem 3.2]). Let X be a real Banach space, Φ, Ψ : X → R be two continuously
Gâteaux differentiable functionals such that Φ is bounded from below and Φ(0) = Ψ(0) = 0. Fix
r > 0 and assume that, for each

λ ∈
(

0,
r

supu∈Φ−1(−∞,r) Ψ(u)

)
,

the functional Iλ = Φ − λΨ satisfies (PS)-condition and it is unbounded from below. Then, for each

λ ∈
(

0,
r

supu∈Φ−1(−∞,r) Ψ(u)

)
,

the functional Iλ admits two distinct critical points.

Theorem 2.3 ([4, Theorem A]). Let X be a reflexive real Banach space, Φ : X → R a continu-
ously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux
derivative admits a continuous inverse on X∗, and Ψ : X → R a continuously Gâteaux differentiable
functional whose Gâteaux derivative is compact. Assume that:

(b1) lim∥u∥→∞(Φ(u) + λΨ(u)) = ∞ for all λ ∈ [0, ∞);

(b2) there is r ∈ R such that
inf
X

Φ < r,

and
φ1(r) < φ2(r)
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where

φ1(r) = inf
u∈Φ−1(−∞,r)

Ψ(u)− inf
Φ−1(−∞,r)

w Ψ

r − Φ(u)
,

φ2(r) = inf
u∈Φ−1(−∞,r)

sup
v∈Φ−1[r,∞)

Ψ(u)− Ψ(v)
Φ(v)− Φ(u)

,

and Φ−1(−∞, r)
w

is the closure of Φ−1(−∞, r) in the weak topology.

Then, for each λ ∈
( 1

φ2(r)
, 1

φ1(r)

)
, the functional Φ + λΨ has at least three critical points in X.

Note that φ1(r) in Theorem 2.3 could be 0. In this and similar cases, here and in the sequel,
we agree to read 1

0 as ∞.
We also use the following two critical points theorem.

Theorem 2.4 ([6, Theorem 1.1]). Let X be a reflexive real Banach space, and let Φ, Ψ : X → R be
two sequentially weakly lower semicontinuous and Gâteaux differentiable functions. Assume that Φ is
(strongly) continuous and satisfies

lim
∥u∥→∞

Φ(u) = ∞.

Assume also that there exist two constants r1 and r2 such that

(c1) infX Φ < r1 < r2;

(c2) φ1(r1) < φ∗
2(r1, r2);

(c3) φ1(r2) < φ∗
2(r1, r2), where φ1 is defined as in Theorem 2.3 and

φ∗
2(r1, r2) = inf

u∈Φ−1(−∞,r1)

sup
v∈Φ−1[r1,r2)

Ψ(u)− Ψ(v)
Φ(v)− Φ(u)

.

Then, for each

λ ∈
(

1
φ∗

2(r1, r2)
, min

{
1

φ1(r1)
,

1
φ1(r2)

})
,

the functional Φ + λΨ admits at least two critical points which lie in Φ−1(−∞, r1] and Φ−1[r1, r2),
respectively.

We remind the reader that Theorem 2.3 and Theorem 2.4 rely on Ricceri’s variational
principle [25].

For successful application of Theorems 2.1–2.2, we recommend referring to [8] to ensure
the existence of at least one and two solutions for elliptic Dirichlet problems with variable
exponent. Additionally, for the utilization of Theorems 2.3–2.4, we suggest consulting [10]
to guarantee the existence of at least two and three solutions for a boundary value problem
on the half-line. Furthermore, for effective implementations of Theorems 2.1–2.4, we advise
referring to [11, 16] to explore the existence of multiple solutions for Kirchhoff-type second-
order impulsive differential equations on the half-line and to study an elastic beam equation
with local nonlinearities, respectively.

In this section, we will present several fundamental definitions, notations, lemmas, and
propositions utilized throughout this paper.
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Let us start by defining the finite T-dimensional Banach space

X =
{

u : [0, 1] → R : u is absolutely continuous, u(1) = u(0), u′ ∈ L2([0, 1]
}

, (2.1)

which is equipped with the norm

∥u∥ =

( ∫ 1

0

(
|u′(x)|2 + |u(x)|2

)
dx
) 1

2

. (2.2)

Clearly, X is a Hilbert space and X∗ is the dual space of X.
Setting

h(y) =
∫ y

0

(∫ τ

0
p(ξ)dξ

)
dτ

for every y ∈ R, we have

h′(y) =
∫ y

0
p(ξ)dξ and h′′(y) = p(y)

for every y ∈ R.
We define functionals Φ, Ψ for every u ∈ X, as follows

Φ(u) =
∫ 1

0
h(u′(x))dx +

1
2

∫ 1

0
ζ(x)|u(x)|2dx (2.3)

and

Ψ(u) =
∫ 1

0

(∫ u(x)

0
f (x, ξ)dξ

)
dx +

µ

λ

∫ 1

0

(∫ u(x)

0
g(x, ξ)dξ

)
dx, (2.4)

and we put
Iλ(u) = Φ(u)− λΨ(u)

for every u ∈ X. Clearly, Iλ is Gâteaux differentiable.

Definition 2.5. We mean by a (weak) solution of the BVP (P f ,g
λ,µ), any function u ∈ X such that

∫ 1

0
h′(u′(x))y′(x)dx+

∫ 1

0
ζ(x)u(x)y(x)dx − λ

∫ 1

0
f (x, u(x))y(x)dx

−µ
∫ 1

0
g(x, u(x))y(x)dx = 0

for every y ∈ X.

Lemma 2.6. If u ∈ X is a critical point of Iλ in X, iff u ∈ X is a solution of (P f ,g
λ,µ).

Proof. If u ∈ X is a critical point for Iλ, we have

∫ 1

0
h′(u′(x))y′(x)dx +

∫ 1

0
ζ(x)u(x)y(x)dx

= λ
∫ 1

0
f (x, u(x))y(x)dx + µ

∫ 1

0
g(x, u(x))y(x)dx



8 S. Heidarkhani, S. Moradi, G. Caristi and M. Ferrara

for each y ∈ X. This implies that h′ ◦ u′ has a weak derivative which equals ζ(x)u(x) −
λ f (x, u(x))− µg(x, u(x)) and is thus continuous, so h′ ◦ u′ is C1([0, 1]). Since h′ is an invertible
C1-function, it follows that u′ is also in C1([0, 1]), hence x is in C2([0, 1]). Set

e(x) = −h′(u′(x)) +
∫ t

0
ζ(τ)u(τ)dτ − λ

∫ t

0
f (τ, u(τ))dτ − µ

∫ t

0
g(τ, u(τ))dτ − C

such that
∫ 1

0 e(x)dx = 0. Let y(x) =
∫ t

0 e(τ)dτ. Then y(x) ∈ X and
∫ 1

0 |e(x)|2dx = 0, that is,
e(x) = 0 for a.e. x ∈ [0, 1]. This shows that

−(h′ ◦ u′)′(x) + ζ(x)u(x) =− h′′(u′)u′′(x) + ζ(x)u(x) = −p(u′(x))u′′(x) + ζ(x)u(x)

=λ f (x, u(x)) + µg(x, u(x))

for all x ∈ [0, 1]. Hence we conclude that x is a solution of problem (P f ,g
λ,µ) belongs to C2([0, 1]).

Proposition 2.7 ([27, Proposition 2.3]). If p(·) satisfies (Q1), then h′ is strongly monotone.

Proposition 2.8 ([27, Proposition 2.4]). If p(·) and ζ(·) satisfy (1.1) and (1.2), respectively, then

(1) Φ is well-defined in X,

(2) Φ is Gâteaux differentiable in X,

(3) Φ′ is a Lipschitzian operator,

(4) Φ is convex in X.

Put

F(x, t) =
∫ t

0
f (x, s)ds and G(x, t) =

∫ t

0
g(x, s)ds for all (x, t) ∈ [0, 1]× R.

3 Existence of one solution

In this section, we focus on establishing the existence of one solution for the problem (P f ,g
λ,µ).

For clarity and convenience, let us define

Gθ =
∫ 1

0
sup
|ξ|≤θ

G(x, ξ)dx for all θ > 0

and
Gη = inf

[0,1]×[0,η]
G(x, ξ) for all η > 0.

If g is sign-changing, then clearly Gθ ≥ 0 and Gη ≤ 0.
For our goal, we fix two positive constants θ and η, put

δλ,g = min

{
min{m, ζ0}θ2 − 8λ

∫ 1
0 sup|t|≤θ F(x, t)dx

8Gθ
,

1
4 h(2η) + 1

4 h(−2η) + ζ1η2 − λ
∫ 3

4
1
4

F(x, η)dx

Gη

}
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and

δλ,g = min

δλ,g,
1

max
{

0, 8
min{m,ζ0} lim sup|t|→+∞

supx∈[0,1] G(x,t)
x2

}
 (3.1)

where we read ϵ/0 = +∞, so that, for instance, δλ,g = +∞ when

lim sup
|t|→+∞

supx∈[0,1] G(x, t)

x2 ≤ 0,

and Gη = Gθ = 0.

Theorem 3.1. Assume that there exist two positive constants γ and η with the property√
2h(2η) + 2h(−2η) + 8ζ1η2

min{m, ζ0}
< γ

such that

(A1) f (x, t) ≥ 0 for every (x, t) ∈ [0, 1]×
[
0, 1

4

]⋃ [ 3
4 , 1
]

,

(A2)
∫ 1

0 sup|t|≤γ F(x,t)dx
γ2 < min{m, ζ0}

∫ 3
4

1
4

F(x,η)dx

2h(2η)+2h(−2η)+8ζ1η2 ,

(A3) minx∈[0,1] lim sup|ξ|→∞
F(x,ξ)
|ξ|2 ∈ (−∞, 0].

Then, for each

λ ∈ Λ =

h(2η) + h(−2η) + 4ζ1η2

4
∫ 3

4
1
4

F(x, η)dx
,

min{m, ζ0}γ2

8
∫ 1

0 sup|t|≤γ F(x, t)dx


and for every function g : [0, 1]× R → R satisfying the condition

min
x∈[0,1]

lim sup
|ξ|→∞

G(x, ξ)

|ξ|2 ∈ (−∞, 0), (3.2)

there exists δλ,g > 0 given by (3.1) such that for each µ ∈ [0, δλ,g), the problem (P f ,g
λ,µ) admits at least

one solution uλ in X such that
max
x∈[0,1]

|uλ(x)| < γ.

Proof. Our objective is to apply Theorem 2.1 to the problem (P f ,g
λ,µ). Consider the functionals Φ

and Ψ defined in (2.3) and (2.3), respectively. Our task is to demonstrate that these functionals
satisfy the necessary conditions outlined in Theorem 2.1. Since f , g : [0; 1] × R → R are
L1-Carathéodory functions, we know that Ψ′ is a well-defined and Gâteaux differentiable
functional with

Ψ′(u)(y) =
∫ 1

0
f (x, u(x))y(x)dx +

µ

λ

∫ 1

0
g(x, u(x))y(x)dx

for every u, y ∈ X. Since the embeddings X ↪→ Lq(q ≥ 1) and X ↪→ L∞ are compact (Adams
[1]), we have Ψ′ : X → X∗ is a continuous and compact operator, and Ψ is sequentially weakly
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upper semicontinuous. Moreover, Again using the Lebesgue’s theorem, from the continuity
of h′ and the arbitrariness of {an}, we know that Φ is Gâteaux differentiable in X with

Φ′(u)(y) =
∫ 1

0
h′(u′(x))y′(x)dx +

∫ 1

0
ζ(x)u(x)y(x)dx (3.3)

for every u, y ∈ X. Furthermore, by the definition of Φ, we observe that it is sequentially
weakly lower semicontinuous and strongly continuous. Combining this observation with
(1.1) and (1.2), we have

∫ 1

0
h′(u′(x))dx =

∫ 1

0

(∫ u′(x)

0

(∫ τ

0
p(ξ)dξ

)
dτ

)
dx

and

1
2

min{m, ζ0}∥u∥2 ≤ m
2

∫ 1

0
|u′(x)|2dx +

ζ0

2

∫ 1

0
|u(x)|2dx ≤ Φ(u)

≤ M
2

∫ 1

0
|u′(x)|2dx +

ζ1

2

∫ 1

0
|u(x)|2dx ≤ 1

2
max{M, ζ1}∥u∥2 (3.4)

for every u ∈ X, which implies that Φ is well-defined in X. By using the first inequality in
(3.4), it follows

lim
∥u∥→+∞

Φ(u) = +∞,

namely Φ is coercive. Further, we claim that Φ admits a continuous inverse on X∗. In fact, by
(1.1), (1.2), Proposition 2.7 and (3.3), we have

⟨Φ′(u)− Φ′(y), u − y⟩ =
∫ 1

0
(h′(u′(x))− h′(y′(x)), u′(x)− y′(x))dx

+
∫ 1

0
ζ(x)|u(x)− y(x)|2dx

≥
∫ 1

0
m|u′(x)− y′(x)|2dx +

∫ 1

0
ζ0|u(x)− y(x)|2dx

≥ min{m, ζ0}∥u(x)− y(x)∥2

for all u, y ∈ X, which shows that Φ′ is uniformly monotone in X. Put y = 0, then we have

min{m, ζ0}∥u∥2 ≤ ⟨Φ′(u), u⟩ ≤ ∥Φ′(u)∥X∗ .∥u∥

⇒ min{m, ζ0}∥u∥ ≤ ∥Φ′(u)∥X∗

which shows that Φ′ is coercive in X. Since Φ′ is a Lipschitzian operator, it is hemicontinuous
in X. According to Theorem 26.A of [28], Φ admits a continuous inverse on X∗. Additionally,
the functional Ψ belongs to C1(X, R) and has a compact derivative. Given that the embedding
X ↪→ Lq (where q ≥ 1) is compact, there exists a positive constant C such that

|u|Lq([0,1]) ≤ C∥u∥

and it follows that
|u|L2([0,1]) ≤ C1∥u∥
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where C1 is positive constant. Moreover, for λ > 0, the functional Iλ is coercive. Indeed, since
µ < δλ we can fix κ such that

min
x∈[0,1]

lim sup
|ξ|→∞

G(x, ξ)

|ξ|2 ∈ (−∞, κ)

and µκ < min{m,ζ0}
2C2

1
. Therefore, there exists a positive constant ϱ such that

G(x, ξ) ≤ κξ2 + ϱ

for each ξ ∈ R and x ∈ [0, 1]. Now, we fix 0 < ε < 1
λC2

1

(min{m,ζ0}
2 − µC2

1κ
)
. From the

assumption (A3) there is a positive constant ρε such that

F(x, ξ) ≤ εξ2 + ρε

for every (x, ξ) ∈ [0, 1]× R. It follows that, for each u ∈ X, we have

Φ(u)− λΨ(u) ≥ 1
2

min{m, ζ0}∥u∥2 − λ
∫ 1

0
[F(x, u(x)) +

µ

λ
G(x, u(x))]dx

≥ 1
2

min{m, ζ0}∥u∥2 − λ

(
ε
∫ 1

0
|u(x)|2dx + ρε

)
− µ

(
κ
∫ 1

0
|u(x)|2dx + ϱ

)
≥
(

1
2

min{m, ζ0} − λC2
1ε − µC2

1κ

)
∥u∥2 − λρε − µϱ

and thus
lim

∥u∥→∞
(Φ(u)− λΨ(u)) = ∞,

which means the functional Iλ = Φ − λΨ is coercive. Thus, by [5, Proposition 2.1] the func-
tional Iλ = Φ − λΨ verifies (PS)[r]-condition for each r > 0 and so the condition (a2) of
Theorem 2.1 is verified. Fix λ ∈ (0, λ∗), thus∫ 3

4
1
4

F(x, η)dx − µ
λ Gη

1
4 h(2η) + 1

4 h(−2η) + ζ1η2
>

1
λ

.

Put r = min{m,ζ0}
8 γ2 and

w(x) =


η, x ∈

[
0, 1

4

]
,

2ηx + η
2 , x ∈

[ 1
4 , 1

2

]
,

−2ηx + 5η
2 , x ∈

[ 1
2 , 3

4

]
,

η, x ∈
[ 3

4 , 1
]

.

(3.5)

Clearly, w ∈ X. Then, we have Φ(0) = Ψ(0) = 0,

Φ(w) =
1
4

h(2η) +
1
4

h(−2η) +
1
2

∫ 1

0
ζ(x)|w(x)|2dx

≤ 1
4

h(2η) +
1
4

h(−2η) +
ζ1

2

∫ 1

0
|w(x)|2dx

=
1
4

h(2η) +
1
4

h(−2η) +
31ζ1η2

2 × 24

<
1
4

h(2η) +
1
4

h(−2η) + ζ1η2 (3.6)
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and

Φ(w) ≥ 1
4

h(2η) +
1
4

h(−2η) +
ζ0

2

∫ 1

0
|w(x)|2dx

=
1
4

h(2η) +
1
4

h(−2η) +
31ζ0η2

2 × 24

>
1
4

h(2η) +
1
4

h(−2η) +
ζ0η2

8
. (3.7)

From minx∈[ 1
4 , 3

4 ]
{w(x)} = η, maxx∈[ 1

4 , 3
4 ]
{w(x)} = 3η

2 and the assumption (A1), we have

Ψ(w) =
∫ 1

4

0

∫ η

0
f (x, ξ)dξdx +

∫ 3
4

1
4

∫ w

0
f (x, ξ)dξdx +

∫ 1

3
4

∫ η

0
f (x, ξ)dξdx

+
µ

λ

∫ 1

0

(∫ w(x)

0
g(x, ξ)dξ

)
dx ≥

∫ 3
4

1
4

∫ η

0
f (x, ξ)dξdx +

µ

λ
Gη

=
∫ 3

4

1
4

F(x, η)dx +
µ

λ
Gη .

Thus, by the assumption√
8

min{m, ζ0}

(
1
4

h(2η) +
1
4

h(−2η) + ζ1η2

)
< γ,

we have 0 < Φ(w) < r. For u ∈ X, taking into account

|u(x)| ≤
∣∣∣∣∫ t

t1

u′(τ)dτ

∣∣∣∣+ |u(x1)| ≤
∫ 1

0
|u′(τ)|dτ + |u(x1)|

and

|u(x)| ≤
∫ 1

0
|u′(τ)|dτ +

∫ 1

0
|u(x1)|dx1 ≤

(∫ 1

0
|u′(τ)|2dτ

) 1
2

+

(∫ 1

0
|u(τ)|2dτ

) 1
2

,

we have
max
x∈[0,1]

|u(x)| ≤ 2∥u∥. (3.8)

From the definition of Φ and in view of (3.4) for every r > 0, one has

Φ−1(−∞, r] = {u ∈ X, Φ(x) ≤ r}

⊆
{

u ∈ X, max
x∈[0,1]

|u(x)| ≤
√

8r
min{m, ζ0}

}

⊆
{

u ∈ X, max
x∈[0,1]

|u(x)| ≤ γ

}
.

Hence, we have

sup
Φ(u)<r

Ψ(u) = sup
u∈Φ−1(−∞,r)

Ψ(u) ≤
∫ 1

0
sup
|t|≤γ

F(x, t)dx +
µ

λ
Gγ.
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Therefore, we have

supu∈Φ−1(−∞,r] Ψ(u)

r
=

supu∈Φ−1(−∞,r]

(∫ 1
0 F(x, u(x))dx + µ

λ

∫ 1
0 G(x, u(x))dx

)
r

≤
∫ 1

0 sup|t|≤γ F(x, t)dx + µ
λ Gγ

min{m,ζ0}
8 γ2

(3.9)

and

Ψ(w)

Φ(w)
≥

∫ 3
4

1
4

F(x, η)dx + µ
λ

∫ 1
0 G(x, η)dx

1
4 h(2η) + 1

4 h(−2η) + ζ1η2
(3.10)

≥

∫ 3
4

1
4

F(x, η)dx + µ
λ Gη

1
4 h(2η) + 1

4 h(−2η) + ζ1η2
.

Since

µ <
min{m, ζ0}γ2 − 8λ

∫ 1
0 sup|t|≤γ F(x, t)dx

8Gγ
,

we have

8

∫ 1
0 sup|t|≤γ F(x, t)dx + µ

λ Gγ

min{m, ζ0}γ2 <
1
λ

.

Furthermore,

µ <

1
4 h(2η) + 1

4 h(−2η) + ζ1η2 − λ
∫ 3

4
1
4

F(x, η)dx

Gη
,

this means ∫ 3
4

1
4

F(x, η)dx + µ
λ Gη

1
4 h(2η) + 1

4 h(−2η) + ζ1η2
>

1
λ

.

Then,

8
min{m, ζ0}

∫ 1
0 sup|t|≤γ F(x, t)dx + µ

λ Gγ

γ2 <
1
λ
<

∫ 3
4

1
4

F(x, η)dx + µ
λ Gη

1
4 h(2η) + 1

4 h(−2η) + ζ1η2
. (3.11)

Hence, from (3.9)–(3.11), the condition (a1) of Applying Theorem 2.1 with ū = w ensures the
existence of a local minimum point uλ for the functional Iλ such that 0 < Φ(uλ) < r. Thus, uλ

serves as a nontrivial solution to the problem (P f ,g
λ,µ), satisfying

max
x∈[0,1]

|uλ(x)| < γ.

Now, we illustrate Theorem 3.1 through the following example.

Example 3.2. We consider the following problem{
−p(u′)u′′ + u = λ f (x, u(x)) + µg(x, u(x)), a.e. x ∈ [0, 1],

u(1)− u(0) = u′(1)− u′(0) = 0
(3.12)
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where p(t) = 3 − 2 cos(t) for every t ∈ R, ζ(x) = 1 for each x ∈ [0, 1] and

f (x, t) =

{
4
10 e−xt3, for every (x, t) ∈ [0, 1]× (−∞, 1),
4

10t e−x, for every (x, t) ∈ [0, 1]× [1,+∞).

By the expression of f , we have

F(x, t) =

{
1
10 e−xt4, for every (x, t) ∈ [0, 1]× (−∞, 1),

e−x ( 4
10 ln(t) + 1

10

)
, for every (x, t) ∈ [0, 1]× [1,+∞).

Hence, lim|ξ|→∞
F(x,ξ)
|ξ|2 = 0, thus (A3) holds. Choose γ = 10−2, and η = 1. By simple calcula-

tions, we obtain m = 1, M = 5 and ζ0 = ζ1 = 1. Since

∫ 1
0 sup|t|≤γ F(x, t)dx

γ2 =
e − 1
109e

<
e0.75 − e0.25

(160 + 80 cos(2))e
=

min{m, ζ0}
∫ 3

4
1
4

F(x, η)dx

2h(2η) + 2h(−2η) + 8ζ1η2 ,

thus (A2) holds true, then all conditions in Theorem 3.1 are satisfied. Therefore, it follows
that for each

λ ∈
(
(80 + 40 cos(2))e

4(e0.75 − e0.25)
,

109e
8(e − 1)

)
and for every function g : [0, 1]× R → R satisfying the condition

min
x∈[0,1]

lim sup
|ξ|→∞

G(x, ξ)

|ξ|2 ∈ (−∞, 0),

there exists δλ,g > 0 such that for each µ ∈ [0, δλ,g), the problem (3.12) admits at least one
solution uλ in X such that

max
x∈[0,1]

|uλ(x)| < 10−2.

4 Existence of two solutions

In this section, our objective is to establish the existence of two distinct solutions for the
problem (P f ,g

λ,µ). The following result is derived by applying Theorem 2.2, without the need for
assumption (A3).

Theorem 4.1. Assume that there exist two positive constants γ and η with the property√
2h(2η) + 2h(−2η) + 8ζ1η2

min{m, ζ0}
< γ

and

(A4) there exist ν > 2 and R > 0 such that

0 < νF(x, ξ) ≤ ξ f (x, ξ) (4.1)

for all |ξ| ≥ R and for all x ∈ [0, 1].
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Then, for each

λ ∈

0,
min{m, ζ0}γ2

8
∫ 1

0 sup|t|≤γ F(x, t)dx

 ,

and for every function g : [0, 1]× R → R satisfying the condition (A4), there exists δλ > 0, for each
µ ∈ [0, δλ[, the problem (P f ,g

λ,µ) admits at least two solutions u1 and u2 in X such that

max
x∈[0,1]

|u1(x)| < γ.

Proof. Our aim is to apply Theorem 2.2 to the space X with the norm is defined in (2.2) and
to the functionals Φ and Ψ defined in the proof of Theorem 3.1. The functional Iλ satisfies
the (PS)-condition. Indeed, assume that {un}n∈N ⊂ X such that {Iλ(un)}n∈N is bounded and
I′λ(un) → 0 as n → ∞. Then, there exists a positive constant c0 such that

|Iλ(un)| ≤ c0, |I′λ(un)| ≤ c0 ∀n ∈ N.

Therefore, we deduce from the definition of I′λ and assumption (A3) that

c0 + c1∥un∥ ≥ νIλ(un)− I′λ(un)(un) ≥ min{m, ζ0}
(

ν

2
− 1
)
∥un∥2

− λ
∫ 1

0
(νF(x, un(x))− f (x, un(x))(un(x)))dx

− µ
∫ 1

0
(νG(x, un(x))− g(x, un(x))(un(x)))dx

≥ min{m, ζ0}
(

ν

2
− 1
)
∥un∥2

for some c1 > 0. Since ν > 2, this implies that (un) is bounded. Consequently, since X is a
reflexive Banach space we have, up to a subsequence,

un ⇀ u in X.

By I′λ(un) → 0 and un ⇀ u in X, we obtain

(
I′λ(un)− I′λ(u)

)
(un − u) → 0. (4.2)

From the continuity of f and g, we have

∫ 1

0
( f (x, un(x))− f (x, u(x))) (un(x)− u(x))dx → 0, as n → ∞

and ∫ 1

0
(g(x, un(x))− g(x, u(x))) (un(x)− u(x))dx → 0, as n → ∞.
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Moreover, an easy computation shows

(
I′λ(un)− I′λ(u)

)
(un − u) =

∫ 1

0
h′(u′

n(x)− u′(x))(u′
n(x)− u′(x))dx

+
∫ 1

0
ζ(x)(un(x)− u(x))(un(x)− u(x))dx

− λ
∫ 1

0
( f (x, un(x))− f (x, u(x))) (un(x)− u(x))dx

− µ
∫ 1

0
(g(x, un(x)− g(x, u(x))) (un(x)− u(x))dx

≥ min{m, ζ0}∥un − u∥2.

Thus, the sequence un converges strongly to u in X. Therefore, Iλ satisfies the (PS)-condition.
Moreover, by integrating the condition (4.1), there exist constants a1, a2, a3, a4 > 0 such that
that

F(x, t) ≥ a1|t|ν − a2 and G(x, t) ≥ a3|t|ν − a4

for all x ∈ [0, 1] and t ∈ R. Moreover, for any u ∈ X, one has

1
2

min{m, ζ0}∥u∥2 ≤ Φ(u) ≤ 1
2

max{M, ζ1}∥u∥2. (4.3)

Now, choosing any u ∈ X \ {0}, for each τ > 0 taking (4.3) into account one has

Iλ(τu) = (Φ + λΨ)(τu)

≤ max{M, ζ1}
2

∥τu∥2 − λ
∫ 1

0
F(x, τu(x))dx − µ

∫ 1

0
G(x, τu(x))dx

≤ max{M, ζ1}τ2

2
∥u∥2 − λτνa1

∫ 1

0
|u(x)|νdx + µτνa3

∫ 1

0
|u(x)|νdx − λa2 − µa4.

Since ν > 2, this condition guarantees that Iλ is unbounded from below. Thus, all hypotheses
of Theorem 2.2 are satisfied. Therefore, for each

λ ∈

0,
min{m, ζ0}γ2

8
∫ 1

0 sup|t|≤γ F(x, t)dx

 ,

the functional Iλ admits two distinct critical points that are solutions of the problem (P f ,g
λ,µ).

Remark 4.2. Theorem 1.1 immediately follows from Theorem 4.1.

Remark 4.3. In Theorem 2.1, it is observed that if either f (x, 0) ̸= 0 for some x ∈ [0, 1] or
g(x, 0) ̸= 0 for some x ∈ [0, 1], or both conditions hold true, then Theorem 4.1 guarantees
the existence of two nontrivial solutions for the problem (P f ,g

λ,µ). However, if the condition
f (x, 0) ̸= 0 for some x ∈ [0, 1] and g(x, 0) ̸= 0 for some x ∈ [0, 1] does not hold, the second
solution u2 of the problem (P f ,g

λ,µ) may be trivial, but the problem still has at least one nontrivial
solution.

Remark 4.4. Using similar arguments as those provided in the proof of [7, Theorem 3.5], the
non-triviality of the second solution guaranteed by Theorem 4.1 can also be achieved in the
case where f (x, 0) = 0 for all x ∈ [0, 1], provided that an extra condition at zero is imposed.
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Specifically, this condition entails the existence of a non-empty open set D ⊆ [0, 1] and a set
B ⊂ D of positive Lebesgue measure such that

lim sup
ξ→0+

ess infx∈B F(x, ξ)

|ξ|2 = ∞ and lim inf
ξ→0+

ess infx∈D F(x, ξ)

|ξ|2 > −∞.

See [18, Theorem 3.1] for more details.

5 Another multiplicity result for the case µ = 0

In this section, we focus on establishing the existence of at least two and three solutions for
the problem (P f ,g

λ,µ) in the case µ = 0. To achieve this, we define

Fc =
∫ 1

0
sup
|t|≤c

F(x, t)dx and Fc = inf
x∈[0,1]

F(x, c)

for every c > 0.

Theorem 5.1. Assume that there exist two positive constants γ̄ and η̄ such that√
2h(2η̄) + 2h(−2η̄) + 8ζ1η̄2

min{m, ζ0}
< γ̄ (5.1)

and suppose that the assumptions (A1) and (A3) in Theorem 3.1 hold. Moreover, assume that

(A5)
Fγ̄

min{m,ζ0}γ̄2 <
1
2 Fη̄−Fγ̄

2h(2η̄)+2h(−2η̄)+8ζ1η̄2 .

Then, for each

λ ∈
(

h(2η̄) + h(−2η̄) + 4ζ1η̄2

2Fη̄ − 4Fγ̄
,

min{m, ζ0}γ̄2

8Fγ̄

)
,

the problem (P f ,g
λ,µ) in the case µ = 0 admits at least three solutions in X.

Proof. Put Iλ = Φ + λΨ, where

Φ(u) =
∫ 1

0
h(u′(x))dx +

1
2

∫ 1

0
ζ(x)|u(x)|2dx (5.2)

and

Ψ(u) = −
∫ 1

0
F(x, u(x))dx

for all u ∈ X. Standard arguments demonstrate that Φ and Ψ are Gâteaux differentiable
functionals, and their Gâteaux derivatives at the point u ∈ X are given by

Φ′(u)(v) =
∫ 1

0
h′(u′(x))v′(x)dx +

∫ 1

0
ζ(x)u(x)v(x)dx

and

Ψ′(u)(v) = −
∫ 1

0
f (x, u(x))v(x)dx
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for all u, v ∈ X, respectively. Hence, a critical point of the functional Φ + λΨ, gives us a solu-
tion of (P f ,g

λ,µ) in the case µ = 0. Our goal is to apply Theorem 2.3 to Φ and Ψ. By sequentially
weakly lower semicontinuity of the norm and continuity of h, the functional Φ is sequentially
weakly lower semicontinuous. Moreover, from Section 3, Φ is continuously Gâteaux differ-
entiable while Proposition 2.7 gives that its Gâteaux derivative admits a continuous inverse
on X∗. The functional Ψ : X → R is well defined and is continuously Gâteaux differentiable
whose Gâteaux derivative is compact. Then, it is enough to show that Φ and Ψ satisfy (c1)

and (c2) in Theorem 2.3. Now, we fix 0 < ϵ < min{m,ζ0}
2λC2

1
. From the assumption (A3) there is a

function ρε : [0, 1] → R with ρϵ(x) < ∞ for all x ∈ [0, 1] such that

F(x, t) ≤ εt2 + ρ(x)

for every (x, t) ∈ [0, 1]× R. It follows that for each u ∈ X,

Φ(u)− λΨ(u) ≥ min{m, ζ0}
2

∥u∥2 − λ
∫ 1

0
F(x, u(x))dx

≥ min{m, ζ0}
2

∥u∥2 − λϵ
∫ 1

0
u2(x)dx − λ

∫ 1

0
ρ(x)dx

≥
(

min{m, ζ0}
2

− λC2
1ϵ

)
∥u∥2dx − λ

∫ 1

0
ρ(x)dx

and thus
lim

∥u∥→∞
(Φ(u) + λΨ(u)) = ∞,

which means the functional Iλ = Φ + λΨ is coercive. Now it remains to show that (c2) of
Theorem 2.3 is fulfilled. Let r̄ = min{m,ζ0}

8 γ̄2 and

w(x) =


η̄, x ∈

[
0, 1

4

]
,

2η̄x + η̄
2 , x ∈

[ 1
4 , 1

2

]
,

−2η̄x + 5η̄
2 , x ∈

[ 1
2 , 3

4

]
,

η̄, x ∈
[ 3

4 , 1
]

.

Clearly, w ∈ X. Then, we have Φ(0) = Ψ(0) = 0,

Φ(w) <
1
4

h(2η̄) +
1
4

h(−2η̄) + ζ1η̄2

and

Φ(w) >
1
4

h(2η̄) +
1
4

h(−2η̄) +
ζ0η̄2

8
.

Thus by (5.1), Φ(w) > r̄. Moreover

Ψ(w) = −
∫ 1

0
F(x, w(x))dx ≤ −

∫ 3
4

1
4

F(x, η̄)dx ≤ −1
2

Fη̄ .

Taking (3.8) into account, for every u ∈ X such that Φ(u) < r̄, we have

sup
x∈[0,1]

|u(x)| ≤ γ̄.
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Thus,

sup
Φ(u)<r̄

Ψ(u) = sup
u∈Φ−1(−∞,r̄)

∫ 1

0
F(x, u(x))dx ≤

∫ 1

0
sup
|t|≤γ̄

F(x, t)dx = Fγ̄. (5.3)

By simple calculations and from the definition of φ(r̄), since Φ(0) = Ψ(0) = 0 and
Φ−1(−∞, r̄)

w
= Φ−1(−∞, r̄), one has

φ1(r̄) = inf
u∈Φ−1(]−∞,r̄[)

Ψ(u)− inf
Φ−1(−∞,r̄)

w Ψ

r̄ − Φ(u)
≤

− inf
Φ−1(−∞,r̄)

w Ψ

r̄

≤ 8
min{m, ζ0}

∫ 1
0 sup|t|≤γ̄ F(x, t)dx

γ̄2 =
8Fγ̄

min{m, ζ0}γ̄2 .

On the other hand, by (5.3), one has

φ2(r̄) = inf
u∈Φ−1(−∞,r̄)

sup
v∈Φ−1[r̄,∞)

Ψ(u)− Ψ(v)
Φ(u)− Φ(v)

≥ inf
u∈Φ−1(−∞,r̄)

Ψ(u)− Ψ(w)

Φ(w)− Φ(u)

≥
infu∈Φ−1(−∞,r̄) Ψ(u)− Ψ(w)

Φ(w)− Φ(u)

≥
−
∫ 1

0 sup|t|≤γ̄ F(x, t)dx +
∫ 3

4
1
4

F(x, η̄)dx

Φ(w)− Φ(u)

≥
2Fη̄ − 4Fγ̄

h(2η̄) + h(−2η̄) + 4ζ1η̄2 .

Hence, from (A5), one has
φ1(r̄) < φ2(r̄).

Therefore, from Theorem 2.3, taking also into account that

1
φ2(r̄)

≤ h(2η̄) + h(−2η̄) + 4ζ1η̄2

2Fη̄ − 4Fγ̄

and
1

φ1(r̄)
≥ min{m, ζ0}γ̄2

8Fγ̄
,

we obtain the desired conclusion.

Remark 5.2. When the assumption (A5) of Theorem 5.1 holds, simple calculations show that
the condition

(A6)
Fγ̄

min{m,ζ0}γ̄2 <
Fη̄

4h(2η̄)+4h(−2η̄)+16ζ1η̄2

implies (A5) of Theorem 5.1. Hence, if the assumptions (5.1) and (A6) hold, then for each

λ ∈
(

h(2η̄) + h(−2η̄) + 4ζ1η̄2

2Fη̄
,

min{m, ζ0}γ̄2

8Fγ̄

)
,

the problem (P f ,g
λ,µ) in the case µ = 0 admits at least three solutions.
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Now, we present an application of Theorem 2.4, which will be utilized later to derive
multiple solutions for the problem (P f ,g

λ,µ) in the case µ = 0, without the need for assumption
(A3).

Theorem 5.3. Assume that there exist three positive constants γ̄1, η̄ and γ̄2 with

γ̄1 <

√
8

min{m, ζ0}

(
1
4

g(2η̄) +
1
4

g(−2η̄) +
ζ0η̄2

8

)
(5.4)

and √
8

min{m, ζ0}

(
1
4

g(2η̄) +
1
4

g(−2η̄) + ζ1η̄2

)
< γ̄2 (5.5)

such that the assumption (A5) in Theorem 5.1 holds and

(A7)
1

min{m,ζ0} max
{

Fγ̄1

γ̄2
1

, Fγ̄2

γ̄2
2

}
<

Fη̄

4h(2η̄)+4h(−2η̄)+16ζ1η̄2 .

Then, for each

λ ∈ Λ =

(
h(2η̄) + h(−2η̄) + 4ζ1η̄2

2Fη̄
, min

{
min{m, ζ0}γ̄2

1
8Fγ̄1

,
min{m, ζ0}γ̄2

2
8Fγ̄2

})
,

the problem (P f ,g
λ,µ) in the case µ = 0 admits at least two solutions u1,λ and u2,λ such that

maxx∈[0,1] |u1,λ(x)| < γ̄1 and maxx∈[0,1] |u2,λ(x)| < γ̄2.

Proof. Put

f (x, t) =


f (x,−γ̄2), if (x, t) ∈ [0, 1]× (−∞, γ̄2),

f (x, t), if (x, t) ∈ [0, 1]× [−γ̄2, γ̄2],

f (x, γ̄2), if (x, t) ∈ [0, 1]× (γ̄2, ∞).

Clearly, f : [0, 1]× R → R is a Carathéodory function. Now put F(x, ξ) =
∫ ξ

0 f (x, t)dx for all
(x, ξ) ∈ [0, 1]× R and take X and Φ as (2.1) and (5.2), respectively, and

Ψ(u) = −
∫ 1

0
F(x, u(x))dx

for all u ∈ X. Our goal is to apply Theorem 2.4 to Φ and Ψ. It is well known that
lim∥u∥→∞ Φ(u) = ∞ and Ψ is a differentiable functional whose differential at the point u ∈ X
is

Ψ′(u)(v) = −
∫ 1

0
f (x, u(x))v(x)dx

for any v ∈ X as well as it is sequentially weakly lower semicontinuous. Furthermore Ψ′ :
X → X∗ is a compact operator. Thus, it is enough to show that Φ and Ψ satisfy the conditions
(c1), (c2) and (c3) in Theorem 2.4. Let

r̄1 =
min{m, ζ0}

8
γ̄2

1, r̄2 =
min{m, ζ0}

8
γ̄2

2

and w as in the proof of Theorem 5.1. Due to the assumptions (3.4), (5.4) and (5.5) we have
r̄1 < Φ(w) < r̄2 and infX Φ < r̄1 < r̄2. Moreover, arguing as in the proof of Theorem 5.1 and
taking also into account Remark 5.2 we obtain

φ1(r̄1) ≤
8

min{m, ζ0}

∫ 1
0 sup|t|≤γ̄1

F(x, t)dx

γ̄2
1

=
8Fγ̄1

min{m, ζ0}γ̄2
1

,
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φ1(r̄2) ≤
8

min{m, ζ0}

∫ 1
0 sup|t|≤γ̄2

F(x, t)dx

γ̄2
2

=
8Fγ̄2

min{m, ζ0}γ̄2
2

and

φ∗
2(r̄1, r̄2) ≥

2Fη̄

h(2η̄) + h(−2η̄) + 4ζ1η̄2 .

Hence, from (A7), the conditions (c2) and (c3) of Theorem 2.4 hold. Therefore, from Theo-
rem 2.4 we obtain that, for each λ ∈ Λ, the problem{

−p(u′)u′′ + ζ(x)u = λ f (x, u(x)), a.e. x ∈ [0, 1],

u(1)− u(0) = u′(1)− u′(0) = 0

admits at least two solutions u1,λ and u2,λ such that maxx∈[0,1] |u1,λ(x)| < γ̄1 and
maxx∈[0,1] |u2,λ(x)| < γ̄2. Observing that these solutions are also solutions for the problem

(P f ,g
λ,µ) in the case µ = 0, the conclusion follows.

Now, we provide some remarks on our results in this section.

Remark 5.4. In Theorems 5.1 and 5.3, we investigated the critical points of the functional Iλ

naturally associated with the problem (P f ,g
λ,µ) in the case µ = 0. It is worth noting that, in

general, Iλ can be unbounded from below in X. For instance, when f (t) = 1 + |t|ϑ−2t for all
t ∈ R with ϑ > 2, for any fixed u ∈ X\0 and ι ∈ R, we obtain

Iλ(ιu) ≤
max{m, ζ1}

2
∥ιu∥2 − λ

∫ 1

0
F(x, ιu(x))dx

≤ max{M, ζ1}ι2

2
∥u∥2 − λιC4∥u∥ − λC5

ιϑ

ϑ
∥u∥ϑ → −∞

where C4 and C5 are positive constants, as ι → ∞. Hence, we can not use direct minimization
to find critical points of the functional Iλ.

Remark 5.5. We observe that if f is non-negative, Theorem 5.3 represents a bifurcation result,
indicating that the pair (0, 0) belongs to the closure of the set{

(uλ, λ) ∈ X × (0, ∞) : uλ is a non-trivial solution of (P f ,g
λ,µ) , µ = 0

}
⊂ X × R.

Indeed, if λ goes to zero, by Theorem 5.3 we have that γ̄i → 0, i = 1, 2 and since
maxx∈[0,1] |ui,λ(x)| < γ̄i, i = 1, 2, there exist two sequences {uj} in X and {λj} in R+ (here
uj = uλj) such that

λj → 0+ and ∥uj∥ → 0,

as j → ∞. Moreover, since f is nonnegative, Ψ(u) < 0 for all u ∈ R and thus

(0, λ∗) ∋ λ 7→ Iλ(uλ)

is strictly decreasing. Hence, for every λ1, λ2 ∈ (0, λ∗), with λ1 ̸= λ2, solutions uλ1 and uλ2

ensured by Theorem 2.4 are different.

Remark 5.6. If f is non-negative, then the solutions guaranteed by Theorems 5.1 and 5.3 are
also non-negative.
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Now, we highlight some results where the function f has separated variables. Specifically,
consider the following problem{

−p(u′)u′′ + ζ(x)u = λθ(x) f (u(x)), a.e. x ∈ [0, 1],

u(1)− u(0) = u′(1)− u′(0) = 0
(P f ,θ

λ )

where θ : [0, 1] → R is a non-negative and non-zero function such that θ(x) < ∞ for all
x ∈ [0, 1] and f : R → R is a non-negative and continuous function. Put

F(ξ) =
∫ ξ

0
f (s)ds

for all ξ ∈ R.
The following existence results are consequences of Theorems 5.1 and 5.3, respectively, by

setting f (x, t) = θ(x) f (x) for every (x, t) ∈ [0, 1]× R.

Theorem 5.7. Assume that there exist two positive constants γ̄ and η̄, with√
2h(2η̄) + 2h(−2η̄) + 8ζ1η̄2

min{m, ζ0}
< γ̄

such that

(A8) θ(x) ≥ 0 for every x ∈ [0, 1] and f (t) ≥ 0 for every t ∈
[
0, 1

4

]⋃ [ 3
4 , 1
]
,

(A9)
1

min{m,ζ0}

∫ 1
0 θ(x)dxF(γ̄)

γ̄2 <

∫ 3
4

1
4

θ(x)dxF(η̄)

2h(2η̄)+2h(−2η̄)+8ζ1η̄2 ,

(A10) lim sup|ξ|→∞
F(ξ)
|ξ|2 ∈ (−∞, 0].

Then, for each

λ ∈

 1

4
∫ 3

4
1
4

θ(x)dx

h(2η̄) + h(−2η̄) + 4ζ1η̄2

F(η̄)
,

min{m, ζ0}
8
∫ 1

0 θ(x)dx

γ̄2

F(γ̄)

 ,

the problem (P f ,θ
λ ) admits at least three solutions in X.

Theorem 5.8. Assume that there exist three positive constants γ̄1, η̄ and γ̄2 with

γ̄1 <

√
8

min{m, ζ0}

(
1
4

g(2η̄) +
1
4

g(−2η̄) +
ζ0η̄2

8

)
and √

8
min{m, ζ0}

(
1
4

g(2η̄) +
1
4

g(−2η̄) + ζ1η2

)
< γ̄2

such that

(A11) θ(x) ≥ 0 for every x ∈ [0, 1] and f (t) ≥ 0 for every t ∈
[
0, 1

4

]
∪
[ 3

4 , 1
]
,

(A12)
∫ 1

0 θ(x)dx
min{m,ζ0} max

{
F(γ̄1)

γ̄2
1

, F(γ̄2)
γ̄2

2

}
<

∫ 3
4

1
4

θ(x)dxF(η̄)

2h(2η̄)+2h(−2η̄)+8ζ1η̄2 .
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Then, for each

λ ∈Λ =

 1

4
∫ 3

4
1
4

θ(x)dx

h(2η̄) + h(−2η̄) + 4ζ1η̄2

F(η̄)
,

min{m, ζ0}
8
∫ 1

0 θ(x)dx
min

{
γ̄2

1
F(γ̄1)

,
γ̄2

2
F(γ̄2)

} ,

the problem (P f ,θ
λ ) admits at least two solutions u1,λ and u2,λ such that maxx∈[0,1] |u1,λ(x)| < γ1 and

maxx∈[0,1] |u2,λ(x)| < γ2.

Now, we point out a special case of Theorem 5.7.

Theorem 5.9. Assume that

lim
ξ→0+

f (ξ)
ξ

= lim
|ξ|→∞

f (ξ)
|ξ| = 0 (5.6)

and there exists a positive constant η̄ such that F(η̄) > 0. Then, for each λ > λ∗, where

λ∗ =
1

4
∫ 3

4
1
4

θ(x)dx
inf
η̄>0

h(2η̄) + h(−2η̄) + 4ζ1η̄2

F(η̄)
,

the problem (P f ,θ
λ ) admits at least one nonnegative and one non zero solution in X.

Proof. Let λ > λ∗. Then, there is η̄ > 0 such that

λ >
1

4
∫ 3

4
1
4

θ(x)dx
inf
η̄>0

h(2η̄) + h(−2η̄) + 4ζ1η̄2

F(η̄)
.

From (5.6) we obtain

lim
u→0+

sup|ξ|≤u f (ξ)

u
= lim

u→∞

sup|ξ|≤u f (ξ)

u
= 0.

So we can pick γ̄1 and γ̄2 such that

γ̄1 <

√
8

min{m, ζ0}

(
1
4

g(2η̄) +
1
4

g(−2η̄) +
ζ0η̄2

8

)

and √
8

min{m, ζ0}

(
1
4

g(2η̄) +
1
4

g(−2η̄) + ζ1η2

)
< γ̄2,

sup|ξ|≤γ̄1
f (ξ)

γ̄1
< min{m,ζ0}

8
∫ 1

0 θ(x)dx
γ̄2

1
F(γ̄1)

and
sup|ξ|≤γ̄2

f (ξ)
γ̄2

< min{m,ζ0}
8
∫ 1

0 θ(x)dx
γ̄2

2
F(γ̄2)

. Hence, from Theorem 5.8 we

obtain the conclusion.

Remark 5.10. Theorem 1.2 immediately follows from Theorem 5.9.
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