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Abstract. In this work, we investigate a uniform approximation of a nonautonomous
delayed CNN-Hopfield-type impulsive system with an associated impulsive differential
system where a partial discretization is introduced with the help of piecewise constant
arguments. Sufficient conditions are formulated, which imply that the error estimate
decays exponentially with time on the half-line [0,c0). A critical step for the proof
of this estimate is to show that, under the assumed conditions, the solutions of the
Hopfield impulsive system are exponentially bounded and exponentially stable. A
bounded coefficients case is also analyzed under simplified conditions. An example is
presented and simulated in order to show the applicability of our conditions.
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1 Introduction

Cellular Neural Networks (CNNs) are widely used as mathematical models of the interactions of
the neurons in the human brain. For its construction, electrical and chemical properties have
been considered. The synapses correspond to the connections of the neurons (excitatory and
inhibitory) and are modeled by positive and negative weights. The weighted neural inputs
are added up. Then, the so-called activation function defines the amplitude of the response
signal of the neuron.
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In [16], John Hopfield proposed a novel type of CNN in order to find how human memory
works. They were called Hopfield cellular neural network, and it is represented by the following
nonlinear system:

m
xi(t) = —a;i()x;(t) + Y_ bijgi(xj(t) +ci(t), i=1,...,m, (1.1)
j=1
This model corresponds to a mesh of linked neurons, where every neuron is connected to all
other neurons without self-connection. The states of the neurons are of binary type, and it
depends on whether the neuron’s input exceeds a fixed value. This type of CNN has been
applied in psychology and combinatorics, among others (see [22]). Since the signals travel
at a finite speed between the neurons, time delays are natural to introduce in the models.
Without completeness, we refer to [3, 6, 7, 18, 20, 23, 27] for investigations of different classes
of delayed CNN models.
In [19], A. D. Myshkis introduced differential equations of the form

X'(t) = f(t,x(t),x(z(t))),
where 7(t) corresponds to a deviated argument (a discontinuous piecewise constant function).
These type of equations are called Differential Equations with Piecewise Constant Arquments (DE-
PCA). The research in this new field started in the 80’s with the works of S. Busenberg and
K. L. Cooke with a model of vertically transmitted diseases (see [8, 26]). There are many fields
where this type of equations have been applied (see [5, 10, 17]).
In [2], M. U. Akhmet investigated systems of the form

y'(#) = flty(t),y(v(1)), (12)

where 7(t) is a piecewise constant argument of generalized type. More precisely, given (t,),.»
and ({),cy such that t, < t,1,Vn € Z with lil’:ll;l t, = tooand t, <, < t,.1, then
n— 10

Y(t) =y, Ut el =ty tht1).

When such a function 7 is introduced, it generates advanced and delayed arguments in the
equation, dividing the interval I, into two pieces I, = I} J I,;, where I,/ = [t,, ] corresponds
to the advanced, and I, = [{s, ty11] to the delayed interval. These equations are known
as Differential Equations with Piecewise Constant Argument of Generalized Type (DEPCAG). In
this class of differential equations, the solutions are continuous functions, although + is a
discontinuous function. Integrating (1.2) from t, to t,.; we obtain a difference equation,
giving the character of hybrid to this kind of equations (see also [21]).

The following example will be important for the rest of the work (when k = 0). Consider
v(t) = [FX]h with 0 < k < h, where [-] is the greatest integer function. We have

[t—;k]h:nh, whent € I, = [nh—k,(n+1)h —k).

Hence, v (t) =t >0 < t <mnhand v (t) —t <0 < t > nh, that implies
Ii = [nh—k,nh], I, =[nh,(n+1)h—Kk|.

Now, if additionally a jump condition is applied at the endpoints of the intervals I, =
[tn, tnt1), it defines the class of Impulsive differential equations with piecewise constant argument of
generalized type, IDEPCAG) (see [1]),

y(t)=fltyt),y(v()), t#t
Ay(ta) ==y(ta) —y(ty) = In(y(ty)),  t=t, neN. (1.3)
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Definition 1.1 (IDEPCAG solution). A piecewise continuous function y(f) is a solution of (1.3)
if:

(i) y(t) is continuous on I,, = [t,, t,41) with discontinuities of the first kind at t, with n € Z,
where i/ (t) exists at each t € R with the possible exception of the points t,, where the
lateral derivatives exist.

(ii) On each interval I, the ordinary differential equation

y'(t) = f(ty(t),y(Zn))
holds, with y(t) = ;.

(iii) For t = t,, the following impulsive condition holds:

Ay(tn) = y(tn) —y(ty) = Jn(y(ty)),

ie, y(ty) = y(t, )+ J.(y(t,)), where y(t, ) denotes the left-hand limit of the function y
at t,,.

I. Gy¢ri used first DEPCAG to approximate linear delay equations with constant delays
in [12]. He defined three variants of approximating DEPCAG and proved the convergence
of each method on compact time intervals. See also [14] for further generalization of this
approach for other classes of differential equations.

In [9], Cooke and Gy®ri proposed an approximation of a linear delay differential equation

Y= Ygat—T), 120, (1.4
x(t) = ¢(t), te[—1,0], (1.5)

where q; € R,7; > 0, and ¢ € C([—7,0],R). Here C([—7,0],R) denotes the space of real-
valued continuous functions defined on [—7,0]. In order to approximate (1.4)-(1.5), they
proposed the following DEPCAG

N

y'(t) =Y qu(lt/h—[u/hh), t>0, (1.6)
i=1

y(nh) = ¢(nh), n=k...,O0. (1.7)

In this case, the approximation considered was uniform over the non-compact interval [0, 00).
The main assumption is a condition of asymptotic stability of the trivial solution of (1.4).
Note that in [13] I. Gy6ri and F. Hartung extended this result for linear neutral differential
equations.

Recently, in [15] F. Hartung investigated the numerical approximation of the following
scalar delay differential equation with impulsive self-support condition

x'(t) = ax(t) + Bx(t — 1), ae t>0
x(t) =c+d, ifx(t7)=c (1.8)

with the initial condition
x(t) = @(t), ift € [—7,0],
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where ¢,d > 0,0+ |B| < 0,7 >0, c < ¢(t), for t € [-7,0], and ¢ : [-7,0] — R a Lipschitz
continuous function. The approximating equation is an associated DEPCA with a self-support
condition

y'(t) = ay([t/h]h) + By([t/h)h — [t/h]h), ae t>0
y(kh) =c+4d, ify(kh™) <c (1.9)
with the initial condition
y(t) = (1), if te[—1,0].
The convergence of (1.9) was proved at every point except the impulsive time moments.

In [24], R. Torres et al. considered the following impulsive Hopfield-type CNN system
with impulses

xi(t) = +qu )gi(xi(t)) +cilt), £>0, t#Hh,
Axi(t) = —pigxi(ty ) +eix + Jix(xi(t, ), t=ty, (1.10)
xi(to) = x?,

and the following IDEPCA system

yi(t) = — )+ sz; )8i(yi(v(1) +cilt), t>0, t#7(k)
Ayi(v(te)) = —piryi(v(te) ™ ) +eije + Ji(yi(r () 7)), t= (), (1.11)
yi(to) =y,
where y(t) = [t/h]h. Assuming an ergodic stability condition over the corresponding lin-

ear homogeneous system associated with (1.10), the uniform approximation of (1.10) by the
IDEPCA (1.11) was concluded over [0, ), where the error of approximation was given by

%7 —yil | oi(h)
. 1. < 1 1
[xi(t) — yi(£)] < 1—6, +1_9C1

with 0;(h) — 0ash — 0,and 0 < 6. < 1 were defined in [24].

In [11], M. Elghandouri and K. Ezzinbi, using resolvent operators theory, obtained an
approximation of the mild solutions of the delayed semilinear integro-differential equation

¥(t) = +/ (t—s)x(s)ds + f(t, x(t— 1)), £>0,
x(t) = <P(t), te[-r0], (1.12)

using an integro-differential equation with piecewise constant arguments

xp,(t) = A(t)x,(t) + /Ot G(t —s)xy(s)ds + f(t, xp(yn(t —71))), t>0,
x,(0) = ¢(0), x,(t) = @(kh), t € [kh,(k+1)h), (1.13)

with k = —I,...,—1, and 7;(t) = [t/h]h, on the Banach space (X, || - ||). The approximation
was done over compact and unbounded intervals. They also obtained an exponential error
decay by using the stability of the resolvent operator and the Halanay’s Inequality.

The interested reader in approximation of solutions of differential equations by using
piecewise constant argument can see [25] for an elementary and simple introduction to the
subject.
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1.1 Aim of the work

In this paper, we use (t) = [t/h] h as the piecewise constant argument function, where [-] is
the greatest integer part function, and & > 0 is a fixed discretization parameter. We note that
7 depends on the selection of /, but for simplicity, this dependence is not indicated explicitly
in the notation, but it always should be kept in mind.

We consider a delayed CNN system with impulses

xi(t) = —ai(t)x;(t) + i bij(£)g(xj(t — 1)) + ci(t), t>0, t#bk,
=1
Axi(ty) = —pixxi(ty ) +eix + Jix(xi(t)), ke, (1.14)
xi(t) = ¢i(t), t € [-7,0].

Similar delayed CNN systems (without impulses) were investigated, e.g., in [7, 18, 20].
For a fixed discretization parameter & > 0 we associate to (1.14) the IDEPCA system

m

yi(t) = —ai(t)yi(t) + Z; bij(1)gi(yi(v(t) = (1)) +ci(t), t>0, tF#v(k),
=
Ayi(v(t)) = —pixyi(r(t) ™) +eix + Jix(yi(r () 7)), k€N, (1.15)
vi(t) = ¢i(t), t e [-1,0],

where i = 1,2,...,m, k € N = {1,2,3...}, t;, pix e are real sequences, a;, b;;, c; are real-
valued locally integrable functions on [0,0), J;x € C(R,R) and g; € C(R,R) for all i,j =
1,...,m and k € IN; the constant delays satisfy 7; > 0 and 7 = max{7,..., Tn} > 0, and the
initial functions ¢;, ¢; : [—7,0] — R are continuous fori =1,...,m.

We note that the initial time in system (1.14) is fixed to be 0. This does not affect the gen-
erality of the problem, but it simplifies the definition of the approximation in (1.15), since, in
this way, the initial time is a member of the mesh points of the piecewise constant approxima-
tion, and y(t) > 0, and hence y(t) — ¥(7j) > —7; > —tfort > 0and j = 1,...,m. Also, the
impulse times f; form a strictly monotone increasing sequence of positive reals, and they are
approximated by -y(t) for k € IN for the sake of easier computation of the numerical scheme.

For simplicity of the notation we introduce ¢, = 0, so the sequence ¢, is defined for k €
Ny ={0,1,2,...}.

The main goal of this manuscript is to show that the solutions of (1.15) approximate that
of (1.14) uniformly on [0, ), i.e.,

sup |xi(f) —yi(t)] =0, ash—0+, i=1,...,m,
te[0,00)

assuming also ¢; = ¢; fori = 1,...,m, and we show that, under certain conditions, the error
estimate goes to 0 as t — co with an exponential speed.

Remark 1.2. This paper extends the work of [24] for the case when 7; > 0 in (1.14). Moreover,
in this work, we assume a different set of conditions and we use M-matrix technique to get
our main results. Another improvement corresponds to the exponential error decay of the
approximation, see Theorem 3.1 below. A key step to obtain the main result is to show
that, under the assumed conditions, the solutions of (1.14) are exponentially bounded (see
Lemma 2.2) and are exponentially stable (see Lemma 2.4, below).
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1.2 Hypotheses and main assumptions

In this manuscript, we will use the following assumptions on the parameters of problem (1.14):

(H1) Let g; € C(R,R) be such that ¢;(0) = 0, and there exist constants L; > 0 such that

|gj(u) —gj(v)| < Lj|u—o], uveR, j=12,...,m

(H2) Let J;x € C(R,R) be such that J;x(0) = 0, and there exist constants /;; > 0 such that

[Jix(u) = Jix(0)] <lixlu—1v|, uvelR, i=1,...,m, keN.

(H3) There exist positive constants p7, [}, e}, and real constants 12 fori=1,...,m such that

(i) EiSPi,kSP:“<1, keN, i=1,...,m
() 0<Ilp<Il, keN, i=1,...,m

(iii) |ejx| < ef, keN, i=1,...,m

(iv) 0 <9 < tgoq —ty, k € Np.

H4) There exist positive constants o;, A;j, ¢ fori,j =1,...,m and gg such that 0 < ¢y < 0; for
17 "1 J
i=1,...,m, and

t
(i) oi(t—s) < /ui(u)du— E ln(l—pi,]-), 0<s<t i=1,...,m where
° JE€T(s,t)
J(s,t) ={j e N:s<t; <t}

t
(ii) /0 eS| (s)|ds < Ay, £>0, ij=1,...,m
(iii) |ci(t)] < cf, t>0, i=1,...,m.

m ~ (1=p I} . .
(H5) g(l -7, JAGL; + (A= p1) (1 = e 7d) <1, i=1,...,m, where P, = mm{O,Bl,}.

i

(H6) There exist positive constants 1 and p, such that

lei | < e Priker, ke N, and lei(t)] <ePier, t>0, i=1,...,m.

(H?7) There exist positive constants a; fori = 1,...,m such thata;(t) <aj, t >0,i=1,...,m.
(H8) There exist positive constants b:-‘]- fori,j=1,...,mand L, such that
|bii(t)] < b?‘]-, t>0, and l@i(t) — @i(F)| < Lyt — |, t,t € [—1,0]
fori,j=1,...,m.

Remark 1.3. We comment that (H6) and (HS8) yield (H3) (iii), (H4) (iii) and (H4) (ii) with

*

b
AZ-]- = Uif”so, but they are not assumed in Lemmas 2.2 and 2.4.
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2 Auxiliary results

Recall that f; is a strictly monotone increasing sequence which tends to +oc0 as k — co. We
denote the set of time moments by 7 = {t; : k € N}. Throughout this manuscript, we use the
notation £(t) for the uniquely defined nonnegative integer with the property that

tE [tuny tey 1), £20. (2.1)

Note that if t ¢ T, then t,;) < t, otherwise ty;) = t.

We use the vector notation x(t) = (x1(t),...,xu(t))T throughout the manuscript. For a
norm of vector x = (x1,...,x,)T € R™ we use the infinity norm |x|e = max{|x1|,..., [xm|}.
The corresponding induced matrix norm is denoted by ||A|| for A € R™ ™. For con-
tinuous functions ¢ : [-7,0] - R and ¢ : [-7,0] — R"™ we use the supremum norm
[¢lc = max_r<i<o [p(#)] and |¢p|c = max_r<i<o | (¢)[eo, respectively.

The notation x < y is used for x = (x1,...,x,)T € R" and y = (y1,...,ym)T € R™ if the
componentwise comparisons x; < y; hold for all i = 1,...,m. We note that 0 < x < y implies
[X|oo < |Y]eo. We say that a matrix A € R"™*™ is monotone if Ax < Ay yields x <y for every
x,y € R". Let I € R™*" denote the identity matrix. We say that the matrix I — A € R"™*" is
a nonsingular M-matrix if p(A) < 1, where p(A) is the spectral radius of A. We refer to [4] for
50 equivalent definitions of a nonsingular M-matrix.

The following variation of constants formula was formulated in [24] for the system (1.14)
without delays. It is straightforward to extend it for (1.14).

Lemma 2.1. The solution x(t) = (x1(t),...,xm(t))T of (1.14) satisfies

~
—~

~~
~—

r=1 \j=r
gu iUl o [ ai(u)du —
+ H (1 Pz,]) e (Jir(xi(t,)) +eir)
r=1 \j=r+1
t v
+/ e JadnG (s x(s))ds, i=1,....,m, t>0, (2.2)
1)
where
Gi(t,x(t)) = ) byj(£)gj(x;(t — 1)) + ci(t). (2.3)

Next we show that under conditions (H1)—(H5) the solutions of (1.14) are bounded on
[0, 00). Moreover, if assumption (H6) holds, the solutions are exponentially bounded.

Lemma 2.2. Suppose (H1)-(H5) hold. Then all solutions of (1.14) are bounded on [0, c0). Moreover,
if (H6) holds too, then for every solution x(t) of (1.14) there exist positive constants wy and Ky such
that

x(H)]eo < Ko™, t> -1, (2.4)

i.e., every solution of (1.14) is exponentially bounded.
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Proof. 1. First, we prove the boundedness of the solutions. Let x(t) = (x1(t),...,xu(t))T be
the solution of (1.14) corresponding to initial condition ¢ = (¢1, ..., q)m)T. Then x; satisfies
the variation of constant formula (2.2), where H; is defined by (2.3).

Now suppose s € [t,_1,t,) forsomer € N,s < tand t ¢ 7. Then we gets < t, < tory <
t<turs1s J(s,t) =A{r,r+1,...,L(t)} ift > t,, and J(s,t) = @ if t < t,, therefore (H3) (i) and
(H4) (i) yield

. £(t) t
e Js m(w)du (H(l - pu)) = exp ( / ai(uw)du+ ), In(l- szf))

j=r J€I(sit)
S e*Ui(tfs) .

If t =t,, for somery € N,s € [t,_1,t),s <t then J(s,t,,) ={r,r+1,...,70— 1}, and

" £(t) t ro—1
e Ji alu)du (H(l — Pnj)) = (1= piy,) exp (—/S "ai(u)du+ Y In(1 - Pnj))

j:r j:r

< (1 —p )e*Ui(trO*S)_

Li

Hence

t 0
e~ Js ailw)du (H(l - pz-,]-)> <(1 —Bl,_)e_”f(t_s), selt_ty), s<t, i=1,...,m, (25)
j=r
where p~ = min{0, p.}.
For s € (t),t) it follows J(s,t) = @, and

. t
e~ Joai(w)ydu _ exp (/ ai(u) du + Z ln(l — Pl,])) < eigi(tfs). (26)

J€I(s:t)

Fort, <t t & T wegett, <ti1 <ty <t so0 J(t, t) = {r,r+1,...,£(t)}, and therefore
(H3) (i) and (H4) (i) imply

t 0 . , o
e frat s ( [Ta- PiJ')) = ey il (H(l - Pu))

j=r+1 1- Pir j=r

—

JET(tr.t)

1 ¢
< T o exp (/ a;(u)du + Z In(1— pi,j))
_ B

< 1 o Ci(t—tr)

Finally, if t = t,, for some rop € N and r < ry, then it follows J(t,, t,,) = {r,r+1,...,70 — 1},
((t) = rp, and so

iy . £(t) 1— Pir tr, rg—1
e Jir " i) du T A=pij) | == "exp —/t ai(u)du+ ) In(1-p;j)

j=r
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Combining the above two cases, we get
40) 1-p-
e_fttr ai(u) " ( H (1 - pl/])> S %e_ai(t_tr)/ t Z tr/ re N/ i= 1/~ .., m. (27)
j=r+1 1- Pi

Then (2.2), (2.5), (2.6) and (2.7) imply for ¢t > 0

xi(H)] < (1= p; )e " gi(0)] + Z/ p;)e M IGi(s, x(s)) | ds

£(t)

+2 B o) (o 5 + e +/ 1|6, x(5))] ds

r=

~a- pf)e-”ﬂqoi(on + /O (1= e 9[Gy(s, x(s)) | ds

+Z et (T (i (8)] + Jei]). 2.8)

The assumed relations (H1)~(H4), (2.8), t € [ty), togr)+1),

Jir (xi(t))| < Lipla(5)] < Flxat ), i=1,...,m, reN

and

m
|G; < Y |bij(s)|Ljlxj(s — )| + |ci(s)], i=1,...,m, s>0
j=1

yield
[xi(t)] < (1= p;)e™ | 9i(0)]
+/0 (1_E: 7(7,1‘ s (Z‘bll ‘L ’x] )’—F‘CZ(S)‘) ds

1_
7] Ze*wr Ul +leil),  i=1.,m, >0, (29)
1 r=

Using relation § < t, 1 —t, for r € N from (H4) and t € [tg(t), tg(t)+1>, we obtain

0

Z e vi(t=tr) Ze i(t=toy+(tony—tey 1)+t —tr))
r=1
é(f)
< Ze_ai(t_t{(t))e_gz(é(t) )8
r=1
o)
S (e*mé>€(t) r
r=1
1
< [y t>0. (2.10)

Combining (2.9) with assumptions (H3), (H4), relation (2.10), and the estimate

: 1
/ et s < 2§ >, 2.11)
0 0i
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wegetfort >0andi=1,...,m
xi(1)] < (1= p;)e™ ] 9i(0)]

t m
+/ (1 —Bf)e—ai(t—s)<z bij(s)|L; sup |xj(u)l —l—cz’-‘)) ds
0 i =

—1<u<s
1—p- Y
o e sup ()] +6)
i r=1 0<u<t
B m B (1=p. )c
< (U=p)l@iO)]+ (1= p)AGL; sup |x(u)] + ——=—
j=1 —t<u<t 1
1—-p-
4+ = If sup |xi(u)| +ef). 2.12
T e 0 s ol +e) 212

Since the right-hand side of (2.12) is monotone increasing in ¢, and |x;(u)| < |@ilc < (1 —
;)| gilc for u € [~7,0], (2.12) yields

_ L _ (I=p. e
sup_[xi(u)| < (1 — ) lgile + 3201~ p )ALy sup |xu)| 4Lt
—t<u<t j=1 —Tt<u<t 1
1—-p-
+ = I¥ sup |x;(u)| +ef), 2.13
G0 ey (U swp_ ()] +e) 213)

fori=1,...,mand t > 0. Fix a nonnegative parameter . Then we introduce the correspond-
ing notations

T
vi® () = ( sup e*|xq(u)|,..., sup e”‘”|xm(u)|) € R", t> -1,
—Tt<u<t —T1<u<t
al® — ( g“),...,a,(#))Te R™, where

*

d = (1=p) | Igile + —— + ‘i
TR\ T e T A )

_ : (1-p))l . )
(1 — Bz‘ )Ai]‘Lieoch + (1_}7’.*)(1:67(”{7“@), i=j,

(L—p)AijLie"T, i

AW — (a) e R7, all) = { .14)

Hence (2.13) implies the vector inequality

v (1) <al®  AOvO (1), >0
The definition of a(® yields v(9) (t) < a(® for t € [~7,0], so

viO (1) <a® + A0y, > 1.

Assumption (H5) implies ||A¥|o < 1, so I — A is a nonsingular M-matrix. Therefore
Theorem 6.2.3 in [4] yields that I — A is monotone, and

(e ()], e (ODT < vO (1) < (1 — AD)12O0), t> —t.

It follows
x(H)]eo < [(I— AN T1a®,  #> -1,
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i.e., x(t) is bounded on [—T, o).

2. Next, we show the exponential boundedness of the solutions under the additional
assumption (H6).

We select a positive constant ag such that

xo < min{eg, B1, B2} and Z ") AL + 0-p <1 (2.15)
' R = (L= p)(1— e D) |

fori = 1,...,m. Note that such ag exists since (H5) holds. Multiplying both sides of (2.9) by
e we get

e xi()] < (1= p; e T ;(0)]
4 [ et (wa L7080 1, — )| + e[y (s)| ) s
1—p £(t)
;z Ee (o7—ap) (t—t,) (l* agt,|x( —)| _|_ezxoty|eilr|)

fori =1,...,mand t > 0. Then (H3), (H4), (H6), ay < min{ep, B1, B2}, and (2.10) and (2.11)
where 0; is replaced by o; — &g imply

1—p7)c;
e |x; ()| < (1— ]gol\c—i—z (1—p; )AL sup " |x;(u)] —I—l
j=1 —Tr<u<t 0 — &
(1—p )l (1—p e
+ =! sup ™| x;(u)| + =
0=y - ey 20 <P G~ e

fori =1,...,m and t > 0. Then the monotonicity of the right-hand side and e®!|x;(t)| <
lpilc < (1— Bi_)\(pi|c for —t <t < 0 imply the vector inequality

v("‘o)(t) < al) —|—A("‘0)v(“0)(t), t> 1. (2.16)

Relation (2.15) yields ||A{*)||o < 1, s0 I — A®) is a nonsingular M-matrix, hence I — A(*0) is
monotone. Therefore

@y ()], ey (DT < VEO(H) < (1 - AW)TTal), > 1,

so (2.4) holds with
Ko=|(I— A(“O))_la(“0)|w,

i.e., x(t) is exponentially bounded on [—T, o). O

Remark 2.3. Let A(?) be defined by (2.14) with &« = 0. We remark that (H5) can be replaced
by the weaker condition p(A(?)) < 1, and the statement of Lemma 2.2 remains true.

Our next result shows that every solution of (1.14) is exponentially stable.

Lemma 2.4. Suppose (H1)-(H5) hold. Then there exist positive constants xy and Ky such that
() = ()]0 < Kie @ —plc,  £>0, (2.17)

where @(t) = (@1,..., ¢m)T and @ = (p1,..., m)T are two initial functions in (1.14), and x(t) =
(x1(t), ..., xm(t))T and x(t) = (%1(t), ..., %m(t))T are the corresponding solutions of (1.14), respec-
tively, i.e., every solution of (1.14) is exponentially stable.
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Proof. Let (¢1,...,¢m)" and (@1,...,Pm)T be the vectors of two initial functions in (1.14), and
(x1(t), ..., xm())T and (%1(¢),...,%u(t))T be the corresponding solutions of (1.14). Then the
variation of constant formula (2.2) yields

o) /o) b
+21(H(1—p1]))/t e*fslli(u)du(Gi(s,X(S))—Gl(s,x(s)))ds
r= j=r r—1
IOCEIG) )
+ 1(, 1O—zo:;))e e (g, (xi(8) = T (Ri(5))
r= j=r+

We have

hence, similarly to the derivation of (2.9), we get

[xi(t) = %i(H)] < (1= p; )e""|9i(0) — §:(0))

m.o et
+Y | a=p)e N9 x5 = ) = 7i(s — ) ds
]:

1—p
N et () — xi(ty)|,  i=1,...,m, t>0. (218)

+
1_p:f r=1

We select a positive constant ag such that (2.15) is satisfied. Note that such «g exists since (H5)
holds. Multiplying both sides of (2.18) by e* we obtain

=170 l
1—p-
+ : _I;z* e*(Ui*WO)(t*tr)l?‘eaot’|xi(t;) fl(t;)’ (2.19)
i r=1

fori=1,...,mand t > 0. Introduce the functions

vi(t) = sup e™"|x;(u) — x;(u)|, i=1,...,m t>-1.
—t<u<t

Then (2.19) combined with (2.10) where o; is replaced by ¢; — ap and

i (u) — xi(u)| < e x(u) = x(u)|eo <l —Plc < (1 —p, )l —@lc, —T<u<0
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imply

(1) < (1- r¢qm+z/1— e~ o)1= by (5) | Lye o s) ds

( 171 txo t t, l* (t)

<(1-ple- wc+§1— )ALy (1)
L
(1=p I
- e

fori=1,...,mand t > 0. Therefore, the vector inequality

v(t) <b4+ ALy(), > -1, (2.20)
holds, where
v(t) = (v1(t),...,om(t)T € R™, t> -1,
b= (11— g)lg—le., (1 -)lp—plc) €R", 2.21)

and A®) is defined by (2.14). Relation (2.15) yields || A(*0)||o < 1, hence I — A(%®) is a nonsin-
gular M-matrix, so I — A®) js monotone. Therefore (2.20) gives

v(t) < (I— ALY Tp, > 1,
and hence
e |x(£) = x(#) oo < [V(1)]eo < (I = A)) | o |bloo = Ki | — e,
where K; = ||(I — A®0))~1||, max{1 — q,,---,1—q_}. This completes the proof of (2.17). [

Remark 2.5. Let A(®) be the matrix defined by (2.14). We note that p(A(”)) < 1 implies
o(A0)) < 1 for sufficiently small ag > 0, so assumption (H5) in Lemma 2.4 can be replaced
by the weaker condition p(A(?) < 1.

Next, we prove an estimate which will be important in the proof of our main result in the
next section.

Lemma 2.6. Suppose (H1)—(H5) hold. Let x = (x1,...,%u)" be a solution of (1.14), and let ag > 0
be the corresponding constant from Lemma 2.2. For 0 < a < ag and u > 0 define

we (1) :sup{e"‘t]x(t)—x(fﬂoo ;(t,fe by t1), r €N or tEe€ [—T,t1)>,
and ]f—t|§u}. (2.22)

(i) Then

lim w,(u) =0, 0 < a < ap. (2.23)
u—0+
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(ii) Assume further (H6), (H7) and (H8). Then there exist Mo > 0 and ug > 0 such that

wq(u) < Mou, O0<u<uy 0<ua<ag. (2.24)

Proof. (i) It follows from Lemma 2.2 that x satisfies (2.4). Fix 0 < a < ap, ¢ > 0 and @ > 0.
Since f; — oo as k — oo, there exists kg such that

Koeaoﬂe(ucﬂxo)t < %/

Then, using (2.4) and the triangle inequality, we get

E> b

e [x(t) — x(F)|oo < €™ <Koe_”‘°t + Koe—“of) < Koel# %)t 4 Koetotpla—m)t < ¢

fort,t > ty, |[F—t| <uand 0 < u < i.
The function e*x;(t) is uniformly continuous on the intervals [ty ty 1) fork=1,...,kg — 1
and i = 1,...,m, and on the interval [—T, ;) since it has continuous extension to the closed

intervals [t, 1] and [—T, t1]. Therefore, there exists > 0 such that
e (E) — (Pl < £ and  S<mindd,—"5 1
® T2 "2(e — 1)Ko &

ift,F € [ty,t,41) forsomer € {1,...,kg—1} or t,F € [—7,t1), and | —t| < 4. Then (2.4) and
the estimate
=1 <(e—Dls|, [s[ <1 (2.25)

imply
(1) = x(F)|oo < [e¥x(£) — x(F) oo + [ — [x(F) oo
< 5+ 10D — 1] |x(D)s
< §+ (e — 1)adKy
<E§,

ift,f € [ty t;41) forsomer € {1,...,ko—1}ort,f € [—7,t1), and |F —t]| < J. Hence w,(u) < ¢
for 0 < a < g and 0 < u < 6, which completes the proof of (2.23).

(ii) Note that it follows from the proof of Lemma 2.2 that « < a9 < PBp. Since x;(f) is
continuously differentiable on [t t,.1), we get from (1.14) that for t,f € [t,, t,4+1) for some
r € Ny

) = (D) = [ (~alshls) + L yElg s~ ) +a(9)

Define the constant M = a; Ko + i b*L e Ko + ;. Then, using e*|x;(s)| < e*°[x;(s)| < Ko
from (2.4) and % |c;(s)| < eP?%|c;(s)] < C from (H6) and (2.25), we get

t
() = xi(B)] < [ e (are s |+2b*Le“ﬂffe”frx]<s—~r]>r+e“5\cz<>|)ds

< M(e—1)u, t,t € [ty tr41), €Ny,
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for |t — | guguozlj—o.
Assumption (HS8) yields
elxi(t) — xi(B)] < |@i(t) — @i(D)| < Lot —F,  t,Fe[-7,0].
Suppose —T <t <0<t <t and |t — | < u < 1. Then combining the above two cases and
Uy = aio we obtain
e xi(1) = xi(B)] < e (Ixi() = xi(0) | + [xi(0) — (D))

< M(e—1)t+e"L,(—F)
< M()u/

where My = max{M(e —1),eL,}.
For -1 <t<0<f<tand |t —t <u < uywe get

e |x; (1) — xi(D)] < |xi(t) — x:(0)| + €] x;:(0) — x;(F)| < Ly(—t) + M(e — 1)t < Mou.
The proof of (2.24) is completed. O

3 Main results
In this section, we prove that the solutions of (1.15) approximate that of (1.14) uniformly on
[0, 00).

Theorem 3.1. Suppose (H1)—(H7) hold. Let x = (x1,...,xu)" be the solution of (1.14) corresponding
to initial function ¢ = (¢1,...,¢m)", andy = (y1,...,ym)" be the solution of (1.15) corresponding
to h > 0 and an initial function Y = (P1,...,¥nm)", and let ag > 0 be the corresponding constant
from Lemma 2.2.

(i) Then for every 0 < x < g and & > 0 there exist constants Ky > 0 and h* > 0, and a function
6(h) such that 6(h) — 0as h — 0+, and

IX(E) — y(H)|oo < e_’"tK2<]q)— Pl +0(h) + e), te[-1,0), 0<h<h*. (31)

(ii) Assume further (H8). Then for every 0 < a < «g there exist constants Ko > 0, M > 0 and
h > 0 such that

IX(E) = y(£)]oo < e_"‘th(|(p— Pl + Mh), te|-1,00), 0<h<h (3.2)

Proof. The variation of constants formula (2.2) applied for problem (1.15) gives
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where

Gi( =Y bi(Hgi(y(v(t) — v () +ci(t),  i=1,...,m
j=1

Combining it with (2.2) we get

—e ;(fr)ai(u)du(]i,r(yi(’)/(tr)i)) +ei/”))

[ e K (Gis x(s)) — Gils, y(x(5))) ds

oy

fori=1,...,mand t > 0. Therefore, (2.5), (2.6) and |¢;(0) — ¥;(0)| < |¢ — p|c yield

xi(t) —yi(H)] < (1= p; e "o — plc

+/ 770,ts)

fori=1,...,mand t > 0, where

Gi(s,x(5)) = Gi(s,y(7(5))) | ds + Ai(t)

o) o) ;
Ai(t) = ; ( H (1 - pi,j)) ‘e_ﬁ’ai (]zr(xz( )) +ezr)

j=r+1

e SO iy (1)) + i)

Let ap and Ky be the constants from (2.4). We select a positive constant « such that

0 < & < min{eg, B1, B2, 0}

and

(- p et
(L p)(1— e @0)

"MS

-
Il
—

(1—p, )AL +

(3.3)

(3.4)
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Note that such « exists since (H5) holds. Multiplying (3.3) with e* and using (H1) we get
e [xi(t) — yi(t)]
< (1=p)e g — gl
+ [ g9 Gils,x(5)) — Gils, y(r(s)) | ds + e A
<A=p)le—vlc
+ 3 [ e 0 by (5) e x5 — 1) i (r(s) — ()| s

=1

+e" A (t)
<(@=p)le—9lc

m t
+y /0 (1 p; e @00 by (s) | Lje
j=1

+ [x(r(s) = 1)) = i(v(s) = 1 (1)) s + e A1) (35)

xj(s =) = x(v(s) = (1),

fori=1,...,mand t > 0. We have

YT — [Lawydu = [l
<Y TT (= pig) ) [er Tt — o= B w0l i)
r=1 \j=r+1
() /o t ,
' ( IT - Pu‘)) o iy i) du = [i7,,) aiow) du
r=1 \j=r+1

]1r<x1( r)) — ]zr(]/z( (t)~ )))
o) /) ,

+) ( (1- Pi,f)> ‘ — Jp iy _ = [y ai(u) du
r=1 \j=r+1

\ei,\ (36)

fori =1,...,mand t > 0. Assumption (H7), estimates 1 —e~! < t for t > 0, the following
direct consequence of |t — y(t)| < h:

t—h<q(t) <t teR, (3.7)

and (2.7) imply

£(t) ; .
( IT - Pi,]')> ‘e_ Jop @i du _ o= Jyap) ail) du
j=r+1
t o) .
— e Jp, ai(u) du ( H (1 . pz,])> (1 e jwty)a,-(u)du)
J

ji=r+1
< 1= Bl_ e_Ui(t_t’)(l _ e—a;‘h)
1—pf
1-p-
< —=Lemalt=tlgty, >, (3.8)

1_191'
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Then, combining (H2), (H3) (ii), (3.6), (3.7) and (3.8), we obtain

1—p;)athl;
e A(t) < Ze—“’f—“)(f—“)—( 131 ) e |x ()]

r=1 o pz*
Y4 o\ I*
+ ge(”tﬁf)(ff ) (11 _P;?*) Loaty

4 ath
+Z gi—u r ﬁe“tr‘el’,r‘/ i:]_,_”’m, tZO. (39)

For 0 < h < § we have t,_1 < (t;) < t,, hence (2.22) and (3.7) yield

I B CORE N0

for h < é. Therefore (3.9), (2.10) with o; replaced by o; — a, e |x;(t;7)| < e™'|x;(t;)| < Ko,
e*'rle;,| < ef and et'r = et (tr=1(t) pur(t) < ptherr(tr) imply

er|x;(t) — xi(y(t) )| = lim e(r=3)

n—oo

2y (1= p7)athl;
“A(t) < —(oi—a)(t=t) - i T
A= 2 1-p;
Y (1—-p)
Yoo S (wu() o™ sup oli(u) — yiw))
r=1 pi 0<u<t
L I S
n - e%mw)(ht»%
r=1 1T—p;
(1—p; ) (afhl;Ko) (1= p )l wa(h)

<
S -p)A—e @) T T p) (- e s
N (1-— Bi_)afhef
(1= pf)(1—e (m02)
(1—p)lre

+ = sup e |x;(u) —yi(u
(1= )1 - e ) B, Pl vt
< dih 4 diwy (h) +d; sup e |x;(u) —y;(u)] (3.10)
o<u<t

fort >0,i=1,...,mand 0 < h < §, where

(1—p; ) (a1} Ko + ajef) ; (1—=p)I;

d; = — ’ di = s
A A= —e @)

and
(1—p,)le

— L

L (= p) (e (o)

~

We introduce the functions

(e = 3 [ e Oy 6) L (s - )~ xi(r(s) —a(g)]as Gy
=1
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fort >0, h > 0,and

w;(t) = _ﬂiﬁte"‘”\xi(u) —yi(u)], t>—-1, h>0

fori =1,...,m. Then estimate (3.5) together with (3.10), (3.11) and

e = (5= +7(5) u(Y(5)=7(1) < palitTy) pu(v(s)=71(%) (3.12)

yields

elxi(t) —yi() < (1= p, )@ — plc+ (1= p; )it h) + e Ai(t)

= e—(m—zx)(t—s) (s oS

+];/O (1 P ) |b1]( )|L]
< Jxi(r(s) = (1)) = yi(r(s) — v ()]s

< (1= p))le—le+ (1= p )it h) +dih+ diewg (1) + dyao (1)

m t

+y / (1—p; e @09 byi(s) | Lie" " Wi (s) ds
=0

< (1 =p)le—wlc+ (1 —p )yt h) +dih + diws (h) + diwi(¢)
m
+ Y (1= po) AL o (1) (3.13)
=

forO<h<é,t>0andi=1,...,m.
Define h; = §/2, and next we suppose that 0 < h < hy, j € {1,...,m} and r € N. Relation
(3.7) implies

t <(s—h) =7 < 9(s) —7(7j) <s— (15— h) <ty s€tr+1+ Mt +1—h).
Therefore

s—7T € [ty tr1) and y(s) — () € [tr, try1), seltr+1+htr+1—h). (3.14)
Moreover, (3.7) yields

s=5—(v(s) =@ =ls=7(s) = (g—r(m)I<h  selr+G5+hta+T7-h).
(3.15)
Hence it follows from (2.22), (3.14) and (3.15) that

e |x;(s — 1) — xj(v(s) — (1)) | < T |x;(s — 1) — xj(v(s) — 7 (7))
<e"iwy(h), selt+T+ht+T—h).  (3.16)

Similarly, it is easy to check that
elxj(s — 1) = x;(v(s) — ()| < e T |x(s — ) — x;(7(5) — (1))
< e"Miwy (), s€0,t1+1—h). (3.17)

We define the sets
Ap=0t+1-nUtr+71+ht,a+1—h,  Bjp=1[00)\ A4,
r=1
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forj=1,...,mand 0 < h < h;. We use relation (3.16) to estimate the function 7;(t, h) defined
by (3.11) fori =1,...,m,t > 0,0 <h < hy,and fors € A;;:

(/ (=019 5) e
,;mOt
t S HiS . . N ) . .
/]hm[m |bij(s)|Lje ‘x,(s ) — x;(7(s) V(T]))‘ds)
m
< El(/o e‘(Ui—a)(t—s)’bi],(s)’L],eaTjwa(h) ds
]:

+ /B . e~ (ei=w)(t=s) \bij(s)\Lje“S\xj(s — 1) — x;(y(s) — y(rj))\ ds). (3.18)

xj(s — 1) — xj(7(s) — ’r(q))‘ ds

For s € Bj; we use a different estimate. Let 0 < h < hp = min{hy,1/ap}. We have from
Lemma 2.2

15 %) ~(a16) ~ ()
< e x5 — )|+ T TO0D x (y(5) — ()
< " Kge (@0—0)(s=7) 4 ot(s=7(s)+7(7)) Ky~ (@0—2) (v(5)—7(%})

< Vi Kge~ (W0—0)(5=7) 4 pt(h47) g o~ (@0—a)(s—h=T)
< earj(l + eaoh)KOe—(ﬂfo—“)(S—T/)
S eﬂéT](l _'_ e)KOef(’XO*“)(sz)’ ] = ]_,, . _,m, S Z 0 (3'19)

Fix € > 0. Then it follows from (3.19) that there exists T = T(e, «) such that
. .

(s =)~ (s~ (m) SETL sET j=lom G20)
where My = maxj—1,_n Z}ﬂ:1 AjjLie"". Let ko € IN be the smallest index such that t, > T. We
recall that hp, < 6/2. Soif 1 <r < ko, then for s € [tr+'L']-—h,tr+T]-+h] and 0 < h < hy we
have

s—T <ty +th<tgp and 9(s) — (1) <s—71+h <ty +2h < tg 1. (3.21)
Similarly, for r > ko, s € [t, + T, — h,t, + T+ h] and 0 < h < hp we get

s—Ti>t—h>t 1>, >T, and 9(s)—¥(7)) >s—h—1>t, —2h > t,_1 >t

(3.22)
Define the sets
ko o
C]',h:U[tr—F’L'j—h,tr—i—Tj—i—h] and Dj; = U [t + 7 — bt + 7 + ).
r=1 r=ko+1

Then, clearly, B;; = C;3 UD;jy, j =1,...,m. Define the constants b;; = bjj(¢) by

bij = Og{lf?tzﬂ |bij(u)], ij=1,...,m.
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Then (H3), (3.18), (3.19), (3.20), (3.21) and (3.22) yield

i(ﬁuL e wa (h)

j=1

L, on IO (s~ ) = xir(s) 7 () s

+ /D].hm[o . e*(m*a)(tfs)‘bij(s)‘L].eocs xi(s — 1) — xj(v(s) — ’y(’c]))‘ ds)

< Mpwy(h) + Z / a)(t= S)bl]L e"li(1+e)Kods
j=1r=1"tr+7=h
- [ (0;—a)(t—s) at €
+ /e’ TN (s)| Lie* —— ds
| by ()] Lje 5
t +T]+h
< Mawy (h) + Z / ~leima)(t=s)p, iLie"5(1+e)Kods + e (3.23)
j=1r=1 t’+71

fort > 0and 0 < h < hy. Relation (2.25) gives
el —et=et(e* —1) < (e—1)2t, te[0,1],
hence, using (H7), (2.10) with o; is replaced by 0; — «, and (3.23), we get fori =1,...,m

ni(t,h) < Mows(h) + ¢

+ Z EiijeaT(l + e)KO Z

0 (e(”i“)(ttrTfh) - e<@"‘><””f+h>>

=1 r=1 vi— &
= Mpwy(h) +¢
m ((t)
LY L <(1+€>KO> (el ) _ o) (50 Y —lar=aie—to)
=1 Ui — & (=1
m. (1 + E)K() e((r,-fa)h . ef(aifa)h
< Mow,(h) +¢ +j_21 bijLje ( p— > ( Ry,
< Mywy(h) +e+§h, 0<h<h", (3.24)
where §; = §i(¢e) is defined by
Zbl]L e”it (1+e)Ko2(e Nl) and h* = min < hy, 1 S, 1 .
1 — e (i—a)d o —« Op — O

Then (3.13) yields fori =1,...,m,t > 0and 0 < h < h*

wi(t) < (1= p;) (Ip = Ple + Mawa () + gih +¢ ) +dh+ diwa ()
+ Z(l — p;)Aiijea(hoJrTf)w]'(t) + cfiwi(t). (3.25)
j=1 B
Relation (3.25) gives the vector inequality

w(t) <d(h) +Cw(t), >0, 0<h<I (3.26)
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w(t) = (wi(t),..., wa(t)",
d(h) = (d1(h),.. ())T, where

di(h) = (1 El)(|(p Ple + Mawn () + gih+ ) +dh+ diwa (1),

(1—p,)AjiLet®) +d;, 0=,

3.7
(1—p; )AL orm), i#j. 2

C — (Ci]') c ]RmXWZ/ Cij — {

Relation (3.4) yields that ||C|| < 1 for 0 < h < h*. Then I — C is an M-matrix, hence (3.26)
implies
w(t) < (I-C)"'d(h), t>0, 0<h<h"

Therefore, the definitions of w(t), d(h) and

wi(t) < max |xi(u) —yi(w)| < lg—¢plc <di(n), te[-70, i=1...m
gives
w(t) < (I-C)'d(h), t>-1, 0<h<h,

which yields (3.1) with

K= |(I-C)" l||c,<,l£rl1ax (1—p;) and 6(h) = (M +erllax d;)wq (h) +hi£r11axm(g”i +d;).

(ii) To prove (3.2) we now assume (HS8) too.

Let My and ug be the constants defined by Lemma 2.6 (ii). We consider estimate (3.18) of
the proof of part (i). Now, since bij(s) is bounded by b;k]- for all s > 0, we estimate the last
integral similarly to steps used for the set Cj; in the proof of part (i), but using bj; instead
of El'ji

m L) otttk
ni(t,h) < Mawa(h) +Y_ Y / e_(“_“)(t_s)bij]-e”f(l + e)Ko ds.
j=1r=17tt7~h

Then a calculation similar to that used in (3.24) and (2.24) gives
ﬁi(t,h) < M2wa(h) +g1*h < M>Mph +g*h O<h< }_l, (3.28)

where kg2 )
o7 or (((1+e)Ko2(e—1 o »
E bjLe”" ( e > and h = min{uy h*}.

Combining (2.24), (3.13) and (3.28) we get fori =1,...,m,t > 0and 0 < h < h

w;(t) < (1— )(Iqo P|c +M2M0h+g*h) +dih + d;Moh

£ 30— AL () + dwn (1)
=1

hence, the vector inequality

w(t) <d(h)+Cw(t), t>0, 0<h<h
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and therefore
w(t) <d(h) +Cw(t), t>-1, 0<h<h (3.29)

holds, where
d(h) = (di(h), ..., du(h))",
di(h) = (1= p)lp — plc+ ((1 —p, )(MaMo +g7) +d; +vEMo)h.
Then (3.29) implies
w(t) < (I—C)~d(h), t>—-1, 0<h<h,
which proves (3.2) with

Ky =||(I-—C) o max (1— p;) and M = MM, + _max (gF +df +d;Mp). O
i= — i=1,...,m

=1,...m

Remark 3.2. We note that relation (3.1) gives for ¢ = ¥ that

sup  [x(t) —y(t)]eo < Ka(0(h) +¢),

te[—1,00)
which yields that the solutions of (1.15) approximate that of (1.14) uniformly on [0, o).

Remark 3.3. Let C be the matrix defined by (3.27). Assumption (H5) in Theorem 3.1 can be
replaced by the weaker condition p(C) < 1, and the statement of the theorem remains true.

Thanks to our main Theorem 3.1 and Lemma 2.2 we can give the following result con-
cerning the transference of the exponential estimate of the solutions of (1.14) to the approximate
solution.

Proposition 3.4. Suppose (H1)-(H7) hold. Let x = (x1,...,xm)! be the solution of (1.14) corre-
sponding to initial function ¢ = (¢1,...,¢m) , and 'y = (y1,...,ym)" be the solution of (1.15)
corresponding to h > 0 and an initial function ¢ = (¢y,...,Pm)", and let ag > 0 be the correspond-
ing constant from Lemma 2.2.

(i) Then for every 0 < a < g and e > 0 there exist constants K3 > 0 and h* > 0, and a function
6(h) such that 6(h) — 0as h — 0+, and

1y (£)]eo < e""tKg,(l + o — plc+0(h) +s), te[-T,00), O0<h<h*. (330)

(ii) Assume further (HS). Then for every 0 < a < «q there exist constants K3 > 0, M > 0 and
h > 0 such that

1y (£)]eo < e”"tK_o,(l +lo—lc + Mh), te[-T,00), 0<h<h (3.31)

Proof. The proof follows immediately from |z(t)|e < |2(t) — X(t)|co + |X(t)]c0, (2.4), (3.1) and
(3.2) with K3 = max{Ky, K3 }. O
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4 The bounded coefficients case

In the following, we give a practical result concerning the bounded coefficients case for a
CNN delayed impulsive system as a simple consequence of Theorem 3.1. In addition to our
assumptions (H1)—(H3), we suppose that the coefficient functions a;(t) are bounded below
too, and b;;(t) are bounded. This will allow to simplify conditions (H4)-(HS8), as follows:

(H4’) There exist positive constants g;, a7, c},0; fori =1,...,m such that
(i) a; <a;i(t) <a;f fort>0andi=1,...,m;
. 1 . _ .
(i) a; — 3 In(l—p-) =0, i=1,...,m wherep  =min{0,p };
(iii) [by()| <bj, t>0, i=1,...,m.
(H5") There exists ¢g such that 0 < ¢y < 0; fori =1,...,m, and
g O-ply, 0=
= 0 — € ] (1 — pl*)(l — e“’ié)

<1, i=1,...,m.

(H6") There exist positive constants 1, 2 and ¢} (i = 1,...,m) such that

lei x| < e‘ﬁltkef, ke N, and lei(t)] < e‘ﬁztc;‘, t>0, i=1,...,m.

(H7’) There exists a positive constant L, such that

lpi(t) — @i(F)] < Lyt — ¢, t,te[-7,0], i=1,...,m

Note that (H4) (i) was used in the proofs of Lemma 2.2, Lemma 2.4 and Theorem 3.1 to
prove estimates (2.5), (2.6) and (2.7). Now we show that our boundedness assumptions (H4")
imply the same estimates (2.5), (2.6) and (2.7).

Suppose p, < 0,s € [t;_1,t) for some r € N, and t > t,. Then (H3) (iv), (H4’) and the
estimates (£(t) —r)d <ty — t, <t — s yield

o o) t 40)
e K (TT0 - py) ) =exp (- / ai(u)du+ Y In(1— p; )

j= =
< exp (—gi(t —s)+((t)—r+1)In(1 - Ei)>

t—s
(1—p,)exp (—ai(t —s)+ 5 In(1— pi))
< (1—pe 9.

—1

IN

If s <t<t,then {(t) <r,so H][(:?(l — pij) = 1. In the case p, = 0 we have 0; < 4;, hence

J4
( T (1- ) < o flawan < —oi(t=s)
pij) ] =¢€ 7 <e .

]:

Therefore (2.5) holds. (2.6) and (2.7) can be proved similarly under assumption (H4').
Using Remark 1.3, we get immediately that (H5") implies (H5). Hence Theorem 3.1 has the
following corollary.
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Corollary 4.1. Assume (H1)~(H3),(H4')~(H7’) hold. Let x = (x1,...,xu)T be the solution of (1.14)
corresponding to initial function ¢ = (¢1,..., ¢m)", andy = (y1,...,ym)" be the solution of (1.15)
corresponding to h > 0 and an initial function = (¥1,...,¥m)7T, and let ag > 0 be the corresponding
constant from Lemma 2.2. Then for every 0 < a < ag there exist constants K >0, M > 0 and h > 0
such that (3.2) holds. Hence, the solutions of (1.14) are approximated by that of (1.15) uniformly over
[0, 00).

5 An example

Now, we present an example to illustrate the applicability of our conditions.

Example 5.1. Consider the system

x(t) = —a(t )+ Zb1] )8i(xi(t — 1)) +ci(t), t#ty
x5 (t) = —ap(t)xa(t) + szj )gi(xj(t— 1)) +calt), t#t, (5.1)
Axq(ty) = —pl,nxl(t;) +el,n + Jin(x1(ty)), neN
Axa(tn) = —ponxa(ty) +eon + ou(x2(ty)), n e NN,
where
a1(t) = 2 + sin(V/3t), ax(t) = 4 + cos(t);
bll(t) =05 Sil’l(t), b21(t) =0. 2811’1( )
blz(t) =03 COS(t), bzz(t) =0. 3sm( )
c1(t) = exp(—t), c2(t) = exp(=2t); 5.2)
pin=—015 n €N, pon = —04, n € N; '
e1, = exp(—3t,), n € N, e = exp(—4t,), n € N;
¢1(x) = tanh(x), ¢2(x) = tanh(x);

Jin(x) = 55 tanh(x), n € N, Jon(x) = 55 tanh(x), n € N.

We suppose 11 = 1, » = 2, T = max{n, 2} = 2, the initial functions ¢1 (), @2(t), P1(t), P2(t) :
[—2,0] — R, defined as ¢i(t) = ¢1(t) = 0.5sin(t) and @x(t) = ¢a(t) = cos(t). Also, we
consider t, = n for n € IN.

System (5.1) is approximated by the following IDEPCA system

yi(t) = —ai(t) an )&i(Wi(r(t) — () +er(t), t# v(ta)

ylz(t) = —a(t )+ ZbZ] g] y] Y(t) — ')’(T]))) +eat), t#y(tn) (5.3)

Ayi(y(tn)) = _Pl,nyl( ( )7 )+ e+ I((y(k) 7)),  neN
Aya(v(tn)) = =p2uya(v(tn) ") +exn + Laly2(v(£) 7)),  neN,

where () = [t/h]h and all the coefficients are given in (5.2). Because tanh(x) is a Lipschitz-
type function, with Lipschitz constant 1, we can conclude that L; = 1 and I = [;,, = %,
i=12 neN. Wehaved =1,a, =1,a, =3, p, = p; = —0.15 and p,= p> = —0.4, hence
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we get

1 1
a -5 In(1 — E;) ~ 0.86024, =5 In(1 — p, ) ~ 266353,

so 01 = 0.86 and 0, = 2.66 satisfy (H4') (ii). Use g9 = 0.01, bj; = 0.5, bj, = 0.3, b5; = 0.2 and
b3, = 0.3. Then

1—gq (1—g ) 1.15 0.1
=1 b¥.L; =1 = _2(05+0.3 - ~ 0.91748,
T N (e [ B A N S

p— 870.

and

175 ¢ (1-g,)h 14 0.1
2 b*.L: 22 _ 14 0503 L
727 % J—El 5 (1—q3)(1—e ) 0.85( +03) + 1 — e—266 /

therefore (H5’) is satisfied. Therefore Corollary 4.1 yields that the solutions of (5.3) approxi-
mate that of (5.1) uniformly on [0, c0) as h goes to 0.

Figures 5.1-5.2 illustrate the solution of (5.1) and its approximation by the solution of (5.3)
corresponding to the discretization parameter i = 0.1. Note that for this value of i and the
definition of t,, we have (t,) = t, for all n € IN. Both initial value problems are solved
numerically using the function ddesd in Matlab on the consecutive intervals [tn, tni1]. The
blue curves are the graphs of x;(t), and the red dots are the values of the function y;(t) at the
time values t = 0.1n, n € INp. At the impulse time points, the left-hand limits of y;(t) are
also displayed. Even though the discretization parameter is relatively large for this numerical
experience, we see that the approximation error becomes smaller as time increases. This is a
consequence of estimate (3.2).

= Exact solution Exact solution
*  Approximate solution *  Approximate solution

0.8

0.6 [

20.05 1 1 1 1 1 1 1 ) 02

Figure 5.1: Graphs of x1(t),y1(0.1n) (on the left) and x»(t),y2(0.1n) (on the
right) with h = 0.1
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= Exact solution
= Approximate solution

02

0.1

0
. X, (0

Figure 5.2: The graphs of (¢, x1(t), x2(t)) and (0.1n,21(0.1n),22(0.1n)) with
h =0.1.
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