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1 Introduction

The theory of center manifolds plays a crucial role in stability and bifurcation theory, as it
often enables the reduction of the dimension of the state space (see [19,29,31-33]). The origins
of this theory date back to the 1960s, with the works of Pliss [49] and Kelley [34,35]. Subse-
quently, various results on this subject were developed by several authors. In the context of
autonomous differential equations, we recommend the surveys by Vanderbauwhede [54] (see
also Vanderbauwhede and Gils [56]) for the finite-dimensional case and by Vanderbauwhede
and Iooss [55] in the infinite-dimensional case. For the nonautonomous case we recommend
the survey by Aulbach and Wanner [3]. We also recommend [23,24] and [22,25, 26,44, 53] for,
respectively, finite and infinite dimension.

The concept of trichotomy is an essential tool for obtaining center manifolds. The (uni-
form) exponential trichotomies were introduced, independently, by Sacker and Sell [51],
Aulbach [2] and Elaydi and Hajek [28]. This notion was motivated by the idea of (uniform)
exponential dichotomy that started in the thirties with Perron [47,48].

Several generalizations of exponential trichotomies have since emerged. Fenner and
Pinto [42] introduced the (h, k)-trichotomies that use non exponential growth rates and Bar-
reira and Valls [4,5] introduced nonuniform exponential trichotomies that take into account
the initial time. Later, Barreira and Valls [6,7] introduced the p-nonuniform exponential tri-
chotomies that are nonuniform and non exponential, but do not include the (h, k)-trichoto-
mies.
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In [12,15], a general type of trichotomies was introduced, for linear differential equations
and linear difference equations, respectively. This new framework contains as special cases
the notions of trichotomies mentioned above and also contains additional new cases (the case
of dichotomies was done in [13,14]).

Invariant manifold theory has also been extended to dynamical systems with randomness.
In this work, we focus on random dynamical systems (RDS), which can be generated, for
instance, by random or stochastic differential equations. In this context, various studies have
addressed center, stable, unstable, and inertial invariant manifolds, both locally and globally,
across a range of spaces that goes from finite to infinite dimension, including Hilbert spaces
and separable Banach spaces. Arnold’s monograph [1] provides a detailed exposition on the
Multiplicative Ergodic Theorem and invariant manifold theory for finite-dimensional RDS.
Smooth systems are discussed in [41]. For results on infinite-dimensional RDS, we refer to
[8-11,18,27,37,40,43,45,46,50,52] and the references therein.

Center manifolds for RDS have also garnered attention, either in finite or infinite dimen-
sions. In the finite-dimensional context, Wanner [57] discusses invariant manifolds, including
center manifolds, in terms of linearization in IR”. Boxler [17] proved the existence of center
manifolds for discrete random maps (random diffeomorphisms). Existence, smooth conju-
gacy theorems, and Takens-type theorems based on Lyapunov exponents were established by
Li and Lu in [38] and by Guo and Shen in [30], in the presence of zero Lyapunov exponents.
On the other hand, infinite-dimensional RDS hold significant interest not only due to their
inherent mathematical richness but also for their applications in understanding stochastic
and partial differential equations. Under the assumption of an exponential trichotomy, Chen,
Roberts, and Duan [20] established the existence and smoothness of center manifolds for a
class of stochastic evolution equations with linear multiplicative noise. In [21], Chen, Roberts
and Duan established the existence of center manifolds for both discrete and continuous-time
infinite-dimensional RDS, assuming an exponential trichotomy, by employing the Lyapunov-
Perron method. Moreover, they provided examples illustrating the application of these results
to stochastic evolution equations through their conversion into infinite-dimensional RDS. In a
similar vein, Kuehn and Neamtu [36] addressed the issue of center manifolds for rough partial
differential equations, which also translates into center manifolds within the RDS framework.
Li, Zeng and Huan [39] established the existence and smoothness of center-unstable invariant
manifolds and center-stable foliations for a class of stochastic PDE with non-dense domain,
by converting them into infinite-dimensional RDS.

Exponential trichotomies have played an important role in invariant manifold theory for
infinite-dimensional dynamical systems and non-autonomous systems, whether in determin-
istic or random scenarios, as discussed. In this work, we extend the results on the existence
of center manifolds for infinite-dimensional RDS by assuming a generalized trichotomy. This
type of general assumption was considered in [16] for dichotomies, and in this work, it is
extended to include a central direction. This generalization allows various types of non expo-
nential behaviours along the three subspaces of the invariant splitting. In our context, each
subspace is governed by a very general type of rate for controlling the growth of the evolution
operator, described in terms of a cocycle. In specific cases, these subspaces correspond to
the traditional central, stable, and unstable subspaces. However, our assumptions are suffi-
ciently general to accommodate behaviours beyond exponential-type, such as those observed
in (non)uniformly (pseudo-)hyperbolic settings.

This paper is organized as follows. Section 2 introduces the setup and provides prelim-
inaries on RDS and generalized random trichotomies, as well as a description of auxiliary
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spaces of functions which are essential for handling nonlinear RDS components and deriving
the center manifold as the graph of a suitable regular function. Section 3 presents the main
result for continuous-time RDS (Theorem 3.1), while Section 4 focuses on the discrete-time
counterpart (Theorem 4.1). In Section 5, continuous-time examples are discussed, includ-
ing tempered exponential trichotomies and a general framework called i-trichotomies, which
extend beyond exponential bounds. Corresponding discrete-time examples are provided in
Section 6.

2 Generalized trichotomies for RDS

2.1 Random Dynamical Systems

Consider time T=Z or T =R, and set T~ =TN] — 00,0l and T+ = T N [0, +0o0[. A measure-
preserving dynamical system is a quadruplet £ = (Q, F,P,0), where (QQ, F,P) is a measure
space and

0: T x Q) — Q) is measurable;

0'(-) = 0(t,-): QO — Q preserves P for all t € T;
00 = Idp;

ptts =0t o6 forall t,s € T.

A (Bochner) measurable random dynamical system, henceforth abbreviated as RDS, on a
Banach space X over a measure-preserving dynamical system X with time T is a map

P:TxOxX—X

such that
i) ®(-,-,x) is (Bochner) measurable for all x € X;
ii) () =®(t,w, ): X — X satisfies

a) ®Y =1Idx forall w € Q;
b) ®!fF =, o®f, forallw e Qandalls,t e T.

When @ is a bounded linear operator for all (t,w) € T x (), the RDS ® is called linear.

We may restrict the driving system £ to a 6'-invariant subset Q' C Q with P-full measure,
obtaining a (Bochner) measurable RDS @ |1y «x over &/ = (Y, F/,P|,0|y), where F' =
{BNQY: B € F}. In view of this, without any loss of generality, throughout this work,
requiring a property to hold for all w € (Y, for a §'-invariant subset O C Q with P-full
measure, can be replaced by simply requiring it for all w € ) by restricting, if necessary, the
RDS @ to ®|yyxyxx over X',

2.2 Generalized trichotomies

For every i € {c,s,u}, consider a map P': Q x X — X, and set P (-) = P(w,-): X — X. Let
P = (P, P, P"). A (Bochner) measurable linear RDS @ over ¥ admits a (Bochner) measurable
P-invariant splitting if
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i) Pi(-,x) is (Bochner) measurable, for all x € X and every i € {c,s,u};

ii) P!, is a bounded linear projection, for all w € Q) and every i € {c,s, u};

PSP =0, for all w € ();

) P
)
iii) P, + PS5 + P =1d, for all w € Q;
iv)
)

v) P @, =@ P, forall (t,w) €T xQandeveryie {cs,u};

Notice that for all w € Q and i,j € {c,s,u}, with i # j, we have P;PZ;, = 0. To shorten the
writing during future computations, for t € T, w € ), and i € {c,s,u} we will adopt the
notation

qDZt @f Pl

We define the linear subspaces E!, = P! (X) for each i € {c,s,u}. As usual, we identify
ES, x E}, x E, and E{, ® E;, ® E/,. Given the maps

at: T x Q — (0,+00),
W TT x Q — (0, +00),
at: T x Q — (0,+00),

we define & = (a%,a°,a"). Denote a'(t,w) by al . We say that a (Bochner) measurable linear
RDS @ over X exhibits a generalized trichotomy with bounds a (or simply an a-trichotomy) if it
admits a (Bochner) measurable P-invariant splitting satisfying

(T1) [|®%] < af,, forall (t,w) € TxQ,
(T2) || 9% < aj,, forall (t,w) € TH xQ,

(T3) @]l < af

W

forall (t,w) e T~ xQ,

where the operators in (T1)-(T3) are considered as operators from X into X. In what follows,
we always consider the operators defined in the whole Banach space X.

In Section 5 and Section 6, we present several examples of generalized trichotomies with
both exponential and non-exponential bounds «.

In the remainder of this article, ® will always denote a measurable (when T = 2Z)
or Bochner measurable (when T = IR) linear RDS on a Banach space X over a measure-
preserving dynamical system ¥ = (Q, F,[P,0) exhibiting a trichotomy with bounds a« =
(af, 0, ™).

2.3 Auxiliary spaces

Let .# denote the space of maps f: Q) x X — X such that f(-, x) is measurable for every x € X,
and for which, setting f,(-) = f(w, -), for every w € Q) we have

fw(0) =0 (2.1)

and

Lip(fw) = sup { oo lr) :f“’(y)H xyeX, x# y} < +oo. 2.2)
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Conditions (2.2) and (2.1) ensure that for all w € Q and x,y € X

I fo(x) = fo ()|l < Lip(fo)llx —yll, (2.3)

and
| feo ()] < Lip (feo) || %]]- (24)
Let .7 (B) represent the collection of functions f € .# for which f(-,x) is Bochner measurable

for each x € X. Additionally, define L%EB) as the subset of .7 (B) consisting of functions f such
that, for every w € (), the maps

[a,0] 3 1= &§_, ory Lip(forw) 85 s
[C/ O] Sri— “ir,()’w Lip(fgrw)lxg’w,
[0, d] S1— alirrgrw Lip(ferw)ﬂé?,w

are measurable for every a < b,c < 0,d >0and t € R.

We define the set

C={(t,w, ) eTxOxX:¢&€E,}.
For a given M > 0, let €y (resp. CS\?)) denote the space of all functions h: C — X such that,
for each (t,w) € T x Q, the map h;,(-) = h(t, w, -) satisfies

h(-,-, PSx) is measurable (resp. Bochner measurable) for all x € X; (2.5)
ht(0) =0 for all (t,w) € T x O; (2.6)
how = Idge, for all w € (); (2.7)
htw(Eg,) C Eg,, forall (t,w) € T x Q) (2.8)
V(2 — oo ()] < M, & — &' for all (t,0,8), (t,w,&) € C. 9)

From (2.9) and (2.6), it follows that
1w (E)]] < Mag,||Z] forall (t,w,&) € C. (2.10)

Defining
41 (h,g) = sup { Prel@= 8 (10,8 e, ¢ 2 0} @)
t,w

we have that (€, d1) and (@EVB}) ,d1) are complete metric spaces.

We now consider the set
D={(w& eQxX: e}

For a given N > 0, let D (resp. @g\?) ) denote the space of all functions ¢: D — X such that,

for each w € Q, the map ¢, () = ¢(w, -) satisfies

¢(-, P{ x) is measurable (resp. Bochner measurable) for all x € X; (2.12)
¢ (0) =0forall w € O (2.13)
¢w(ES,) C ES, @ EX for all w € O (2.14)
190 (Z) = 9o (&) < NJIE = ¢'|| for all (w, §), (w, ') € D. (2.15)
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By (2.15) and (2.13), taking &’ = 0, we get
9w (8) ] < NI|Z]| for all (w,§) € D. (2.16)

For future use, we set the notation ¢}, = P ¢, and ¢!, = P} ¢.,. Given ¢ € Dy and w € ),
we denote the graph of ¢, by

Tow=1{(C ¢u(g)): € E,} CX

Defining now

iy (g, ) = sup { H(PW@HEII%(@H (w,&) €D, E 4 0} (2.17)

it follows that (Dy, d») and (@g\?), dy) are complete metric spaces.

To conclude this section, let Ly y = €p X Dy and ng\i)N = (’:](VBP X ’Dg\?). Setting

d((h, @), (g, ¢)) = di(h, g) +da(@,¥),

we also have that (4 n,d) and (ilgVB},)N,d) are complete metric spaces.

3 Invariant manifolds in continuous-time RDS

Throughout this section, we focus on the continuous-time case by considering T = R. Given

a Bochner measurable linear RDS ® and a map f € FZP) we define

1

t
0= sup c / D‘ffr,ﬂ"w Lip (fer)lxﬁ,w dr (3-1)
(Lw)eRXxQ Kt 1J0
and
0 . +o0 )
T = sup &, gr, Lip(forw oy o dr + /0 o, oo Lip(foreo ) ey, dr. (3.2)
weQ)/ —®
If for every (w, x) € Q) x X there is a unique solution ¥ (-, w, x) of the equation
t
u(t) = d! x —|—/O D for (u(r)) dr (3.3)

then ¥: R x Q) x X — X is a Bochner measurable RDS on X over X. In particular, ¥ (-, -, x) is
Bochner measurable for all x € X, and

t
¥y = oyt /0 O foro (¥, ) dr. (3.4)

Theorem 3.1. Let ® be a Bochner measurable linear RDS exhibiting an «-trichotomy, and let f €

%B). Suppose that ¥ is a Bochner measurable RDS such that ¥ (-,w, x) is the unique solution
of (3.3) for all (w,x) € Q x X. If

. S c _ : u c —
im0 o = 1 05 =0 o3)

forall w € Q), and
c+T<1/2, (3.6)
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then there are N € ]0,1[ and a unique ¢ € @g\?) such that
Yoo (Tpw) € Toore (3.7)
for all (t,w) € R x Q. Moreover, for all (t,w, ), (t,w,{") € C we have
¥ (& 9w (8)) = Yoo (&, 9o (@I < (N/T)ag, 18—l (3.8)
The remaining part of this section is devoted to proving Theorem 3.1.

From [15, Lemma 5.1], we may find constants M € |1,2[ and N € ]0,1[ such that

M-1 N

Lemma 3.2. Consider (h, ¢) € ilj(\ﬁ,)N.

a) For every x € X the maps

(t,r,w) — CDE)VZ;rfG’W(hr,aJ(Pg;x)I§06’W(hr,W(Pcf;x)))r
(r,w) = @) forwo (rw (Px), @orwo (hrw (Pex)))
(r,w) = Dy forwo (hrw(Pox), @ore (hrw (Pox)))

are Bochner measurableon R xR x O, R~ x Qand Rt x Q, respectively.
b) For every (t,w,x) € R x Q) x X the map
7= O, foreo (M (POX), @oreo (B (PSX)))
is Bochner integrable in every closed interval with bounds 0 and t.

c) Forevery (w,x) € Q x X and t > 0, the maps

1= O forw (hrw (Pox), ore (hrw (PoX)))
1= O forw (rw (Pox), gore (Mrw (Pox)))

are Bochner integrable in [—t,0] and [0, t], respectively.

The proof follows similarly as [16, Lemma 3.6]. Given w € Q) and x, = (xfu,xfu,x”) €
ES, x E5, x El, it follows from (3.4) that the trajectory xgr,, = ¥}, %0 = (x5, x5, X4, ) satisfies,
foralli € {¢,s,u} and allt € R,

o = Vit [ O ol K ) . 610
Taking into account the invariance required in (3.7), for any given x,, € 'y, and t € R we

must have xgi,, € I'ygt,- Thus, in this situation, the equations given by (3.10) can be written
as

xg'w = CI)Efxw +/ q)Ct Sfes (xgsw' (P95w<x55w)) ds,
P () = Vi35 + [ B e (Kb oo (55))

P (30) = P35 + [ B fos (K (35 5



8 A. ]. G. Bento and H. Vilarinho

Lemma 3.3. Consider (h, ¢) € ng\i)N such that, for all (t,w,&) € C

() = 8+ [ G o (ra(€), 9o () . (311)
The following properties a) and b) are equivalent:
a) Foreachje€ {s,u}andall (t,w,{) €C,
. . t .
Pl o @) = @@ + [ P (o ) o (@) dr - (3.12)

b) Forall (w,{) € D

0(8) = [ @ ol 8, ool (@) dr 613)
and
W) =~ [ O raleal@) g @))) . 614)

Proof. From (2.4), (2.16) and (2.10) we have

| forco (.0 (8), @oreo (o (E))) | < Lip (foreo) ([P0 (E) | + [ @07 (0 (E))1])
< M(1+ N)Lip(forw )€l

for every (w, &) € D. Thus, by (T2),
[ 195 i@, s o @) dr < M(1+ N,
and by (T3) we obtain

[ 190 fr U@, 9@ | dr < MO+ Ny

Hence the integrals are convergent.
Suppose that (3.12) holds for j = s and all (t,w, &) € C. By applying @, to both sides, it
is equivalent to

P(0) = ot Us(8)) — [ O foro s ), gl @) dr (319
Using (T2), (2.16) and (2.10), for t < 0 we have

@5 b U1 (D)) | < MN&Z g, 051211

which converges to zero as t — —oo by (3.5). Thus, by taking t — —oco in equation (3.15) we
obtain (3.13). Similarly, equation (3.12) with j = u can be written as

t
P(0) = @ o) = [ @ fro o ©) s poain @) dr. (336)
Using (T3), (2.16) and (2.10), for t > 0 we have

[ @ g o (@) | < MNa* 5, 1]
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which, by (3.5), converges to zero as t — +oco. Thus, we obtain (3.14) by taking t — +o0 in
equation (3.16).

For the converse, assume now that (3.13) and (3.14) hold for all (w,&) € D. Forallt € R,
we have

0
Phis(@) = [ O foralrao(@) goao(@)) dr

0
+ /_ O forasr (€)oo Ui o(©))) dr

and

/ DU Foro (Mo (8) ) Poreo (B (2))) dr
— /_Oo (I)Z{;,Z;fgt-%—rw (htsr0(E) s Portrw (Metrw(G))) dr.

Since hit5w(C) = hggte(Mw(E)) due to the uniqueness of the solution of (3.3), we get the
identity (3.12) for j = s and j = u. O

Consider the operator C, which assigns each pair (1, ¢) € ﬂg\ﬁl)N to the map C(h, ¢): C — X
given by

COLg (0, 8) = @LE+ [ @
Lemma 3.4. C(ilgw)N) C €§VI)

Proof. Fix a pair (h, ¢) € ilg\i)N . It is straightforward to check that C(h, ¢) satisfies conditions
(2.5) to (2.8). Define

Yorw(8,8) = || foreo (e (8), @oreo (o (8))) = forwo (o (&), Poreo (o (&) -
From (2.3), (2.15) and (2.9) we have
Yorw (8, &) < Lip(forw) M(1+ N)||E = ¢'[|a7 - (3.17)

Following the previous notation, C(k, ¢), , (¢) stands for [C(h, ¢)](t,w,&). By (T1), (3.1),
(3.17) and (3.9), we have

IC(, @)1 (8) = C(h @)y, () < 1R INIE — CIH/ DG, Nl vereo (8, 8') dr

<A+oM(1+N))ai, g =7
= Mag, || = &'|l.

Hence C(h, ¢) also satisfies (2.9). O
Consider now the operator D, which assigns each pair (1, ¢) € L[%?N the map
D(h,¢): D — X

given by
[D(h, 9)] (w,6) = [D*(h, )] (w, §) + [D"(h, )] (w, €)
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where

D)) (,8) = [ @ foralao(€) o o (©)))

and
—+o0

(D @)l (@,8) = = | Pgiy foreo (B (8) s oo (r(£))) dr-
Lemma 3.5. D(LLE\A)N) C ’Dg\?).
Proof. Fix (h, ) € u(M}N. It is immediate to check that [D(h, ¢)] (w,() satisfies conditions

(2.12) to (2.14). Again, D(h, ¢),, (¢) stands for [D(h, ¢)] (w, ). From (T2), (T3), (3.17), (3.2)
and (3.9) we have

D0 9) &)~ DU @) @) < [ @5 voicleyr+ [ 0| ronale, )
< T™M(
=Nlg-¢]-
Hence (2.15) also holds for D(h, ¢). O

Consider now U: ng\i)N — ugﬁ}N given by

U(h, ¢) =(C(h, ¢),D(h, ¢)).
Lemma 3.6. The operator U is a contraction in (43, d).
Proof. Consider (h, ¢) (g, ) € (4. Define
Forw(8) = |l foreo (e (8), Poro (M1,0(2))) = foreo (80 (), Poreo (81,0 (£))) -
By (2.3), (2.15), (2.11), (2.17) and (2.10), for all (r,w) € R{ x Q and all ¢ € E,,,
Forw(8) < Lip(forw)ar, (14 N)di(h, g) + Mdy (9, 9)) [I£]- (3.18)

Hence, in one hand, from (T1), (3.18) and (3.1), we have

IC(1, @)1 (&) — C(8, )1 u</\<pwr

< oul (14 N)dl(hrg) + Mda (o, 9)) |G|,

which implies
di(C(h, 9),C(g,¥)) < o((1+ N)di(h,g) + Mda(9,9)).
On the other hand, from (T2), (T3), (3.18) and (3.2) we get

0 +o0
ID(h,9), (@) = Dis, ), @I < | @3] wal@ dr+ [ @] Foal@) ar

< T((1+ N)di(h, g) + Mda (e, 9)) 1],

which implies

da(D(h, ), D(g, ) < T((1+ N)di(h, &) + Mda(¢, ¢)) .
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In overall we get
d(U(h, ¢), U(g, ) < (0 +T)((1+N)di(h,g) + Md2 (9, )

< %max {1+ N, M}td((h ¢), (8 ¢))

and because N < 1 and M < 2, U is a contraction. O

Proof of Theorem 3.1. Since U is a contraction, by the Banach Fixed Point Theorem, U has a
unique fixed point (4, ¢), that satisfies (3.11), (3.13) and (3.14). By Lemma 3.3, the pair (1, ¢)
also satisfies conditions (3.12). Therefore, for given initial condition x., = (&, ¢5,(8), ¢4 (&)) €
ES, x E;, x E!, the trajectory xgi, = (ht,w(E), Pote (hew(E))) is the solution of (3.3). The graphs
[y are the required invariant manifolds of ¥. To obtain (3.8), it follows from (2.15), (2.9)
and (3.9) that, for each (t,w,¢), (t,w,&') € C

¥ (8, 92 (8), 94 (8)) = ¥iu (&) 95 (8", 9 (8)]
= [[(ntw (&), Poreo(M1,0(E))) = (Mt (E), Pgreo (0 (&) |l
< M(1+ N)ag |1 =&l

N -
< Zagule -2l a

4 Invariant manifolds in discrete-time RDS

Throughout this section we consider T = Z. Given a measurable linear RDS ® and a map
f € #, we define

1
- c : ¢
T = SUp 3 Y &%k preie LP(foro) % o

neEN “—n,w k=—n

n—1
+_ c i ¢
Uy = Sup A Z Xy k1,010 Llp(fgkw)ak/“]
neN “n,w k=0

and
o = supmax {0,007 }.
we)
Moreover, writing

-1
To = Z [xs—k—l,ek“wLip(f(?kw)ai,w'

k=—c0
+oo

Ty = Z "‘Iik_l,ekﬂw LiP(fekw)"‘i,w/
k=0

we also define

T=sup (1, + 7).
we

Consider the measurable RDS ¥: Z x () x X — X given by

n—1
Plx+ Y dITf (P (x)  ifn>1,
k=0

9k+1y

Yo (x) =1 x ifn=0, (4.1)

—1
Qrx— Y @A (FE(x)  ifn< -1
k=n

Ok+1,
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which encapsulates the solutions of the random nonlinear difference equation
Xpi1 = @énwxn + forw (xn).

Theorem 4.1. Let O be a measurable linear RDS exhibiting an a-trichotomy and let f € F. If

c

. s _
lim & gn, 05 =

: u c _
Jim lim a®, gu, 05, =0

n—r+o00

for all w € (), and
c+T1<1/2,

then there are N € 10,1] and a unique ¢ € D such that for the RDS Y given by (4.1) we have
‘FZJ(FQO,(U) - rcp,Q”w (42)
for all (n,w) € Z x Q. Moreover, for every (n,w, ), (n,w,Z'") € C we have

Y6 (Z 90 (@) =¥ (&' 9w (@I < (N/T)as 0 [1E = .

The proof of Theorem 4.1 is analogous to the proof of Theorem 3.1. Therefore, in the
remainder of this section, we provide a guide to the necessary adaptations. Fix M and N as
in (3.9). Given w € Q) and

C S u c S u
Xo = (x5, %5, x8,) € Eg, x E;, x E{,

the trajectory
Xgnew = Yo, Xw = (Xgny,, Xpngs Xgny) € E¢, X EX, X Ef,

satisfies the following equations for each i € {c,s, u}:

n—1
i i in—k—1 .
Dxl 4+ Z D, forw (Xgeor X or Xpr)  ifn =1,
; k=0
xlen — (4'3)

w -1
i k1 '
iyl — kE @;,:ilw foreo (Xgreyr Xoror Xgr,)  if 1< —1.
=n
In view of the invariance required in (4.2), if x,, € 'y then xgu:, must be in Iy, gn, for every
n € Z, and thus, in this situation, the equations from (4.3) can be written as

n—1
GG, + Y P fy (X P (X)) i =1,

w

Y, — N P forey (X Pov (¥ir,)) 1 < —1
k=n

and, for j € {s,u},

n—1
s jn—k—1 .
D P (Xw) + ) Py forw (X Poro (Xg,))  ifn =1,
k=0

P (Xer) = (4.5)

k in—k—1 .
DU P (x0) = Y P forw (Xreyr Poro (Xry,))  if 1 < =1,
k=n

Let us prove prove that equations (4.4) and (4.5) have solutions. First, we rewrite them, by a
discrete version of Lemma 3.3.
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Lemma 4.2. Consider (h, ¢) € Uy n such that, for all (n,w) € Z x Qand all ¢ € E,

n—1
PLE+ Y O o (i (8), @preo (M (2))) if > 1,
hn,w(g) = k=0

—1
5'¢ —];%’k'i?f, foro (o (8), Poreo (i (8)))  if < —

Then the following conditions a) and b) are equivalent:

a) Foreachj e {u,s}andall (n,w,{) € C

L) 9o (€) Zcbgk"ﬂfj ko (Mo (€), Ppreo (i (2)))  ifn =1,

Py (Mo (€)) =

L) 90 (2) Zcbgiilff, foreo (Moo (8), @pro (Mo (2)))  ifn < —1.

b) Forall (w,{) € D

Z @5 £ (1,0(2), Ppteo (i ()))

k=—0c0
and

Z%mf,“ Foreo (o (€), @preo (o (€)))-

Consider here the operator C, which assigns each pair (h, ¢) € ugﬁ}N to the map

Ch,9):C—X

given by

[C(h, @)] (n,w,) =

—1
5z — Y DU f (e (), e (i (€)))  ifn < —
k=n

n—1
DGE+ Y PUE o (Mo (8), Poreo (i (8))) i > 1,
k=0

13

(4.7)

and D be the operator that assigns to each pair (h, ¢) € Uy n the map D(h,¢): D — X

defined by
[D(h, 9)] (w, &) = [D°(h, )] (w, &) + [D*(h, ¢)] (w,§),
where
(D (1, 9)] k_z Doty ot (raol8), Gt (o (£))
and

[D"(, )] ): @ s (o (8), oo (Mo (€)))-
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To finalize, define U: Ly n — Up N by

U(h, ¢) =(C(h, ¢),D(h, 9)) .

The operator U is a contraction in (Y n,d). By the Banach Fixed Point Theorem, U as
a unique fixed point (4, ¢), which satisfies conditions (4.6), (4.8) and (4.9). By Lemma 4.2
the pair (h, ¢) also satisfy the conditions in (4.7). Hence, by (4.4) and (4.5), we get that
(hnw(C), Ponw (Mnw(E))) is the orbit by ¥ of the initial condition

(€ 90(8), 90(8)) € B x B, X Eg,

The graphs T’y are the required invariant manifolds of ¥. Furthermore, for all w € ), all
n € Z and all ¢, ¢’ € Ef, it follows from (2.15), (2.9) and (3.9) that

N _
& (E 90 (8)) = ¥a (&' @GN < —ag0llE =Sl

which finishes the proof of Theorem 4.1.

5 Continuous-time examples

For this section assume T = RR. Throughout this entire section we consider a constant ¢ &
10,1/6] and a random variable G: Q) — ]0, +oo[ satisfying

+o00
/ GO'w)dr <1 forallwe Q.

In all the following examples we may consider different growth rates along the central directions
E¢,, depending if we are looking to the future (t — 4-00) or to the past (t — —o0).

5.1 Tempered exponential trichotomies
Let
ASAS Q%A O — R

be f-invariant random variables, i.e. satisfying A‘(#'w) = Af(w) forall w € O, t € R and
¢ € {c,¢,s,u}. A Bochner measurable linear RDS @ exhibits an exponential trichotomy if it
exhibits a generalized trichotomy with bounds

. K(w) M@t >0,
n =

b K(w) M@t <o,
o, =K(w)e" @', t>0,
al = K(w)eM@W <0

for some random variable K : () — [1, +o0[. If the random variable K is tempered, i.e., if

Ak y,w 1= sup [e‘”'t‘ K(Gtw)} < 400 (5.1)
teT

for all ¥ > 0 and all w € ), we say that ® exhibits an tempered exponential trichotomy.
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Corollary 5.1. Let ® be a Bochner measurable linear RDS exhibiting a tempered exponential tri-
chotomy such that
A(w) > A (w) and A (w) < A" (w)

forall w € Q, and let f € 9,,53). Assume that Y is a Bochner measurable RDS such that (3.3)
has unique solution ¥ (-, w, x) for every (w,x) € Q x X. Consider a 0-invariant random variable

¥(w) > 0 satisfying
a(w) = A(w) — A (w) —y(w) >0 and b(w):=A"(w)—A(w) —5(w) >0
forall w € Q. If

a(w)  blw) }

)
Li < ——min} G(w), ’
p(fu) K(w) { () AK,’y(w),w AK,’Y("-’)/W

forall w € Q), then the same conclusions of Theorem 3.1 hold.
Proof. Since K is a tempered random variable, we have

lim a® o af,, = 11rn K( VK (0! w) M@= WDE < Jim K(w) Ak a(w)w V@t =0

t——o0 t——o0

and

Jim o, = im K(@)K(0'w) e < lim K(w)Apoo e’ =0

for all w € Q). Therefore condition (3.5) holds. Let us check (3.6). Indeed, for every t > 0 and
every w € () we have

1

w t,w

t t
[y Lip U)o dr = [ K(8'w) Lip(foe) dr
—+00
<6 / G(6"w) dr
<96

and, similarly, for every ¢t < 0 and every w € () we have

1 0 .
e /t D‘lt:fr,(?’w Llp(ferw>‘x$,w dr < 6.

u t,w

Thus, o < 6. Moreover, since K(w) < e« Ak y(w)prw for every w € QY and r € R, we have
O 0 [ s
| @ lip(ra)dr = [ K(@)K(@w) e 2@ Lip(fy,,) dr

0
< (5/ a(a))e”(“’)r dr
<4.

and

—+00 +oo = " )
/0 fr 0w Llp(f9’ ) rw dr = / )K(Qrw) e(/\ (@)=A"w)r Llp(f@’w) dr

+oo
5/ O gy

Henceforth, o +7 <356 < 1/2. O
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5.2 t-trichotomies

Consider measurable functions
5,95 9%, P R x Q —]0, +00]
such that for ¢ € {¢,c,s,u} we have
Pl (t+s,w) = 't 0°w) ' (s, w) (5.2)

forall t,s € Rand all w € Q). A ¢-trichotomy is a generalized trichotomy with bounds

w = A K@ytw), >0,
“ | K(w)ye(tw), t<0,
K0 = K@ (Lw), 20,
at, = K(w)yp"(t,w), t<0
for a random variable K: Q) — [1, +oo].
Forall ¢ € {c,c,u,s} set
g'(h,w) —1
Since 1,03(0, w) =1, from (5.2) we have
Lt (t,w) =y (0w e (t, w)
¥ (@) =y Tyt
whenever limits (5.3) exist. Moreover, in this situation we also have
d by d 1 byl '
dtqj (—t,0'w) = Gt dye (0'w)p" (—t,0'w).
From now on we also assume that for all w € () the following limit exists:
heo) —
d(w) = lim K@) = K(@) (5.4)

h—0 h
We notice that for all t € R, 4K(0'w) = dk(0'w).

Corollary 5.2. Let ® be a Bochner measurable linear RDS exhibiting a -trichotomy such that the
limits in (5.3) and (5.4) exist and satisfy

d[((w)
K(w)

d¢z(w) — dlpu (w) < < dlpg(w) — dlps (w)

forallw € Q. Let f € L%EB) be such that

) 1) . a(w) b(w)
L) < gy { S0 i (e
forall w € O, where
a(w) = if((;))) —dye(w) +dyu(w) and  b(w) = —if((;u)) + dye(w) — dys (w).
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Assume that ¥ is a Bochner measurable RDS such that (3.3) has unique solution ¥ (-, w, x) for every
w € Qand every x € X. If, forall w € ),

tEm K(0'w)p*(—t,0'w)ys(t, w) = tlirp K(0'w)yp"(—t,0'w)y(t,w) =0 (5.5)
—o0 — 400

then the same conclusions of Theorem 3.1 hold.

Proof. Conditions in (5.5) are equivalent to those in (3.5), and, as in the proof of Corollary 5.1

we have ¢ < §. Moreover, since

d [y (—t,0'w)yt(t, w) (—dw“(f)tw) +dye(tw )K(Gtw) —dg(0'w)
dt< K(0'w) > = [K(6'w) 2 P (=t 0w) p*(t, w)

_a(w) t c
= K(0w) PH(—t,0'w) ¥(t, w),

we have

+oo _ +o0 _
| o Lip (i) dr = K(w) [ K(8'w)y (=1, 0'w) Lip(forc ) (r, o) dr

—+00 97‘ _
; Ii((é)r(;)))) Y (—r,0'w) ¢ (r,w)dr

L (o, 0w0) (@)
= (5K(w)rgr+noo K(07w)

< 0K(w)

= 0.
Similarly, since

d (P (—t,000) et w)\  (—dys(0'w) +dye(t, w)) K(0'w) — dg(6'w) | P
dt( K(tw) > N : lp[K(gtw)]z - P (—t, 0 w) pe(t, w)

_ b(b'w) .
- K(Gta)) (4 (_t/ etw) Y (t,w),
we have
0 0
| Lip(fra)ifdr = K@) [ K@)y (=1,0'w) Lip(fa)¥<(r, ) dr
0 b(6"
< 0K(w) . K<<9rc:)>) P (—r,0"w) Y(r,w) dr
_ (= 0 w)yE(r, w)
= okt tm P
=90.
Thus o+ 7 <36 < 1/2. O

In the following we provide a particular example of a i-trichotomy in IR*.

Example 5.3. Let ¢, ¢, ¢, 9" : R x () —]0, +00[ be measurable functions satisfying (5.2) and
let K: Q — [1,+oo[ be a random variable. In X = R*, equipped with the maximum norm,
consider the projections

P (x1,x2,x3,x1) = (0,0, x3 + (K(w) — 1)x4,0)
(1 = K(w))x2,x2,0,0)

(x1 + (K(w) —1)x2,0,0,0)
(0,0

, (1= K(w))xs, x4)

S
P (x1,x2,x3, %4
Pu

w

(

P (x1, X2, X3, X4
(
(

~— ~— ~— —

X1,X2,X3, X4
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For all w’,w € Q,
< P! = (0,0, (K(w') — K(w))x4,0),
wPo = (K(w') = K(w))x2,0,0,0)
and for all the remaining 7,j € {c,¢,s,u}, with i # j,
i Pl = 0.
Notice that for all w, w’ € Q

PP, =P, P.YP.L=P:, P,P,=P, and P P;=P:.

w'’

Moreover,
I1PGN = 1175 || = K(w)
and

IPSI] = [[P4]) = max {K(w) — 1,1} < K(w).

We define ®: R x Q) x R* — R* by

C C K c s s K u u
CDZ} =¢°(t,w) P, + K(éctuag) Pe(t, w) Py, t¥ (t,w)Ps + K(E;Z) P (t, w) Py,

Let P° = P¢ + P¢ and P = (P¢, P5, P*). We have that @ is a measurable linear RDS over X that
admits a measurable P-invariant splitting, and

¢ c 1 c c c
|5 = max{t/f(t,wﬂlP;II,thc(t,w)HPMH} < K(w) max {y(t, @), g (t, )},

191 = ¢*(t, w)IIPS || = K(w)y* (£, w),

M) () 1P | < K(@)p (1,0).

q)u,t —

Hence the linear RDS ® exhibits a generalized trichotomy with bounds

o, = K(w) max {¢°(t,w), p*(t,w) },
a; ., = K(w)y’(t, w),
ay, = K(w)y'(t, w).

If we assume ¥°(t,w) > ¢°(t,w) for all t > 0 then

and ® exhibits a y-trichotomy.

Next, based on the previous example, we provide an example of a y-trichotomy on an
infinite dimensional Banach space.
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Example 5.4. Let K;,: Q) — [1, +c0] be a sequence of random variables such that

K(w) := sup Ky (w) < +oo for all w € Q.
neN

In /e, the space of bounded sequences equipped with the supremum norm, consider, for all
n € IN and for all w € (), the projections

c  pC  ps u o
Py or Pricor P or Prot foo — Lo

defined by

Pg,w(xllle X3,X4,X5,. . ) - (0; .. 101 0/ 0/ Xan—1 + Lﬂ(w)x4n/ OI 0/ 01 .. ~)/
4n—4 zeros
P}%,a)(xllXZI X3,X4,X5, .. ) = (O/ e 101 _Ln(w>x4n72/ X4n—2, 01 O/ 0/ .. -)1
——
4n—4 zeros
Prsl,w(xll-XZ/ X3,X4,X5, .. ) = (O‘/ .. /0/x4n—3 + Li’l <w)x4n—2; O/ O/ 0/ .. -)/
4n—4 zeros
Prl:,w(xll-XZ/ X3, X4, X5, .. ) = (& .. /0/0/ 0/ _Ll’l (w)x4nl x471101 O/ 0/ .. -)/

4n—4 zeros

where L, (w) = K,(w) — 1. It follows that for all ’,w € O, for all i,j € {¢,¢,s,u} and for all
n,m € N, we have

P Pl =0 with n #m,

P Phio =0 with i # j, (i,f) #(Cu) and (i,]) #(s,¢),

P P, =1(0,...,0,0,0,(Ky(w) — Ky(w))xs,0,0,0,...),
, 4ZZ,ze_r;s

P o Piw = ( 0_,.#9, (Ky(w") — Ky (w))x40-2,0,0,0,...).

4n—4 zeros

Moreover, for all w,w’ € Q) and for all n € N,

P, Pi, =P, and P

n,w’

P,];,w = P,];/w, withi € {¢,s} andj € {c u}.

Let ¢S, 5, 5, ¥ R x Q) — |0, +o00[ be sequences of measurable functions satisfying (5.2)
and such that

1[Ji(t,w) = sup lp;(t,a)) < 400
nelN

forallw € O, forall t € Rand foralli € {¢,¢,s,u}. If &: R x Q) X oy = Lo is given by

R - Ky (w Ky(w
@, = 3 V(1) P e 0,@) Pl + Y3000 P+ 0t (10) Pl

n=1

then @ is a measurable linear RDS over X that admits a measurable (P¢, P°, P") -invariant
splitting, where, for all w € (),

. +tx> . —
P,=YP ., ief{cesu}l, and P, =P, +P.
n=1
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Moreover, since
1250l = (1P|l = Kn(w)

and
[Phwll = 1Pyl = max {Ky(w) — 1,1},

it follows that
1P| = sup ||} || = sup Ku(w) = K(w)
nelN nelN

and
|1P5] = ||Prol = sgﬂ;\)l(max {Ky(w) —1,1}) = max {K(w) — 1,1} < K(w).

Hence

it = sup [max {51, 0) 1P| i ¥t ) P}

nelN

< sup [Ky (w) max {y5,(t, w), Pu(t,w)}]

neN
< K(w) max {¢°(t, w), p(t, w) },

12 || = sup [, () [P ll] = sup [ (, w)K(w)] < K(w)y*(t, w),

2] = sup |2t pitr ) Bl | < K100

nelN

This implies that the linear RDS ® admits a generalized trichotomy with bounds

K(w) max {¢°(t, w), p(t,w)},
K(w)y*(t, w),
K(w)y"(t, w).

If, in addition, ¥°, <, ¥°, " satisfy (5.2) and ¢°(t,w) > P<(t,w), forall t > 0 and for all w € (),
then

lxtw
(xtw

and ® exhibits a y-trichotomy.

In the next sections we consider particular i-trichotomies.

5.2.1 Integral exponential trichotomy

Let
ASAS A5 A O — R

be random variables such that for all w € Q) and ¢ € {¢,¢,s,u}, the map r — A (0w) is
integrable in every interval [0, t] An integral exponential trichotomy is a -trichotomy with

Pt w) = oo M (67w)dr
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forall ¢ € {c,c,s,u}, ie., is a generalized trichotomy with bounds

. K(w) efot AE(G’w)dr/ >
14 =
b K(w) eloAs@@)dr <

wi, = K(w) elo A >,
at, = K(w) ejt)‘u(gr“’)dr, £<0
Notice that if -
lim - A A(Ow) dr = A (w) (5.6)

then dy((w) = A(w) for all £ € {c,c,s,u}. From Corollary 5.2 we get the following.

Corollary 5.5. Let ® be a Bochner measurable linear RDS exhibiting an integral exponential tri-
chotomy such that (5.6) holds and the limit (5.4) exists and satisfyies

A(w) — A (w) < < AYw) — A (w)

forallw € Q). Let f € ffiB) be such that

. 1) . a(w) b(w)
tpl1e) < gy o {9 Koy 7o)
forall w € Q), where
a(w) = if((:j)) —A(w) + A (w) and  b(w) = —if((:;)) + A w) — A% (w).

Assume that ¥ is a Bochner measurable RDS such that (3.3) has a unique solution ¥ (-, w, x) for every
w € Qand every x € X. If forall w € Q),

lim K(Gtw) efof A (0" w)—=A" (0" w) dr _ lim K(Gtw) ef(; A0 w) =N (0"w) dr _
t—4-00 t——o0 '

then the same conclusions of Theorem 3.1 hold.

5.2.2 Non exponential trichotomies

We provide now a particular type of ip-trichotomies that can be easily handled to construct
trichotomies beyhond the exponential bounds. Let

AS,AS A5 A% O — R
be random variables such that for all £ € {c,¢,s, u} the following limit exists for all w:

M(0"w) — A (w)

d)\f (CU) = hrn

Consider a y-trichotomy with
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forall ¢ € {c,c,s,u}, ie., is a generalized trichotomy with bounds

A (w)

. K(CU)W, t 2 O,
Xt =

/ AS

: A (w) . |
at,w ( )AS(Otw)’

Notice that
(@)

for all ¢ € {c,c,s,u}. From Corollary 5.2 we get the following.

Corollary 5.6. Let ® be a Bochner measurable linear RDS exhibiting an a-trichotomy, with
bounds (5.8) and such that (5.7) and (5.4) exist and satisfy

dw(w)  dye(w) - dg(w) - dys(w)  dye(w)
AMw)  A(w) = Kw) = Mw) Aw)’

Let f € 33058) be such that for all w € ) we have

i Lmin w a(w) M
(o) < gy {660 Ky e

=

where

d/\f(a]) d/\u(CU)

B Cdk(w)  dae(w) | das(w)
A(w) A*(w)

K@)  Aw) T A(@)

and b(w) =

Assume that ¥ is a Bochner measurable RDS such that (3.3) has a unique solution ¥ (-, w, x) for every
w € Qand every x € X. If forall w € (),

then the same conclusions of Theorem 3.1 hold.

Example 5.7 (Non exponential trichotomy). Consider for the driving system the horizon-
tal flow in R? given by 6'(x,y) = (x + t,y), which preserves the Lebesgue measure. Let
C, &%, ¢, 5, " and & be some real constants with C > 1 and ¢ > 0, and set:

Aé(x,y) =(1 +x2)_(1+y2)’§€, e {cs,ul,
K(x,y) = C(1 + x2) 1+,
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In this case we obtain a polynomial type trichotomy. Let us assume Az > A.. Thus we have a
trichotomy with

2\ (1+y%)¢°
¢ (W) (1 + x2)(1+y2)6, t > 0/

2\ (1+y2)E
C (W) (1 + xz)(lerZ)E/ t < 0/
s a1 (xt)?
1+ x2

2\ xu
o1
1+ x2

(14+y2)e 2
) (1+x2) e >0,

{iey) = (142, ¢ <o,

Notice that d )/ (x,y) = ZA(x,y).

6 Discrete-time examples

In this section we assume T = Z and provide some corollaries to Theorem 4.1. Let X be a Ba-
nach space and let £ = (Q), F,P,0) be a measure-preserving dynamical system. Throughout
this subsection we consider a real number ¢ € ]0,1/6[ and a random variable G: ) — |0, 00|
such that for all w € () we have

—+00
Y G(ffw) < 1.

k=—o00

6.1 Tempered exponential trichotomies
Consider f-invariant random variables
AS,AS A5 A% O — R.

We say that a measurable linear RDS ® on X over X exhibits an exponential trichotomy if it
admits a generalized trichotomy with bounds

. K(w)eM@n 5 >0,
14 =

e K(w)eM@n, 5 <o,
s, = K(w)eX @, >0,
ay , = K(w) MW <0

for some random variable K : ) — [1,+oo[. If the random variable K is tempered we say
that @ exhibits an tempered exponential trichotomy. Notice that in the discrete-time case the
condition (5.1) is equivalent to

lim 1 log K(0"w) =0 forall w € Q.
n—rtco |1’l|

Corollary 6.1. Let ® be a measurable linear RDS exhibiting a tempered exponential trichotomy such
that, for all w € Q), satisfies

AM(w) > A (w) and A (w) < A" (w)
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and let f € .Z. Consider a 6-invariant random variable y(w) > 0 satisfying for all w € Q

a(w) == A(w) — A (w) —y(w) >0 and blw) = A (w)—A(w) —v(w) > 0.
If
5 3 c c u
- < — 2 mi min{A(w) A% (w) } Mlw) =~ 72
Lip(fu) < <) min {e G(w),e e
for all w € Q) then the same conclusions of Theorem 3.1 hold.

6.2 -trichotomies

Consider measurable functions

Y959, 9" Z X Q =0, 40|
such that for ¢ € {¢,c,s,u} we have

it +s,0) = 9 (L w)P' (s, w)

forallt,s € Z and all w € Q). A -trichotomy is a generalized trichotomy with bounds

v = VK@t w), t>0,
e K(w)ypc(n,w), t<0,

;. = K(w)y’(n,w), t=0,

‘Xtuw = K(w)tp“(n,w), t<0

where K: Q) — [1, 4+o0[ is a random variable. We notice that, as in the continuous-time case,
we may consider different growth rates along the central directions E{,, depending if we are
looking to the future (n — 4-o0) or to the past (n — —oo).

Corollary 6.2. Let ® be a measurable linear RDS exhibiting a -trichotomy such that

$(Lw)  Kbw) (1)
prlw) ~ K@) " ylae)

(6.1)
Let f € .F be such that

Lip(f.) < K(;fw)min{1/f<1,w>c<w>,wcu,w)G(w),a(w),b(w)},

where

If
lim K(0"w)yp*(—n,0"w)pc(n,w) = lim K(0"w)yp"(—n,0"w)y"(n,w) =0

n— —oo n—-4o0

forall w € Q), then the same conclusion of Theorem 4.1 holds.
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Proof. We will check that we are in conditions to apply Theorem 4.1. Notice that from (6.1) we
conclude a(w), b(w) > 0. We have

—1
o = sup oy L KO )y (o — k= 1,60) Lip(fpr 97 (k)

~+oc0
<o Y G(fw) <4,

k=—00

and, similarly, o, < 6. Thus ¢ < 6. Moreover,

Ty = 5 K6 w)p"(—k — 1,6 w) Lip(fygr) K(w) 9 (k, w)
k=0
O [Pk O 0yt (kw)) (= (k+1),6 w)pt(k +1,w))
<K@ 1 [ K% ) - KO w)
1 . (=K, 0Fw)ypC(k,w))
<5K“”<K@@"JEL K(0w) >
=0.
Similarly we get 7, < 6. Therefore o+ 7 <30 < 1/2. ]

In the following we consider particular ¢-trichotomies.

6.2.1 Summable exponential trichotomies

We start by considering the integral (or summable) exponential trichotomies, which are a
generalization of the exponential trichotomies and can be seen as the discrete counterpart of
those in Section 5.2.1. Let

ASAS A5 O - R

be random variables and set For all ¢ € {¢,¢,s, u} we set

AM(w) + -+ A0 Tw), n=l,
S‘(n,w) =0, n=0,
—A(O"w) — - = A (07 w), n< 1.

A summable exponential trichotomy is a p-trichotomy with
P (hw) = e )

forall ¢ € {c,c,s,u}, ie., is a generalized trichotomy with bounds

c K(w)e5 ), >0,
14 =

e K(w)eSmw), 1 <0,
;= K(w) S >0,
ay , = K(w) eS"(nw) <0

for some tempered random variable K : QO — [1, +o0].
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Corollary 6.3. Let ® be a measurable linear RDS exhibiting a summable exponential trichotomy such
that

Let f € F be such that
. 1) . AT c
< 9 (w) AL(w)
Lip(fw) < K(6w) min {e G(w),e G(w),a(w),b(w)} ,

where At (w) A (w) A(w)
¢ and b(w) = ©

e A (w)

K(w) K(6w)

e

aw) = K(6w)  K(w)

If

lim K(an) eSS(—n,G"w)—&-SE(n,w) — lim K(an) eS”(—n,@”w)—&-SE(n,w) -0
n——o0 n—+oo

for all w € Q), then the same conclusion of Theorem 4.1 holds.

6.2.2 Non exponential trichotomies

We provide a particular type of ¢-trichotomies that can be easily handled to construct tri-
chotomies beyhond the exponential bounds in the discrete-time scenario. Consider a -tri-
chotomy with

A (w)
¢ _
V@) = S
forall ¢ € {c,c,s,u}, ie., is a generalized trichotomy with bounds
Af(w)
— >
- (w)/\c(enw)’ "=
nw — c
K(w)/\/}(é:;))), n<o0,
ASE ) (6.2)
s w
(Xn,w - (w) As(enw)l 0/
v _ A(w)
Wy = K<w)Au(9nw)’ 0.
For future use let us define
u c c s
) - @) M@)o e - @) ¥ (w)

" M (0w)K(w) AT (8w)K(0w) " A(0w)K(0w) A3 (8w)K(w)’

Corollary 6.4. Let ® be a measurable linear RDS exhibiting an «-trichotomy with bounds (6.2) and
such that B
A (w)A (bw)  K(Bw)  AS(w)A*(Bw)
— < .
AC(Bw)A(w) — K(w) — A(0w)As(w)

Let f € .F be such that

Lip(a) < oy min | e Gle0), 24 G, (e, bie) |
I
/ lim KE@A(0"0) . K(0"0)A(0"w) _
HHHFOO )\Q(an) o nﬁlToo )LE(QHCU) N

forall w € Q), then the same conclusion of Theorem 4.1 holds.
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We may consider Example 5.7 with T = Z to get an apllication of this result in a non
exponential trichotomy situation.
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