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Abstract. In this paper, we study the multiplicity of solutions to a class of Kirchhoff-
type equation with critical growth

— (a + b/]R3 |Vu]2dx> Au+V(x)u = Ah(x)f(u) +g(x)u’ in RS,

where a, b > 0, A is a positive parameter and f is a continuous nonlinearity with
subcritical growth. Under suitable conditions on the potentials V(x), h(x) and g(x),
we prove the multiplicity results and investigate the relation between the number of
solutions with the topology of the set where g attains its maximum value for small
values of the parameter A. The proofs are based on Nehari manifold and Lusternik-
Schnirelmann theory.
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1 Introduction

Consider the following Kirchhoff-type problem
— <u + b/a !Vu\zdx> Au+V(x)u = Ah(x)f(u) +g(x)u® inR3, (1.1)
R

where a, b > 0 are constants and A > 0 is a parameter. The Kirchhoff-type problem is
primarily introduced in [10] to generalize the classical D’Alembert wave equation for free
vibrations of elastic strings. More precisely, the original equation is
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fort > 0and 0 < x < L, where u = u(t, x) is the lateral displacement at the time ¢ and at the
space coordinate x, L the length of the string, /i the cross-section area, E the Young modulus
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of the material, p the mass density, Py the initial axial tension, J the resistance modulus and f
the external force. When § = f = 0, equation (1.2) is introduced by Kirchhoff [10]. For more
physical and mathematical background on Kirchhoff-type problems, we refer the readers to
[2,7] and the references therein.
If we set V = 0 and replace R3 by a smooth bounded domain () C RN (N > 3), then
problem (1.1) becomes a special case of the following Kirchhoff Dirichlet problem
—(a+b [ |Vu|?dx) Au = f(x,u) inQ, 13)
u=20 on d(). .

Problem (1.3) is often referred to be nonlocal because of the presence of the term
(Jo |Vul?dx) Au which implies that (1.3) is no longer a pointwise identity. This phenomenon
causes some mathematical difficulties, which make the study of problem (1.3) particularly
interesting. After Lions [12] proposed an abstract functional analysis framework, problem
(1.3) had attracted much attention, see, for example, [6,17-19] and the references therein. In
[19], Qin et al. considered (1.3) in the case where f(x,u) := Q(x)u® 4+ Alu|P~'u (3 < p < 5),
and proved the existence of one ground state solution by using variational methods that
are constrained to the Nehari manifold. The relation between the number of maxima of
Q and the number of positive solutions for the problem was also investigated. In [17],
Naimen generalized the result of Brézis and Nirenberg ([5]) to problem (1.3) for the case
when f(x,u) := Af(x,u) 4+ |u|* 2u, a, b > 0 and a+b > 0. Some existence results as
well as nonexistence results were obtained. In [18], the authors further studied the high di-
mensional case (N > 5), and proved the multiplicity of positive solutions of problem (1.3)
when f(x,u) := AuP +u* 1 with g € [1,2* — 1). By combining the variational method and
Lusternik-Schnirelmann theory, Cai et al. [6] discussed problem (1.3), where N = 3 and
f(x,u) := |u[**u — Au with ¢ € (0,2) and A > 0, and obtained the existence of multiple
positive solutions.

Recently, many researchers focused on the existence, multiplicity and asymptotic behavior
of solutions of the following problem
— (a+Db [gs |Vu?dx) Au+ V(x)u = f(x,u) inTR® (1.4)
u € H'(R%), '

where V : R®> — R is a potential function and f € C(R3 x R,R), see [8,11,23-27] and the
references therein. In [25], Zhang studied problem (1.4) in the case where V =1 and f (x,u) =
a(x)|u|P~2u + Ab(x)|u|72u + u® with p, g € (4,6). Besides some other conditions, he assumed
that a, b € C(IR%, R), limy|_,o a(X) = deo, limy_,oo b(x) = 0 and a(x) > 4 — Ce~%*l for some
ap > 0 and x € R3, and proved the existence of one ground state solution for each A > 0. It
was also proven the existence of two nontrivial solutions for A > 0 small. Fan [8] discussed
problem (1.4) when V = 1 and f(x,u) = Af(x)uP~2 + g(x)u® with (4 < p < 6). With the help
of Nehari manifold and Lusternik-Schnirelmann theory, he obtained a relationship between
the number of positive solutions and the topology of the global maximum set of g. Later,
by using a technique introduced by Adachi and Tanaka [1], Zhang et al. [27] obtained the
existence of two nontrivial solutions for problem (1.4) when f(x,u) := Af(u) + g(x)u® with f
belongs to C! (R,R), V has a positive lower bound and satisfies the condition

Jr > 0 such that lim meas {x e R®: [x —y| <7, V(x) <M} =0, VM >0.

y|—o0
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Following [27], Zhang et al. [28] studied the multiplicity of solutions for the ciritical fractional
Schrodinger equation with a small superlinear term of the form (—A)*u+ V(x)u = Af(x,u) +
g(x)[u|>2u in RN, where N > 3, s € (0,1) and 27 = 2 is the critical exponent. Li et al.
[11] studied the existence and concentration of positive solutions for the following nonlinear

Kirchhoff-type problem

— <£2a +eb /]R3 ]Vu\%lx) Au+V(x)u = P(x)f(u) +Q(x)u° inTR?

where a, b > 0, € > 0 is a parameter and f is a continuous subcritical nonlinearity. As ¢ — 0,
they explored the asymptotic behavior of the semiclassical solutions. See also [26,30] for
related results.

Motivated by the works mentioned above, in this paper, we consider the multiplicity of so-
lutions for the critical Kirchhoff-type problem (1.1) under more general conditions. Precisely,
we make the following hypotheses:

(V) V € C(R*R), inf,cgs V(x) := Vo > 0 and limy,|_,, V(x) = Ve > 0.
(h) h € C(IR® R), infyegs h(x) := hp > 0 and limy|_e 1(x) = oo > 0.

S

(f1) f€C(RR) and limso L& =limy ., £ = 0.
») L&) is positive for s # 0, nonincreasing on (—oo,0) and nondecreasing on (0, +c0).
B p g g
(f3) limss4eo F|S(TS4) = +o00, where F(s) = fosf(t)dt.

(g1) § € C(R%R), go := infepag(x) > 0, gu = sup,gs&(x¥) < +oo and g =
liminf|x|%oog(x) < &M-

(g2) There exists pg > 0 such that g(x) = gm for pg < |x| < 2p0. Moreover, ¢(0) < gum.

For dealing with the multiplicity of solutions to problem (1.1), we recall the Lusternik—
Schnirelmann category theory. Suppose that Y is a closed subset of a topological space X, we
denoted by catx(Y) the Lusternik-Schnirelmann category of Y in X, that is the least number
of closed and contractible sets in X which cover Y; see [4] for more details. Denote

A={yeR:g(y)=gm} and A;:={xeR:dist(x,A) <d} ford>0.
We assume that

(¢3) The set A is nonempty and bounded, there exists p > 1 such that g(x) — g(y) =
O(]x —y|f) as x — y uniformly for y € A.

The main results of this paper are the following.

Theorem 1.1. Assume that (V), (h), (f1)—(f3) and (g1)—(g2) are satisfied. Then there exists Ay > 0
such that problem (1.1) has at least two nontrivial solutions for A € (0, Ap).

Theorem 1.2. Assume that (V), (h), (f1)-(f3), (¢1) and (g3) are satisfied. Then for any d > 0, there
exists Ay > 0 such that, for any A € (0,A,), problem (1.1) has at least cat,(A) nontrivial solutions.
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Remark 1.3. By assumption (g3), there exist C, r > 0 such that for any y € A,

8(x) —gW)l = Clx—yl",  Vx & B(y),
where B, (y) denotes the ball in R® with radius r and center y.

Remark 1.4. We point out that, in some special cases, Theorem 1.2 permits to find an ar-
bitrarily large number of solutions of problem (1.1). For example, suppose that (V), (h),
(f1)-(f3) hold, ¢ € C(R3, (0, +0)) satisfying 0 < gp < g < gMm, and there exist k points
x1,X2, ..., % in R? such that ¢(x;) are strict local maxima satisfying ¢(x;) = gm =max,cgs g(x),
and

8(x) — g(x)| = O(lx — x]") as x — x;

foreachi =1,2,...,k and some p > 1. Then it is easy to check that there exists d = d(k) > 0
such that catp,(A) > k. By Theorem 1.2, problem (1.1) has at least k solutions for any A €
(0/ /\d) *

The proofs of Theorem 1.1 and Theorem 1.2 are based on variational methods. Since f
is only continuous, we can not use the Nehari manifold arguments developed in [9, 14, 16]
in which the condition f € C! is required and to overcome this difficulty, we apply some
variants of critical point theorems due to Szulkin and Weth [20]. Moreover, there are two
main difficulties to prove our result. First, the lack of compactness which caused by the
unbounded domain and the critical growth terms makes the bounded (PS) sequences could
not converge. Second, the appearance of the nonlocal term, it would be natural to consider
how the interaction between the nonlocal term and the critical nonlinear term will effect the
existence and multiplicity of solutions of problem (1.1). To overcome these difficulties, we
adapt a technique introduced by Benci and Cerami [4] and use the Lusternik-Schnirelmann
category.

The paper is organized as follows. In Section 2, we present some technique lemmas and
make the estimations for the functionals associated to problem (1.1). In Sections 3 and 4, we
show the multiplicity results and complete the proofs of Theorems 1.1 and 1.2, respectively.

Throughout the paper, we make use of the following notations. H!(IR%) is the Hilbert
space endowed with the norm [ul]> = [p:(|Vu[* +u?)dx. L5(R?), 1 < s < oo, denotes
the usual Lebesgue space with the norm | - [|s. D¥?(R®) is the completion of C(RR®) with
respect to the norm |[[u||%,, := [gs|Vul[?dx. S denotes the best Sobolev constant S :=
inf, cpr2(r3)\ {0} |2, \ lul|z. Finally, C,Cy,Cy, ... denote different positive constants whose
exact value is inessential.

2 Preliminaries

Let E = H'(IR?) and [Ju|| = ([gs(a|Vul? + V(x)uz)dx)l/z. Then, by (V), || - || is an equivalent
norm on E. We defined the functional on E by

_ 12, b 2.\ 1 6
() =yl ([ 1Vulax) = [ (AP + gelul ) ds.
It follows from (f1) that for any ¢ > 0, p € (2,6), there exists C, > 0 such that

max {|F(u)]|, |[f(u)u]} < elu|*> + Ce|ul®, Vu € R, (2.1)
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max {|F(u)|, |f(wul} < e(jul® +[ul®) + Celul’,  VueR. (22)
By (f2), we derive that
%f(u)u >Fu)>0, VueR 23)
and
1 f(t)t — F(t) is nondecreasing in t > 0 and nonincreasing in f < 0. (24)

Indeed, for 0 < s < t, we have
(f( )t —f(s)s) — (F(t) — F(s))

f) g /f Pt — /f
:0<ft(3 fs> vdt +/<t3 —1_3>T3dr

Arguing similarly for the case t <s < 0.

<if(t)t—F(t)> - le(S)S—F( )>

I
o\ H;“_‘
ﬂ

In order to find the critical points of I, we consider the Nehari manifold
M}\—{MGE\{O} (I} —0}

Obviously, M contains all nontrivial critical points of I,. Since it is not assumed that f is
differentiable, M, may not be a Cl-manifold. To overcome the non-differentiability of M,
we adapt a technique developed in Szulkin and Weth [20].

Lemma 2.1. Under conditions (V), (h), (f1)—(f2) and (g1), for A € (0,1), we have

(i) for each u € E\ {0}, there exists a unique t,, > 0 such that t,u € M. Moreover, the point t,
is a maximum for t — I, (tu);

(ii) the set M, is bounded away from 0;

(iii) let Sy = {u € E : ||u|| = 1}, then there exists & > 0 such that t, > « for each u € Sy and, for
each compact subset K C Sy, there exists a constant Cx > 0 such that t, < Ck forall u € K;

(iv) the mapping my is a homeomorphism between Sy and M, and for every u € My, m,* (u) =
= € 5.
[l

Proof. (i) For each u € E\ {0} and t > 0, set g(¢t) = I,(tu). It is easy to see that ¢(0) = 0,
g(t) > 0 for t > 0 small and g(f) < 0 for t > 0 large. Thus g has a positive maximum at
t =t, > 0 such that ¢/(t,) = 0 and t,u € M. Noticing

J(t) =t [||u||2—|—t2 </]R |Vu|2dx>2] _P {/\/Rsh(x)ftff)?u‘*dx%—tz /ng(x)|u|6dx],

we have that t, is unique. Indeed, suppose t;, > t, > 0 such that t,u, t,u € M,. Then we
deduce

HuH +bHV ||4 )\/ (t u)u4dx+tf,/3g(x)\u|6dX,
R

t2 uu)3
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tu
B oot =2 [ wo Kttt [ gofulian,

GRD)

and hence,

(- ) WP = [ o) (Foey = P e (2 = ) [ sl

which is impossible in view of (f;) and ¢, > t, > 0.
(ii) By using (2.1), (h) and (g1), we deduce that for any u € M,,

ul2 < [ (AB(x)f )+ g(x)]ul) dx

< Cs/ lu|?dx + (C1Cg+gM)/ |u|dx
R3 R3

Ce ClC +gM 6
< = |lu||*> +
< Gl + S

which implies that ||u||?> > C, for some C; > 0.
(iii) For each u € Sy, there exists t, > 0 such that t,u € M. By (ii), we have

ty = || tuu|| > a.

Now we prove that t, < Ck for all u € K C §;. Arguing indirectly, assume that there
exists {u,} C K C S; such that t,, — oo. Since K is compact, we have u, — u € K and
Jgs [n|%dx = [gs [u]®dx > 0. Then,

t%ly, 2 bt%ln 2 2 tgn 6
(b ttr) < 22 |2+ = /1[{3|wn| dx) =t [ golufPx — —oo

as n — oo, which leads to a contradiction because (2.3) implies that, for all u € M,,

L) = I <u>—§<a< ) ),

L2 6
HuH +/\/ < )dx—i— 12/ x)|u|®dx

(iv) Let us define the maps 1) : E\ {0} — M and m, : S| — M, by setting

ip(u) =tyu and my =1y |s,. (2.5)

By virtue of (i)—(iii) and [20, Proposition 3.1], we deduce that m, is a homemorphism between
S1 and M, and the inverse of m, is given by m; ' (u) = g O

Now we define the functionals f, : E\ {0} -+ Rand J, : S — R, as

Ja(u) = I(ia(u)) and  Ja(u) = fals,,
where 1) (1) = t,u is given in (2.5). As in [20], we have the following conclusion.

Lemma 2.2. Under the conditions of Lemma 2.1, for A € (0,1), we have
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(i) J) € CY(S1,R) and for each v € T,(S1) := {v € E: (u,v) =0},
(Ja(u),0) = |lmr(u)|[{Iy (mx (u)), 0);

(ii) {u,} is a Palais—Smale sequence for ], if and only if {m, (u,)} is a Palais—Smale sequence for I.
If {ux} C M, is a bounded Palais-Smale sequence for I, then {m; ' (u,)} is a Palais-Smale
sequence for Jy;

(ifi) u € Sy is a critical point of Jy if and only if my(u) is a nontrivial critical point of I). Moreover,
the corresponding values coincide and infg, [y = infaq, I,.

Taking

L a (b5 4 JOP)E ¥4\ b [bSP 4+ /(BSF) + 4aSgn )
C = < + —
3 ZgM 12 ZgM

and mf := infye pme I (1), where

. 1 b 2 1
IP(u) = §||u||%/w + 1 </]R3 |Vu]2dx) — /]R3 (/\hooF(u) + 6goo|u|6> dx

M = {ue E\{0}: (I (u),u) =0} and |Jully, = ([gs(@Vu - V0 + Veouv)dx)
the following local compactness result for I,.

NI—

. We have

Lemma 2.3. Assume that conditions (V), (h), (f1)-(f2) and (g1) are satisfied. Let A > 0 and
{un} C E be a sequence such that I)(u,) — ¢y € (—oo,min {c*, mY}) and I} (1,) — 0as n — co.
Then (u,) has a strongly convergent subsequence.

Proof. By (V) and (2.3), we have

cx+o(1) +o(M)funll = In(un) - iﬂﬁ(un),ur& > *llunllz

which implies that {u,},en C E is bounded. Going if necessary to a subsequence, we may
assume that there is u € E such that for each bounded domain Q C R?,

Uy — U in E, up(x) — u(x) ae x € R3,
Uy — U inL*(Q) (2<s<6), (2.6)
lun(x)| < w(x) for some w € L¥(Q)).

Take A = lim;, 00 fIR3 |Vuy,|*dx. We define the functionals G, H, ®, ¥ on E by
G(u) = f|| 12 + —/ |Vul?dx — /]R3 (Ah(x)l—"(u) + ég(x)u6> dx,

H(u) = *H”H%/m + —/ |Vu|*dx — /IR (Ah F(u) + ég(x)u6>
@) =l + 7 [ Vs = [ (WG + golont)

)

W) = gl + o5 [ IValax— [ (WPl + oo ) .
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We claim that G'(u) = 0, i.e., (G'(u), ¢) = 0 for any ¢ € C°(R?). Assume that1 < p,q,7,s <
+00, ) is a bounded domain and i € C(Q x R) satisfying |h(x,u)| < C(|u|P/" + |u]7/?), then,
according to [22, Theorem A.4], the operator

A:LP(Q)(LY(Q) — L'(Q) + L°(Q) : u — h(x,u)
is continuous, where L7 (Q)) N L7(Q)) is the space endowed with the norm |u[yrg = ||| 1r(q) +
[ul[Ls(q) and L7 (Q) + L*(Q2) endowed with the norm
s = inf { [0l () + 0]y 4 = 0+ w,0 € L'(Q), w € L(Q) }.

Now set p =r=2,q € (56),s = g/5and h(x,u) = Ah(x)f(u)u + g(x)u’. By (h), (g) and
(f1), we have
h(x,u)| < C(lul? + [ul?),  V(xu) € R®xR.

Since ¢ € C3(R®) has a compact support o, u, — u in E implies that u, — u in
L%(Q0) N L(Q)- So, by virtue of [22, Theorem A.4],

h(x,u,) — h(x,u) in L?(Q) + L5(Qp).
Hence

(h(x,un)—h(xru))fpldx:/ | (h(x, un) = h(x, u))@ldx

R3 | O

< |h(x, un) — h(x, u)|2vs|@|ons 50,

where 1/5+1/s" = 1. Combining this and (2.6), we get that o(1) = (I} (u,), @) = (G'(u), ) +
0(1) for any ¢ € CP(R3). Thus G'(u) = 0.
Let v, := u, — u. It follows from the Brézis-Lieb lemma, [31, Lemma 2.2] and ( f;) that

H”n”z - HUHHZ — HuHZ =o0(1),
/]RS g(x) (18 — u® — v8)dx = o(1), 27
/R3 h(x) (F(tn) — F(u) — F(0n)) dx = o(1).

Noting u is a critical point of G, arguing as in [29, Lemma 2.3], we can conclude that u is
locally bounded. Hence, for each ¢ € E, by [22, Lemma 8.9], we get

5 5 .5
|, 80) w5 = o))z

= o(D)[I¢]l, (2.8)

and, similar to [22, Lemma 8.1],

[ ) = Flw) = f(oa)ed| = o(1)¢]. 29)
Since v, — 0in E, by (V), (h) and (2.2), we deduce that
/ (V(x) = Vio)o2dx — 0, / (h(x) — heo) F(v5)dx — 0, 2.10)
RR3 R3

and

/ (V(x) ~ Vo )ouidx = 0, / (h(x) ~ he)f(va)2dx,  VEEE 2.11)
R R



Multiplicity of Kirchhoff-type equation with critical growth 9

as n — oo. Hence we have

cx+o(1) = I (un)
(lull® + [loa]1?) / (IVul* + Vo, [*)dx

—/]R3/\h(x)(1-"(u)+F(vn))dx—/38g( x) (u® + 08)dx + o(1)
bA
4

/W/\(h(x)l-“(u)—i—hooP(vn))dx—/]RS <800 (1 + 08)dx +0(1)
(u) +¥(v,) +0(1),

by (2.10) and (2.7). Moreover, noting G’ (1) = 0, by (h), (g1) and (2.3) we have

I\J\'—‘

1 2 \V4 2 \V4
A n n
2(””” HU HV ) R3 (| “‘ | v | )

=&

() = B(u) — (G (u), 1)

= gl [ wne) (Grm— P ) + psoue | as
0

>0,
and hence
er+o(1) > ¥(vy). (2.12)
Combining (2.8), (2.9) and (2.11), we obtain that

0o(1) = (I} (un), &) — (G'(u),{)
= (v, &) +bA /]R Vo, VEdx - /R (AB(0) f(00)G + g (x)03)dx + o(1)

_ /RB@anvg - Vio0n&)dx + bA /W Vo, Vdx — /Rs(/\hoof(vn)(j +g(x)038)dx + 0(1)
= (H'(vn),&) +0(1),  VEEE,
which implies that
H'(v,) = o(1). (2.13)

Next we prove that v, — 0 in E. According to [31, Lemma 2.1], for some subsequence
of {v,}, either “vanishing” or “nonvanishing” holds. If “nonvanishing” occurs, we can find
(ys) C R® with y, = oo such that, for w,(x) := v, (x + y,), there is w € E \ {0} satisfying

W, W in E,
Wy — W inL{ (R% (2<s<6), (2.14)
wy(x) = w(x) ae x € R
We claim that
L'(w) =0, (2.15)

where

L) = iR + 55 [, 9= [ (WheF(u) + o)
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Indeed, for every ¢ € E, set {,(x) = &(x — yn). We have ||&,||gn = ||€]| i, and hence, by (2.13)
and (2.14),

[(H'(vn), En)]
= /]R (a0 Vi + Vastn + DAV, - Vi — Mreof (00)Gn — g(x)0580) dx

- /W (AVWy - VE + Veoltnl + DAVW, - VE — Ao f (100)E — g(x + 1) W3E) dix

+o0(1)

- / (aVw - VE + Vool + bAVw - VE) dx — / (Moo f (W)€ + goow™E) dix
R3 suppé
= [(L'(w),&)| +0(1),
and

[(H' (o), )| < IH (@) [ 12ull < CIH' (@) |1Zull i < CIH (@a) 12 — 0.

So (2.15) holds. From (2.15), we see that
|2, +bA /w Vow|?dx = /RS(/\hoof(w)w + goolw|%)dx. (2.16)

Since w # 0, there exists a unique f > 0 such that tw € MY, ie.,

2
2wl + bt (/}R3 ]Vw]de> = /Rg)(/\hoof(tw)tw + 1990 |w|®)dxx. (2.17)

We claim that t < 1. For otherwise t > 1, then it follows from (2.17), (2.16), (f2) and the fact

A > [gs [Vw|?dx that
2 2
2w, + bt (/ |Vw|2dx> <t |wl? +b</ |Vw|2dx>]

<t (Jal +0a [ 1v0lar)

e /]RS(/\hoof(w)ergoo|w|6)dx

[ A0 + g ool

/}Ra (/\hooj;g;;]g) trwt + t6goo|w|6> dx
= [ (o f(tw)tw + gl )

2
S ea— </ yvm%) )

a contradiction. Thus ¢+ < 1. Combining this with (2.4), (2.12), (2.13) and Fatou’s lemma, we
deduce that

IN

A

er +o(1) > ¥ (oy) — }L<H'(vn),vn>
1 1 _ 1 6
= ;i3 +/]Rs Mico <4f(vn)vn F(vn)> dx+ 35 | 8(x)[oal"dx
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gl + [ e (3 Gondeon = Fwn) )+ 35 [ oo+ o
dliolf [ Ao (o= P ) dx-t g [ gelwlbd +o(1)
—||tw||V +/ Moo (f(tw)tw F(tw)) dx+l [ galtwl'dx +o(1)

= IY(tw) — Zl<1§°’(tw),m> +0(1)
= I(tw) + o(1)
> my +o(1),

which contradicts ¢y < mf.
Thus, “nonvanishing” cannot occur, and then we have only the “vanishing” case. In this
case, v, — 01in L¥(R%) (2 < s < 6), and hence, by (2.2), we see that

/1R3 h(x)F(v,)dx — 0 and /]R3 h(x)f(vn)vedx — 0

as n — oo. Combining this and (2.12)—(2.13), we obtain
ey +0(1) > ¥ (o) = ||vn||v + 7/ (o Pdx — = / (x) [om[6dx + 0(1), (2.18)
0(1) = (H'(v4), o) = |[oa]l3, + bA /}RB Vo, 2dx — /ng(x)|vn\6dx +o(1). 2.19)

Set I = limy 00 ( fRs g(x)\vnlédx)%. If I > 0, then using (2.19) and the fact g(x) < gm, we have

2
/g(x)]vn|6dx2/ a|an\2dx—|—b</ |an\2dx> +o(1)
R R? R?

% . ;
> aS </ |vn|6dx> + bS? </ |vn|6dx) +o0(1)
RR3 RR3
as 3 bS? 3
6 6
> T </}ng(x)]vn| dx> + : (/R3g(x)|vn\ dx) +o(1),

8Mm SMm

which implies that [ > by bsz f-H4aSgu . Combining this and (2.18), (2.19), we deduce that
281\/1

ca-+o(1) > ¥(on) = ¢ (H'(00), )

2
a 2 b / 2
> R
3/3WU”‘ dx+12 < |V, dx)

1
aS 3 bS? 3
> 5 (fslonttar )+ L ([ o)
R 12813\/1 R

©3gy
2
3 3)2 3 3 3)2 3
.4 bS® + /(bS3)2 + 4aS3g +£ bS® + /(bS3)2 + 4aS3g o)
=c"+o0(1),

which is a contradiction. Thus I = 0, which, together with (2.19), yields that v, — 0 in E.
Therefore u, — u in E and the proof is complete. O
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Lemma 2.4. Under the conditions of Lemma 2.3, then there exists Ay > 0 such that ¢* < m% for
AE (0, )\1)

Proof. Suppose by contradiction that there is A, — 0 such that m§ < c¢* for all n. In view of
[13], m%’ is attained by a positive solution u, € MY such that I/‘{‘;(un) = mf . We claim that
there exist C3, C4 > 0 (independent of A) such that C3 < |[uy||v, < C4 for all n. Indeed, by
(2.3), we have

¢ 2 = I (0a) = (O ) ) = 5 e,

for all n, that is, ||u, H%,oo < 4c* for all n. On the other hand, since u, € M3’ , by condition (1)
and (2.1), we obtain for ¢ € (0, 2‘2‘” ),

a3, < Anhoos/ma 1 A% + (AnliooCe + goo) /IRs 1|
and then,
SenlB, < (heoCe+ ge0) (@)
for large n, which implies that
(a5)?
2(heoCe + goo)

for n large. Then, noting A, — 0, we deduce that A, [psh(x)F(u,)dx = o(1) and
A Jgs h(x) f(un)undx = o(1). Hence

lual5, > (2.20)

1 b 21
= gl + 5 ([ IVifax) = ¢ [ selunlfdx +o),
n 2 o 4 R3 6 R3
2.21)

2
0 = [Jun|l2. +b </ ]Vun\zdx) —/ ool it | + 0(1).
R3 R?
Set limy,eo [gs |Vitn|?*dx = D.  One has D > 0. Indeed, if D = 0, then [p |u,|®dx — 0 as
n — oo, and thus, by (2.21), |[u, |3, — 0. This gives a contradiction to (2.20). It follows from

3 \/7
(2.21) and the definition of S that D > bs bf;m2+4a53gw Hence

= I3 ) — (I (), )

2
> / |Vun\2dx+</ \Vun|2dx> +0(1)
3 R3

2
3 32 40530 3 32 + 405%¢
S8 bS® + /(bS?)2 + 4aS3g +£ bS® + /(bS?)2 + 4aS3g Lo(1),
3 29 12 29
a contradiction with m?\"n <c*and g < gM- OJ

Corollary 2.5. Under the conditions of Lemma 2.3, for each A € (0,A1), we have ], satisfies the
Palais—Smale condition for c, < c*.

Proof. Let {u,} C S; be a Palais-Smale sequence for J,. By Lemma 2.2, {m,(u,)} C M, isa
Palais—Smale sequence for I, and then using Lemma 2.3, we deduce that w,, := m (u,) — w
in E after passing to a subsequence. Since the mapping m, is a homeomorphism between S;
and M, we see that m, ! is continuous. Hence u, = m; ' (w,) — m;'(w) in E. The proof is
complete. O
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Fore >0and y € A, let
Pp(x)es

where 1 € C5°(Bay,(v)) such that ¢(x) =1 for |[x —y| <1y, 0 < ¢(x) <1and |Vy| < 2. Itis

well known that S is attained by the function ﬁ For e > 0 small, we have (see [22]):

Jeo | Vitey Pdx = Ky +0(e2),  [s |uey|®dx = Ko + O(e3) (2.22)

and

Ing|), s=3, (2.23)

where K, K are positive constants and S = K;/ Ké/ 3,

Lemma 2.6. Assume that conditions (V), (h), (f1), (f3) and (g3) are satisfied. Then there exist Cy,
€0 > 0 independent of y € A such that for e € (0,¢9), sup;~q Ir (futey) < ¢* — Coe?.

Proof. For y € A, we get
[, 8@ neylox = [ (g(x) = g(u))lueyldx + [ guluey[*dx. 2.24)

By (g3), there exist r; € (0,2r9) and C > 0 such that |g(x) — g(y)| < C|x —y|° for [x —y| <n
and for y € A. Then we have

1860 =Wl fdx = [ 13(x) = g(u)l ey '
|[x—y|<2rg

N

€
g/ Clr—ylP— 5 ax
eyten T T R

ZgMEZ
N e N
rﬁhy%%(&Hx—WQ

1 gzr 2ro gzr
<c/ c/
=C ( dr + ; —|—r2
2+p 2'0 72
4 \/ r
2/ 1+ d—I—C/ 71+72) dr
< Gshle), (2.25)
where
sg, 1<p<3,
h(e) = { e2|lne|, p=3,
3
€z, p > 3.

From (2.24) and (2.25), we obtain that

/R g(0) iy [fdx = g /IR [uey|*dx +O((e)). (2.26)
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It follows from (2.22) and (2.23) that there exists €1 > 0 (independent of y € A) such that for
e € (0,e1),
3Ky

3aK K
2 2 1 6 802
Jo Ve P < 8, gy P2, [ gl o > ST,

Then, using (2.3),

IN

t2 » , bt 2, \o 9 6
In(tuey) EHug,yH +T </}RS |V, dx> - g/lésg<x)‘ug,y’ dx

t6
- 4 16 12 7

which implies that there are t; > 0 small and ¢, > 0 large (independent of ¢) such that

sup  Li(tigy) < - (2.27)
t€[0,t1]U[ta,+00) 2
Set B, = —Jw Vil g (5 96) and (2.22), we have
(flR3 g(x)|”s,y|6dx)
1
K 1
Bo= S S0, 2.9)

(gmKa+O(h(e)))* ~ g3,

Take k(t) = 22(|Vitey |3 + 24| Vitey |3 — £ [1es §(x)|ttey|%dx. Then

K (6) =t (4l Ty B+ 02 Vit 1§ = 1 [ (sl ),

and k attains its maximum at

B bHv“&yH% + \/szVue,yHg + 4“HV“€,yH% f1R3 8<x>‘“&y’6dx

2
to = .
0 ( 2 fIR3 g(x)|uey|0dx )

A direct calculation shows that

maxk(t) = k(to)

t>0

[ Vitey |3 (B Vuey I3+ /02 Vitey 1§ + 40 Vitey 13 fs g(6) ey )
6 [rs &(x)|utey|Odx
4 4 8 2 2
bHvus,yHZ <bHV”£,sz + \/bZHWs,sz + 4aHv“8,yH2 f]RS g(x) ’“&y’édx>
12 (2 fgs g(x)|u€,y|6dx)2
2
a <ng+ szg+4aBg> b <ng+ bZB§’+4aB§>

2 12 2

W

12

2
<b53 +/(05%)?2 +4‘18M53) b <b53 +/(05°)? +4”ng3) + Cet
ZgM
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by (2.28). Hence, there exist Cop > 0 and &, € (0,¢;) (independent of y € A) such that for
e € (0,¢),

sup Iy(tuey) < supk(t) Y / X)|ttgy[?dx — inf A 3h(x)F(tug,y)dx
SGE £>0 teltit]  JR
<"+ Coe? — inf A | hoF(tuey)dx. (2.29)

te(ty,ta) RR3

From (f3), for any L > 0, there is R > 0 such that F(u) > L|u|* for all u > R;. Now choosing

g0 € (0, min {ey, 73, (\/gRL)LL}), we have for ¢ € (0, &),
el 1
u , (x) - Z 7 v X — S \/gl
WO et T
and then,
inf F(tue,)dx > inf l F(tue,)dx
te(ty,t] JR3 (Fitey) telty b J)x—y|<ve (Fitey)

Lt4
> / dx
e Jie-y<ve

which, together with (2.29), shows that

Ahg
sup Iy (tuey) < c*+ Co g1 — —Lt4 /|<1dx.
x|<

te(ty,b)

Choosing L > 0 large enough, we derive that there exists ¢g € (0,&2) uniformly in y such
that for ¢ € (0,¢), SUPyet, ] I\(tuey) < c* — Coe?. Combining this and (2.27), we get the
conclusion. n

3 Proof of Theorem 1.1

In this section, we suppose all the conditions of Theorem 1.1 are satisfied. Define

) = S+ 2 ([ 1vupax) =1 [ g
2 4_ R3 6 R3
for u € E. The following lemma plays a key role in proving Theorem 1.1.

Lemma 3.1. There exists Ag € (0, A1) such that if A € (0, Ag), then [, ﬁwédx #0forallu e S
with Jy(u) < c*.

Proof. We adapt an argument in [27]. Assume by contradiction that there exist A, | 0 and
{u,} C Sy such that J, (u,) < ¢* and f1R3 ﬁ\un\ﬁdx = 0. By Lemma 2.1, there exists t, > 0
such that v, := t,u, € M, . Then one has I, (v,) = J, (4,) < c* and f]R3 ﬁ\vnﬁdx = 0.
Since {v, } C M,, it follows from Lemma 2.1 (ii) that {v,} is bounded, and then, by A, — 0,

A/ dx=o0(1) and /\/ f(vy)vudx = 0(1).
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Therefore,
¢* > I(v,) +0(1) and (I'(vy),v,) = 0(1). (3.1)

1
Take I = lim;—e0 (fIR3 g(x) oy ]6dx) 3. By the proof of (ii) of Lemma 2.1, one infers that ||v,||¢ >
C for each n € N and some constant C > 0. Therefore, I > 0, which, jointly with (3.1) and the

2
fact g(x) < gum for all x € R?, we deduce that | > (bS? + /(bS?)? +4aSgwm) /2¢3,, and hence

¢ +o(1) > H(vn) — é(f/(vn) o)

a 1 b 2
— g/]R3 |an|2dx+§/ V(x)|on*dx + — P (/ ]an|2dx)

2
aS 6 bS? 64.\°
3(/1Ra|vn\ dx) +12</RS\UH| dx

W=

>
a$ 3 ps? 3
> 25 (fas@londtax) 20 ([ golon )
3gy K 12g3, VK
2
> 05 bsg 12 +0(1)
38M 123
>c*+0(1),
which implies that [ V(x) [0n|?dx = 0, [gs |Vou|?dx — b7t b§;;+4a53gM
3 2
lim </ g(X)‘Un’6dX> — lim (/ gM‘vn’6> bS- + \/ E +4ﬂSgM (32)
n—oo RS n—oo 2g]§\/1

Set wy = vy/|vple. Then [ps |[Vwy|?dx — S and [ps |wy|®dx = 1. From [22, Theorem 1.41],

1
there exist w € E, {z,} C R® and i, € (0, 400) such that || p2wy (pnx +z4) — w||p12 — 0 up to
a subsequence, i.e.,

— 0. (3.3)

D12

Hence [; |Vw|?dx = S and [, |w|®dx =1, 1i.e., S is achieved by w. From [21], the minimizers

of S are of the form ——%— where ¢y # 0, hgp > 0 and xg € R3. Thus
(l-‘rl’lo(}(—)(o)z)z

1
CoMrn

1
(HZ 4+ H3| - —2z — xopn|?)?

wy, — 0. (3.4)

DLZ
Observing g(0) < gum, we see that there is § > 0 such that g(x) < M for |x| < 4. We
distinguish two cases.

Case 1. py — po € (0,400] as n — oo.
Since [z V(x)|vq[*dx — 0 and V(x) > Vy(> 0), one has [is |vn(x)[?dx — 0, and hence
Jgs [wn(x)[?dx — 0 (1 — o0). Setting x = puy + z, it follows that

1
Hy /Rs | i wn (puy + zu) [Pdy — 0.
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This, together with the fact y1, — po € (0,400] and (3.3), gives [ps |w|*dx = 0, which is a
contradiction.

Case 2. u, — 0 as n — co. We will further consider two cases.

(i) |zn| < 6 for large n.

Letting z, — zo (n — c0), then |zo| < d and g(zp) < g(())#. It follows from (3.2) and (3.3)
that

o(1) = [ (g3 — g(x))lwnl*ax

o (52
i Hn

(88 — &(pnx +2n)) [w|°dx + 0(1).

6
dx +o(1)

(gm —g(x))

_IRs

Using the Lebesgue dominated convergence theorem, we have

- 6 gm —8(0) 6. gm—g(0)
O_/]RS(gM_g(ZO))’w| def/]Ramﬂ dX—f>0,

a contradiction.

(ii) There is a subsequence {z, } C {z,} such that |z, | > J for all k. Without loss of
generality, we assume that |z,| > ¢ for all n. Since [p, ﬁ |0 |%dx = 0, one has [ ﬁ|wn 0dx =
0. Hence, by (3.4),

6,3
o(1) = /3 x : CoMn dx
R® x| (1% + h3|x — 2y — xopnl?)
_ (X B Zy + XoUn > CS:”Z dx
RO |20+ Xopal ) (42 4 12]x — 2 — x0pa]?)’
Zn + XoMn cot dx. (3.5)

|20+ Xopnl JR® (12 + B2|x — 2, — x0pn|2)°

Since p, — 0 and |z,| > ¢ for all n, we have

0
|zn 4+ Xopn| > |zn| — pin|x0| > 5

for large n. Combining this and the fact

X z|_ (= ls) +lrl(r—2)| _ 2lx—=
x|zl |x[|z| I
for all x, z € R®*\ {0}, we deduce that
/ X Zp+ Xopn oy "
= (zatsomn)|<pen | 1% |20+ Xobal | (12 + 13|x — 2, — xoptal?)’
2|x — (zn + Xopn)| cotn

<

dx

/Ix—(zn+xoun)<un |20 4 Xoptl (M2 + hlx — z, — xOP‘ﬂ|2)3

6
24%1/ % 5dx
o Jee (1 e

S C6]/ln (36)
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and
/ X Zy+ Xopa coun dx
[x—(zn+xopn)|Zpin |X| |Z” + JCQ‘Mn| (‘u% + h%‘x — 2y — X()“I/ln|2)3
2 copn|x = (zn + Xopn)|

S ’Zn + XO,urz’ |x—(zn+X0pn) |>n (V% + h(z)‘x —z, — xOVn|2)3

4ﬂn/ cglx|
T8 = (1413« )’
< C7,”n~ (3.7)

Hence we obtain, by (3.5)—(3.7),

| zat+ xous cSud
O—nh_r>ro1° |20 + Xotn| JRE (42 4 12 23dx
n 7t Xopn| JR (2 + h|x — zy — Xopn|?)
6
= —Osdx >0,
R (1+ hglx[?)
which is a contradiction. O

To prove Theorem 1.1, we recall a multiplicity result for critical points involving Ljusternik—
Schnirelman category, which has been widely used in dealing with semilinear elliptic equa-
tions.

Lemma 3.2 (see Proposition 2.4 in [1]). Let M be a Hilbert manifold and I € C*(M, R). If there exist
co €R and k€N such that 1(u) satisfies the (PS) condition for ¢ <co and cat({u € M : I(u) <co}) >
k, then I(u) admits at least k critical points in {u € M : I(u) < ¢o}.

Lemma 3.3 (see Theorem 2.5 in [1]). Let X be a topological space. Assume that there exist two
continuous mappings

F:P={yeR:|y=1} X, G:X—%

such that G o F is homotopic to identity, that is, there is a continuous mapping ¢ : [0,1] x $> — S?
such that £(0,x) = (G o F)(x) for x € S?> and {(1,x) = x for x € S%. Then cat(X) > 2.

Proof of Theorem 1.1. Let A € (0,A9) with Ag given in Lemma 3.1. Take y = 3poz, where
po is the constant given in (g») and z € S%. Let r; < 1po. By (g2), one has g(x) = gum for
|x — 3poz| < 2r1. Noting
1
x)es
oy(r) = — S
(e + |x = 3002[%)2

where ¢ € CF(Ba, (3p0z)) such that ¢(x) = 1 for [x — 3ppz| < r; and 0 < ¢(x) < 1, we
deduce that

/]R3 g(x) ’u&y‘6dx N Ax—3POZ’<2r1 g(X) ’”s,y’6dx
2

6
= Uey | dx
M /|x§poz’<2r1 | g’y’

— 6
_gM/li{3‘u€’y| d.x
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Arguing as in the proof of Lemma 2.6, we still conclude that sup,. Ix(fuey) < ¢* — Coe?.

Set h(t) = IA(%), where t > 0 and ¢ € (0,¢p) with ¢ given in Lemma 2.6. It follows from
&y

Lemma 2.1 that h(t) attains its maximum at a unique point t, and t,u,, € M. By Lemma 2.6,

1
M <H H) Iy (tyuey) = sup Iy (tuey) < c* — Coe2 < c*.
oy >0

Define F : $> — S; by F(z) = . Then

B H“&y“

F:S$* = {ueS:Jy(u)<c}.

ENMLY]
Let G : {u€Sy:/a(u) <c*} — S by G(u) = M. Then G is well defined and
R3 Tx]
continuous by virtue of Lemma 3.1. Define {(6,z) : [0,1] x $*> — S? such that {(6,z) =

(H 2 :”H) for § € [0,1) and {(1,z) = z. It follows from (2.22) that
)ey
615{17 R3 ’ |‘” 179)sy‘ dx
x 300z 500z
= lim / _— = g |1/l 1— QSy‘ dx—|— lim 2 ‘ (179)gy’6dx
o—1-Jr3 \ x| [3poz] 6-1" |3p0z| JR? ,
3
. X 5002
= 11m/ — 2 U bdx + Kyz. 3.8
ot Jro (‘X’ ’§P02|>| (1 9)£,y| 2 (3.8)
3
. 6 ((1-9)e)2 500z 2[x=3poz|
Since fi-0esl” = o) fam gy 2 N[BT | S g - e deduce that
3
x 5002 6
— =\ |uq_ dx
/|x§pozg (-6 [1x]  [3p0z] 0-03s]
2
</ 4|x — 5poz| 1 Jx
o |x—3poz|<+/(1-0)e 3100 3 x—2poz 2\°
_ 2 3
(1-0)e)2 |1+ G

4¢1_9/

——ax
st (14 |x|2>

< Cgy/(1—0)e (3.9)
and
X 2POZ
_ dx
/}@mpvﬁ4m\xl 13002 -0yl
< 4/ ‘x—fpoz| 3dx
300 Jix—2ppz[>+/(1—0)e s 2oz 2

. 5 X—5p0%

(1—0)e)2 {1+ =T

4\/1——/

x[>1 (1 _|_ ‘XP)
< Coy/(1—0)e. (3.10)



20 Y. Yeand S. Liu

Combining (3.8)—(3.10), we have

: X
1'/47 o [Bdx = K
il R® | x| [141-)ey "X 2%

which, together with the continuous of G, gives that { € C([0,1] x S$2,5?). Noting {(0,z) =
G(r:) = GoF(z) and {(1,z) = z for z € % one has GoF : § — 82,z — GoF(z) is

[

homotopic to the identity. Thus, by Lemma 3.3,

cat{u €S1: a(u) <c*— Coe%} > 2.

Therefore, using Corollary 2.5 and Lemma 3.2, we deduce that ], has at least two nontrivial
critical points, and thus I, has at least two nontrivial critical points. This completes the
proof. O

4 Proof of Theorem 1.2

In this section, we suppose that all the conditions of Theorem 1.2 are satisfied. By (g1), there
is Ro > 0 such that g(x) < 3(gm + gw) for all |x| > Ro. For any d > 0, let p = p(d) > Ry be
such that Ay C B,(0). Define x : R®* — R® as x(x) = x for [x| < p and x(x) = px/|x] for
|x| > p. We consider the barycenter map B : E \ {0} — R? given by

S x () |u(x) [Cdx
B(u) = RfR3]u(x)\6dx :

Since Ay C B,(0), by the definition of x and Lebesgue’s theorem, we have the following
conclusion.

Lemma 4.1. For any d > 0, there exists Ay > 0 such that, if A € (0,Ay) and u € Sy with J)(u) < c*,
then B(u) € Ay.

Proof. Arguing indirectly, we assume that there exist dg > 0, A, | 0 and (u,) C S; with
Ja, (uy) < c*, but B(u,) ¢ A4. From Lemma 2.1, there exists a unique f, > 0 such that
taity € M, . Take v, = t,u, and w, = v,/|v,|6. Following the steps contained in the proof of
Lemma 3.1, we deduce

/11.23 |Vw,|[*dx — S, /]123 |w,|%dx =1 and /]R3g(x)\wn|6dx — QM- 4.1)

So, there exist {z,} C R3, u, € (0, +o) and w € D?(IR?®) such that

1 <x—zn>
Wy — —w
pro N M

Thus [p, |[Vw|?dx = S and [; |w|°dx = 1. Arguing as in Lemma 3.1 (Case 1), if p, — jo €
(0, +00] (1 — o0), one obtains a contradiction. Hence y, — 0 as n — oo, and we distinguish
into two cases.

=0  (n— o). (4.2)

Dl,z

Case 1. y, — 0as n — oo and |z,| < Ry for large n. Suppose that z, — zg as n — co. Then
|zo] < Rp and x(z0) = zo. Applying (4.1), (4.2) and the Lebesgue dominated convergence
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theorem, we obtain

6
dx

gm = lim g(x)

n—oo JIR3

1 (x—zn)
—w
" P

= lim [ g(pnx +z,)|w|dx

n—oo JIR3

= s(a0) [ lwl'dx
= 8(20),

which implies that zg € A. Moreover, by (4.2) and using the fact x(zo) = zo, we conclude that

Bwn) = [ x(x)lwi[ax

1 (x—zn)
7]7/()
Hi Hon

= [ x4z l°dx + (1)

= zo/ |w|®dx +0(1)
R3
=2zy+ 0(1),

6

dx+o(1)

= [, x(x)
R

which, together with zy € A, yields that f(w;,) € Ay, for large n. This contradicts the assump-
tion that B(w,) = B(u,) & A4, for all n.

Case 2. pu, — 0 as n — oo and there exits a subsequence of {z,} (still denoted by {z,}) such
that |z,| > Ry for all n. Applying (4.1) and (4.2), we deduce that

o(1) = [ (gm—(x))lwnl*ax

1 (x—zn)
—w
ui o N B

(g — §(nx + zn))|w|°dx + 0(1).

6

(gm — g(x)) dx +o(1)

_]R3

_]R3

Recall that g(x) < 1(ge + gm) for |x| > Ry. It follows from the Lebesgue dominated conver-
gence theorem that

. 1 1
0= lim IRS(gM — &(pnx +20)) [w|°dx > E(gM ey ./IR3 [w|®dx = E(gM — 900) >0,
which is a contradiction. O

Now we are in a position to show that problem (1.1) admits at least cata ,(A) solutions. For
this aim, we compare the topology of A and the topology of a suitable energy sublevel, and
use the maps [, and B as they are introduced before. Moreover, we shall utilize a multiplicity
result for critical points involving Lusternik—Schnirelmann category, e.g. see [15].
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Lemma 4.2 (see [15]). Let M be a C'' complete Riemannian manifold (modelled on a Hilbert space)
and assume that ® € C'(M,R) bounded from below and satisfies —c0 < infy® < a < b < +o0.
Suppose that ® satisfies the Palais—Smale condition on the sublevel {u € M : ®(u) < b} and that
a is not a critical level for ®. Then ® has at least catep.(P*) critical points in D°, where &7 :=
{ueM:®(u) <a}.

Lemma 4.3 (see [3,4]). Let A, B, M be closed sets with A C B. Let F: A — Mand G : M — B be
two continuous maps such that G o F is homotopically equivalent to the embedding | : A — B. Then
catpr(M) >catp(A).

Remark 4.4. Since M, is not a C! submanifold of E, we can not apply Lemma 4.2 directly.
Fortunately, from Lemma 2.1, we know that the mapping m, is a homeomorphism between
M, and Sy, but Sy is a C! submanifold of E. Thus we can apply Lemma 4.2 to [, (u) =
I\(ritp(u)) |s, = Ix(ma(u)), where ], is given in Lemma 2.2.

Proof of Theorem 1.2. For any d > 0, let A € (0, min {A1,A;}) with A; is given in Lemma 2.4
and Ay is given in Lemma 4.1. It is easy to see that S; is a C'! complete Riemann manifold
and ], € C!(S1,R) is bounded from below. Set I(t) = I,(tu.y), where t > 0, y € A and
e € (0,€9) with g is given in Lemma 2.6. In view of Lemma 2.1, I(¢) admits its maximum at a
unique point ¢, and t,u., € M,. Hence, by Lemma 2.6,

Ja (ugy> = I\(tyuey) = sup Iy (tuey) < c* —1p, 4.3)
[,y 1>0
where 179 > 0 is a constant independent of y € A. From Corollary 2.5, we see that |, sat-
isfies the (PS) condition on {u € Sy : J(u) < ¢*}. Therefore, by Lemma 4.2, J, has at least
catg, (,,)(51(170)) critical points, where S1(170) = {u € Sy : Ja(u) < c¢* —npo}.
Define the mappings F : A — Sy and G : S;(70) — R® by

Fly) =~ G(u) = Blu).

||”s,yH '

Then F and G are continuous. It follows from Lemma 4.1 and (4.3) that F(A) C S1(%0) and
G(S1(n0)) C Ay. Define ¢ : [0,1] x A — Ay by

HA-0)ey 0 1
5(9’ y) = ¢ (Hu(lfﬂ)c,yH ) ’ = [0/ )/
Y =1

Noting y € A C B,(0), we obtain x(y) = y and

6
lim G( U(1—6)ey ) ~ tim Jrs X() [1(1-0)e,y|°dx

0-1- \ [[Ua—p)eyll 61 [pa [Ha—g)ey®dx
X(\/(1—9)£z+y)‘lp(\/(l—e)sz—i-y)’6
o R CEaERE dz _ y
61" [o(VT—ezty)[| '
oo =R 92

Thus ¢ € C([0,1] x A,Ay). Then we see that ¢(6,y) with (6,y) € [0,1] x A is a homo-
topy between G o F and the inclusion map j : A — A;. This fact and Lemma 4.3 yield
catg, () (51(170)) >cata,(A). Hence, Jy has at least caty,(A) critical points. Then, in view of
Lemma 2.2 (iii), we conclude that I, has at least cata,(A) nontrivial critical points. Thus,
problem (1.1) has at least cat,,(A) nontrivial solutions. This completes the proof. O
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