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Abstract. We introduce new transversality conditions in terms of derivatives with re-
spect to a nondecreasing function g : R −→ R, and we use them to prove the existence
of solutions for discontinuous systems of Stieltjes differential equations, i.e. differen-
tial equations where usual derivatives are replaced with derivatives with respect to the
derivator g. The proof of our main existence result leans on some interesting new re-
sults on g-derivatives also proven in this paper.
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1 Introduction

We are concerned with initial value problems for first order systems of Stieltjes differential
equations of the form

x′g = f (t, x), t ∈ I = [t0, t0 + L), x(t0) = x0, (1.1)

where g : R −→ R is a nondecreasing function, t0, L ∈ R, L > 0, x0 ∈ Rn (n ∈ N) and
f = ( f1, f2, . . . , fn) : I × Rn −→ Rn need not be continuous.

As usual, x′g stands for the derivative with respect to g which, roughly speaking, means

x′g(t) = lim
s→t

x(s)− x(t)
g(s)− g(t)

,

and it allows us to study difference and differential equations, with or without impulses,
under the unified formulation of (1.1).

Existence of Carathéodory type solutions for (1.1) has recently been well studied for the
case when f (t, x) is continuous with respect to the x variable. See [5, 6, 11–14]. In this paper,
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we intend to improve on the previous references by allowing the nonlinear part f (t, x) to
present many discontinuities. To do so, we show that discontinuities do not matter as long as
they can be covered by some subsets of I ×Rn satisfying a novel transversality condition with
respect to the g-differential equation in (1.1).

Our new transversality condition, inspired by an idea by Bressan and Shen [2], later gener-
alized in [10], leans on some new results on g-differentiation which are interesting in its own
right. We manage to translate the ideas the authors brought in [10] from usual differential
equations to Stieltjes differental equations, generalising their results even further. We achieve
this by introducing some new interesting properties on the g-derivatives.

This paper is organized as follows. In Section 2 we include the basic preliminaries on
g-differential equations so that this paper be self-contained; in Section 3 we prove some new
results on g-differentiation, specially, on a chain rule for functions of several variables which
is essential for our definition of local transversality conditions; in Section 4 we prove our main
existence result for (1.1).

2 Preliminaries on Stieltjes derivatives and differential equations

In what follows, g : R −→ R is monotone, nondecreasing and continuous from the left
everywhere. Let us consider the set of points around which g is constant, namely

Cg = {t ∈ R : g is constant on (t − ε, t + ε) for some ε > 0}, (2.1)

and the set of discontinuity points of g, which is at most countable and shall be denoted by

Dg = {t ∈ R : g(t+)− g(t) > 0}, (2.2)

where, as usual, g(t+) = lims→t+ g(s) ∈ R.
Following [11], we define the derivative with respect to g (or g-derivative) of a real-valued real

function f at a point t0 ∈ R \ Cg as follows, provided that the corresponding limit exists:

f ′g(t0) = lim
t→t0

f (t)− f (t0)

g(t)− g(t0)
if t0 ̸∈ Dg, or (2.3)

f ′g(t0) = lim
t→t+0

f (t)− f (t0)

g(t)− g(t0)
if t0 ∈ Dg, (2.4)

where Cg and Dg are defined in (2.1) and (2.2) respectively. Notice that the g-derivative at a
point t0 ∈ Dg exists if, and only if, f (t+0 ) exists and (2.4) can be rewritten as

f ′g(t0) =
f (t+0 )− f (t0)

g(t+0 )− g(t0)
. (2.5)

We say that f is g-differentiable at t0 if f ′g(t0) exists, and we say that f is g-differentiable in a
set A ⊂ R when f is g-differentiable at every t0 ∈ A \ Cg. There will be no need to define g-
derivatives for the points in Cg because, according to [10, Proposition 2.5], we have µg(Cg) = 0,
where µg stands for the Lebesgue–Stieltjes measure induced by g. However, it is possible to
give a reasonable definition of a g-derivative everywhere, see [13], but we shall not need it in
this paper.

Roughly speaking, g-differentiable functions can be recovered by integrating their
g-derivatives in the Stieltjes sense with respect to g. More precisely, we have the following
Fundamental Theorem of Calculus for the Lebesgue–Stieltjes integral [10, Theorem 5.4].
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Theorem 2.1 (Fundamental Theorem of Calculus for the Lebesgue–Stieltjes integral). Let a, b ∈
R, a < b, and F : [a, b] −→ R. The following conditions are equivalent.

(1) The function F is absolutely continuous with respect to g (or g-absolutely continuous)
according to the following definition: to each ε > 0, there is some δ > 0 such that, for any family
{(an, bn)}m

n=1 of pairwise disjoint open subintervals of [a, b], the inequality

m

∑
n=1

(g(bn)− g(an)) < δ

implies
m

∑
n=1

|F(bn)− F(an)| < ε.

(2) The function F fulfills the following properties:

(a) there exists F′
g(t) for g-almost all t ∈ [a, b) (i.e., for all t except on a set of µg measure zero);

(b) F′
g ∈ L1

g([a, b)), the set of Lebesgue–Stieltjes integrable functions with respect to µg;

(c) for each t ∈ [a, b], we have

F(t) = F(a) +
∫
[a,t)

F′
g(s) dµg. (2.6)

We remark that µg({t}) = g(t+) − g(t) > 0 when t ∈ Dg (see equation (6) in [10]). In
particular, if t ∈ [a, b) ∩ Dg, then, (2.6) implies that

F(t+)− F(t) =
∫
{t}

F′
g(s) dµg = F′

g(t)(g(t+)− g(t)),

which may be nonzero. Therefore, g-absolutely continuous functions need not be continuous
at discontinuity points of g.

However, g-absolutely continuous functions have some nice properties.

Proposition 2.2 ([10, Proposition 5.3]). If F is g-absolutely continuous on [a, b], then it has bounded
variation and it is continuous from the left at every x ∈ [a, b).

Moreover, F is continuous in [a, b] \ Dg, where Dg is the set of discontinuity points of g, and if g
is constant on some (α, β) ⊂ [a, b], then F is constant on (α, β) as well.

We say that a vector-valued function F : [a, b] −→ Rn is g-absolutely continuous on [a, b]
if each of its components is g-absolutely continuous. We denote by ACg([a, b]) the set of
g-absolutely continuous functions on [a, b] with values in Rn.

Definition 2.3. A (Carathéodory) solution of (1.1) is a g-absolutely continuous function x :
[t0, t0 + L] −→ Rn such that x(t0) = x0, and

x′g(t) = f (t, x(t)) for g-almost all (g-a.a.) t ∈ [t0, t0 + L).

Next we introduce a useful splitting of g into its continuous and discrete parts. This is well
known for bounded variation functions on bounded intervals, see, for instance, [1, Theorem
2.6.1], but we have to adjust it for functions defined on the whole real line.

Denote
∆g(t) = g(t+)− g(t),
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for all t ∈ R and define the function gB : R → R as follows:

gB(t) =

{
∑s∈[0,t) ∆g(s), t > 0,

−∑s∈[t,0) ∆g(s), t ≤ 0.
(2.7)

We have that gB is nondecreasing and left-continuous. We will say that gB is the discontinuous
or jump part of g. We say g is totally discontinuous when g = gB ̸= 0. We define the continuous
part of g as follows:

gC(t) := g(t)− gB(t), ∀t ∈ R.

Thus, gC is nondecreasing and continuous (in the usual sense).
By definition we have that g = gC + gB. In particular we have, over Borel sets, that

µg = µgC + µgB . It holds that

gC(s)− gC(t) ≤ g(s)− g(t)

gB(s)− gB(t) ≤ g(s)− g(t)

for all t, s ∈ R, t < s.
Now we recall the notion of g-topology in R, introduced for the first time in [6].

Definition 2.4. Given any t ∈ R and ε > 0, we define the g-ball of center t and radius ε as the
set

Bg(t, ε) := {s ∈ R | |g(s)− g(t)| < ε}.

Define the g-topology as

τg := { U ⊂ R | ∀t ∈ U ∃ε > 0 : Bg(t, ε) ⊂ U }.

For any λ > 0 and Bg(t, ε) denote λBg(t, ε) = Bg(t, λε). Denote also Bg[t, ε] as the closed
ball

Bg[t, ε] = {s ∈ R | |g(s)− g(t)| ≤ ε},

which need not be a closed set in the usual topology (for instance, Bg(1, 1/2) = (0, ∞) if
g(t) = 0 for t ≤ 0 and g(t) = 1 for t > 0).

Finally, since Cg is open, we can express it as a countable union of disjoint open intervals

Cg =
∞⋃

n=1

(an, bn),

and we denote by Ng the set of the real endpoints of all the intervals (an, bn). The following
technical information will be used in Section 3.

Proposition 2.5. Let t ∈ R be such that t /∈ Dg ∪ Ng ∪ Cg. Then any set N is a usual neighborhood
of t iff N is a neighborhood of t in the topology τg.

Proof. First, note that R − (Cg ∪ Ng) = {t ∈ R : g(s) ̸= g(t) ∀s ∈ R, s ̸= t}. Since t /∈ Dg, g is
continuous at t. Hence,

∀ϵ > 0 ∃δ > 0 : (t − δ, t + δ) ⊂ Bg(t, ϵ).

Fix ϵ > 0 now, take δ = min{|g(t)− g(t − ϵ)|, |g(t + ϵ)− g(t)|} > 0, thus

Bg(t, δ) ⊂ (t − ϵ, t + ϵ).

Equivalently, the function Id is g-continuous at t. In fact, g-continuity at t is equivalent to
usual continuity at t. Every local basis of t (usual or on τg) is a local basis on both topologies.
The claim is then proved.



Discontinuous Stieltjes differential equations 5

Remark 2.6. Let f be a function defined on a neighborhood (t − ϵ, t + ϵ) of t /∈ Dg ∪ Ng ∪ Cg.
If f ′g(t) exists, then f is continuous at t.

To prove it, simply observe that there exists δ > 0 such that

| f (t)− f (s)| ≤ (| f ′g(t)|+ 1)|g(t)− g(s)| ∀s ∈ (t − δ, t + δ),

which implies that f is continuous at t because so g is.

3 Covering lemmas and fine results on g-derivatives

This section is devoted to proving some technical results on g-null sets and g-derivatives
which will play a fundamental role in the proof of our main existence result for (1.1).

We start with the following lemma on existence of special subcollections of arbitrary col-
lections of sets.

Lemma 3.1. Let X be a nonempty set and let B be a collection of subsets of X containing at least one
nonempty set. Then, there exists a subcollection of subsets C ⊂ B satisfying the following conditions:

(1) A ∩ B = ∅, for all A, B ∈ C, A ̸= B.

(2) For any B ∈ B, there exists some C ∈ C such that B ∩ C ̸= ∅.

Proof. Let Ω be the set of all disjoint subcollections of B equipped with the partial order ⊂.
Clearly Ω ̸= ∅ as {B} ∈ Ω for any B ∈ B. Let Λ be a nonempty chain in Ω. If it were to
happen that

D =
⋃
A∈Λ

A ∈ Ω,

then D would be an upper bound of Λ. Let us prove the above. Clearly, D ⊂ B since A ⊂ B
for all A ∈ Λ. Besides, for any A, B ∈ D, A ̸= B, there exists some A ∈ Λ such that A, B ∈ A,
therefore, A ∩ B = ∅. Hence, D ∈ Ω. By Zorn’s lemma there exists some maximal element
C ∈ Ω. C satisfies (1) and (2).

As we will prove now, we can recover the Vitali Covering Theorem using the balls defined
with the derivator. Our proof is basically identical to [4, Theorem 1.24], since the classical
proof holds for the Stieltjes case as well.

Theorem 3.2 (The Stieltjes–Vitali Covering Theorem). Let Ω be an arbitrary collection of balls such
that

R = sup{ rad(Bg) : Bg ∈ Ω } < ∞

where rad(Bg) denotes the radius of Bg. Then, there exists a countable disjoint subcollection Λ ⊂ Ω of
balls such that ⋃

Bg∈Ω

Bg ⊂
⋃

Ag∈Λ

5Ag.

Besides, each Bg ∈ Ω intersects some Ag ∈ Λ such that Bg ⊂ 5Ag.

Proof. Denote

Fj =

{
Bg ∈ Ω : rad(Bg) ∈

(
R

2j+1 ,
R
2j

]}
for j = 0, 1, 2, . . . .

We define Λn as follows:
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(1) Let Λ0 be any maximal disjoint subcollection of F0, which exists by Lemma 3.1.

(2) Suppose Λ0, . . . , Λn−1 are already defined, define Λn to be the maximal disjoint subcol-
lection of balls in {

Bg ∈ Fn : Bg ∩ Ag = ∅, ∀Ag ∈
n−1⋃
k=0

Λk

}
given by Lemma 3.1.

Define now

Λ =
∞⋃

n=0

Λn.

By construction, Λ is a disjoint subcollection of balls in Ω, and hence, countable, since τg is
second countable [3, Proposition 2.5]. Take any Bg ∈ Ω, there exist some index n ≥ 0 such
that Bg ∈ Fn. There must exist then some Ag ∈ ∪n

k=0Λk such that Bg ∩ Ag ̸= ∅. Hence,
rad(Bg) ≤ 2 rad(Ag). Let x ∈ Bg ∩ Ag and x1, x2 be the centers of Bg and Ag respectively.
Then, for every, y ∈ Bg,

dg(y, x2) ≤ dg(y, x1) + dg(x1, x) + dg(x, x2) ≤ 2 rad(Bg) + rad(Ag) ≤ 5 rad(Ag).

Thus, Bg ⊂ 5Ag.

Since g is nondecreasing, every ball Bg is connected and thus an interval on R. Fix any
t ∈ R and ε > 0 and consider the closed ball Bg[t, ε]. Assume Bg[t, ε] to be bounded, take
a = inf Bg[t, ε] and b = sup Bg[t, ε]. Hence

(a, b) ⊂ Bg[t, ε]. (3.1)

Recall that Bg must be non degenerate since g is left-continuous, so a ̸= b. We have that,

g(s) ≤ g(t) + ε

for all s < b, hence b ∈ Bg by left-continuity. Now, a may or may not be on Bg[t, ε] depending
whether ∆g(a) equals zero or not. In any case

µg(Bg[t, ε]) = µg((a, b]) = g(b+)− g(a+) = ∆g(b) + g(b)− g(a+) ≤ ∆g(b) + 2ε.

Note that, since gC is continuous, singletons have zero measure. So,

µgC(Bg[t, ε]) = µgC((a, b]) = µgC((a, b)) = gC(b)− gC(a+) ≤ g(b)− g(a+) ≤ 2ε. (3.2)

Lemma 3.3. Let Λ = { Bg(tk, εk) : k = 1, . . . , n} be a finite disjoint collection of open balls. Assume
there exists some t ∈ R and ε > 0 such that⋃

Bg∈Λ

Bg ⊂ Bg(t, ε).

Then, ε > 1
4 ∑n

k=1 εk.



Discontinuous Stieltjes differential equations 7

Proof. Let us look first at the case n = 2. Suppose then we have two balls of center t1 and t2

and radius ε1 and ε2 respectively. Since the balls are disjoint, we have that t2 /∈ Bg(t1, ε1) and
t1 /∈ Bg(t2, ε2). Hence

max{ε1, ε2} ≤ |g(t2)− g(t1)|.

Go back to the general case and assume without loss of generality that the center of the balls
t1, . . . , tn are ordered from left to right. We have that

g(tn)− g(t1) =
n−1

∑
k=1

g(tk+1)− g(tk) ≥
n−1

∑
k=1

max{εk+1, εk} ≥
n−1

∑
k=1

εk+1 + εk

2

≥
n−1

∑
k=2

εk +
1
2

ε1 +
1
2

εn ≥ 1
2

n

∑
k=1

εk.

Now t1, tn ∈ Bg(t, ε), hence
1
2

n

∑
k=1

εk ≤ g(tn)− g(t1) < 2ε.

Remark 3.4. The bounds

ε1 + ε2

2
≤ max{ε1, ε2},

1
2

n

∑
k=1

εk ≤
n−1

∑
k=2

εk +
1
2

ε1 +
1
2

εn

made on Lemma 3.3 are just arbitrary and of course suboptimal. We wish for our bounds just
to be comfortable to manage with series as this next result is the whole purpose of the above.

Corollary 3.5. Let Λ = { Bg(tk, εk) | k ∈ N} be a countable disjoint collection of open balls. If⋃
Bg∈Λ

Bg ⊂ Bg(t, ε)

for some t ∈ R and ε > 0, the series ∑∞
k=1 εk converges.

Theorem 3.6. Let X be a nonempty subset of R. Let Ω be a collection of closed balls whose union
covers X and satisfies the following property:

For all t ∈ X and δ > 0, there exists some Ag ∈ Ω such that Ag ⊂ Bg(t, δ).

Then there exists a countable disjoint subcollection Λ ⊂ Ω which covers X up to a gC-null measure
set. In other words, such that

µgC

(
X −

⋃
Bg∈Λ

Bg

)
= 0.

Proof. Without loss of generality assume all balls in Ω have radius less than 1. Denote as Λ
the countable disjoint subcollection given by Theorem 3.2. We show now that

E = X −
⋃

Bg∈Λ

Bg

has null gC-measure. Take En = E ∩ Bg(0, n) for n ∈ N, is enough to show that µgC(En) = 0
for all n ∈ N. Denote Λn = { Bk

g ≡ Bg[tk, εk] | k ∈ N} the subcollection of balls of Λ that meet
Bg(0, n). Let t ∈ En and m ∈ N, since K =

⋃m
k=0 Bk

g is closed in τg, there exists some Ag ∈ Ω
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containing t, contained in Bg(0, n) and disjoint from K. By the property of Λ, Ag intersects
some Bi

g ∈ Λn for which Ag ⊂ 5Bi
g. This means, i > m and therefore,

En ⊂
⋃

k>m

5Bk
g.

This gives the inequality

µ∗
gC(En) ≤ µgC

(⋃
k>m

5Bk
g

)
≤ ∑

k>m
µgC(5Bk

g) (3.3)

for all m ∈ N. Now, the balls Λn are all contained in Bg(0, n + 2). From Corollary 3.5,
∑∞

k=1 εk < ∞, where εk = rad(Bk
g). Hence, by equation (3.2)

∞

∑
k=1

µgC(5Bg[tk, εk]) ≤ 10
∞

∑
k=1

εk < ∞.

From (3.3), µ∗
gC(En) = 0.

Theorem 3.7. Let f : [a, b] −→ R be an arbitrary function and E the set of points of [a, b] at which
f has nonzero g-derivative (ie. the g-derivative exists and takes nonzero values). Then, for every null
Lebesgue measure set Z, the set f−1(Z) ∩ E has null gC-measure.

Proof. It suffices to prove the result for the set of points where the g-derivative is positive,
which we shall denote again by E. The result for the set of points where the g-derivative is
negative follows from the other one applied to the function − f and the null set −Z.

Moreover, since µgC(Ng ∪ Cg ∪ Dg ∪ {a, b}) = 0, we can redefine E to be

E = {t∈ (a, b) : f ′g(t) exists and is positive, g is continuous at t and g(s) ̸= g(t) ∀s∈R, s ̸= t}.

We can express

E =
∞⋃

n=1

{
t ∈ E : f ′g(t) >

1
n

}
,

so it suffices to prove that, for any δ > 0, the set

Eδ =
{

t ∈ E : f ′g(t) > δ
}

has a gC-null intersection with f−1(Z), for any Z as in the statement.
For a fixed δ > 0 and q, p ∈ Q ∩ (a, b), q < p, we define

Aq,p =

{
t ∈ E ∩ (q, p) :

f (t)− f (s)
g(t)− g(s)

> δ, ∀s ∈ (q, p), s ̸= t
}

,

and we have
Eδ ⊂

⋃
q,p∈Q∩(a,b)

q<p

Aq,p.

This reduces the proof to showing that for each fixed null Lebesgue measure set Z, for each
fixed δ > 0 and for each fixed pair q, p ∈ Q ∩ (a, b), q < p, we have µgC( f−1(Z) ∩ Aq,p) = 0.
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First, observe that for t1, t2 ∈ Aq,p, t1 < t2, we have

f (t1)− f (t2)

g(t1)− g(t2)
> δ ⇒ f (t1)− f (t2) < δ(g(t1)− g(t2)) < 0 ⇒ f (t1) < f (t2),

so f is increasing on Aq,p.
Let ϵ > 0 be fixed and let U be a usual open set of measure less than ϵ that contains Z.
The definition of Aq,p guarantees that for any t ∈ Aq,p we can use Proposition 2.5 to

ensure that the g-balls Bg[t, r], r > 0, are usual neighborhoods of t and, by Remark 2.6, that
f is continuous at t. Moreover, Bg[t, r] shrinks to {t} as r tends to zero. Therefore, for each
t ∈ f−1(Z) ∩ Aq,p there exists r(t) > 0 such that the usual closure Bg[t, r(t)] ⊂ (q, p) and
f
(

Bg[t, r(t)]
)
⊂ U.

Define Ω as the collection of all closed g-balls Bt,k = Bg[t, r(t)/k], t ∈ f−1(Z)∩ Aq,p, k ∈ N.
Plainly, f−1(Z) ∩ Aq,p ⊂ ⋃

t,k Bt,k and, moreover, for each t ∈ f−1(Z) ∩ Aq,p and each ρ > 0
there exists k ∈ N such that Bt,k ⊂ Bg(t, ρ). By Vitali’s Theorem 3.6 there exists a countable
and disjoint subfamily of Ω that covers f−1(Z)∩ Aq,p up to a null gC-measure set. Denote this
subcollection as {Bg[tn, rn] : n ∈ N} and put

[an, bn] = Bg[tn, rn], n ∈ N.

Since [an, bn] ⊂ (q, p) and tn ∈ Aq,p,

f (bn)− f (an) = ( f (bn)− f (tn)) + ( f (tn)− f (an))

> δ((g(bn)− g(tn)) + (g(tn)− g(an))) = δ(g(bn)− g(an)), (3.4)

and, moreover, [ f (an), f (bn)] ⊂ U.
Now, take m, k ∈ N such that m ̸= k. Since the intervals [tm, bm] and [tk, bk] are disjoint we

can suppose that bm < tk. Therefore,

f (tm) < f (bm) < f (tk) < f (bk)

since tm and tk belong in Aq,p. Hence, {( f (tn), f (bn)), n ∈ N} forms a disjoint family of
nondegenerate intervals such that the sum of their lengths is less than ϵ since they are all
contained in U. A similar argument proves the same for the intervals ( f (an), f (tn)), n ∈ N.
We deduce from (3.4) that

µgC

(
∞⋃

n=1

Bg[tn, rn]

)
≤

∞

∑
n=1

µgC([an, bn]) ≤
∞

∑
n=1

g(bn)− g(an)

<
1
δ

∞

∑
n=1

f (bn)− f (an) =
1
δ

∞

∑
n=1

f (bn)− f (tn) + f (tn)− f (an)

=
1
δ

∞

∑
n=1

f (bn)− f (tn) +
1
δ

∞

∑
n=1

f (tn)− f (an) ≤ 2
ϵ

δ
,

which implies that µgC
(

f−1(Z) ∩ Aa,p
)
< 2ε/δ for any ϵ > 0.

4 Chain rule

Here we shall prove a new version of the chain rule in higher dimensions which is crucial in
the transversality conditions to be introduced in our main existence result for (1.1).
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Proposition 4.1. Let t, ε ∈ R, ε > 0, be fixed. Let h : (t − ϵ, t + ϵ) −→ Rn, f : U −→ R where U
is a usual open set of Rn such that h(t − ε, t + ε) ⊂ U.

If t /∈ Dg ∪ Cg, h is g-differentiable at t and f is differentiable at h(t), then f ◦ h is g-differentiable
at t and

( f ◦ h)′g(t) = ∇ f (h(t)) · h′g(t),

where · denotes the usual inner product.

Proof. Since t /∈ Cg we have g(s) < g(t) for all s < t, or g(s) > g(t) for all s > t, or both. Since
t /∈ Dg, the existence of h′g(t) means, in any of the previous three cases, that there exists

h′g(t) = lim
s→t

g(s) ̸=g(t)

h(s)− h(t)
g(s)− g(t)

and we want to prove that

lim
s→t

g(s) ̸=g(t)

f (h(s))− f (h(t))
g(s)− g(t)

= ∇ f (h(t)) · h′g(t).

Since g is continuous at t, there exists

lim
s→t

g(s) ̸=g(t)

h(s)− h(t) = lim
s→t

g(s) ̸=g(t)

h(s)− h(t)
g(s)− g(t)

(g(s)− g(t)) = 0. (4.1)

Observe that, as long as g(s) ̸= g(t), we have∣∣∣∣ f (h(s))− f (h(t))
g(s)− g(t)

−∇ f (h(t)) · h′g(t)
∣∣∣∣ ≤ ∣∣∣∣ f (h(s))− f (h(t))−∇ f (h(t)) · (h(s)− h(t))

g(s)− g(t)

∣∣∣∣︸ ︷︷ ︸
=A(s)

+ ∥∇ f (h(t))∥
∥∥∥∥ h(s)− h(t)

g(s)− g(t)
− h′g(t)

∥∥∥∥︸ ︷︷ ︸
=B(s)

,

and B(s) → 0 as s → t (g(s) ̸= g(t)) by definition of h′g(t). On the other hand, if h(s) = h(t),
then A(s) = 0, and otherwise we have

A(s) =
| f (h(s))− f (h(t))−∇ f (h(t)) · (h(s)− h(t))|

∥h(s)− h(t)∥

∥∥∥∥ h(s)− h(t)
g(s)− g(t)

∥∥∥∥ ,

which tends to zero as s → t (g(s) ̸= g(t)) by definition of ∇ f (h(t)) and (4.1).

Corollary 4.2. Let t, ε ∈ R, ε > 0 be fixed. Let x : (t − ϵ, t + ϵ) −→ Rn, τ : (t − ϵ, t + ϵ)× U −→
R where U is a usual open set of Rn such that x(t − ε, t + ε) ⊂ U.

If t /∈ Dg ∪Cg, g′(t) > 0, x is g-differentiable at t and τ is differentiable at (t, x(t)), then τ(·, x(·))
is g-differentiable at t and

d
dg(t)

τ(t, x(t)) = ∇τ(t, x(t)) · (1/g′(t), x′g(t)).

Proof. Apply Proposition 4.1 with h(t) = (t, x(t)) and f (y) = τ(y) for y = (t, x) ∈ (t −
ε, t + ε) × Rn. The condition g′(t) > 0 implies that h is g-differentiable at t and h′g(t) =

(1/g′(t), x′g(t)).
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5 Main result

We are already in a position to prove our new existence result of Carathéodory solutions of
(1.1). Our arguments lean on the chain rule, established in Section 4, along with a transversal-
ity condition of the g-differential equation with respect to the sets where discontinuities are
allowed for f (t, x).

A Krasovskij solution of (1.1) is defined as a g-absolutely continuous function x : I −→ Rn

such that x(t0) = x0 and

x′g(t) ∈
⋂
ε>0

co f (t, Bε(x(t))) for g-a.a. t ∈ [t0, t0 + L), (5.1)

where co means closed convex hull and Bε(x) = {y ∈ Rn : ∥y − x∥ < ε}. Observe that, in the
scalar case (n = 1), we have Bε(x) = (x − ε, x + ε).

We are now in a position to prove a result on the existence of Carathéodory solutions for
(1.1).

Theorem 5.1. Assume that for all x ∈ Rn the mapping f (·, x) is g-measurable, for all t ∈ [t0, t0 +

L)∩ Dg the mapping f (t, ·) is continuous, and there exists M ∈ L1
g([t0, t0 + L)) such that for g-almost

all t ∈ [t0, t0 + L) and all x ∈ Rn we have ∥ f (t, x)∥ ≤ M(t).
Moreover, assume that there exist null Lebesgue measure sets Ak ⊂ R, k ∈ C ⊂ N, and differen-

tiable mappings τk : [ak, bk]× Rn −→ R, [ak, bk] ⊂ I, such that for g-a.a. t ∈ [t0, t0 + L) \ Dg the
following conditions hold:

(a) g′(t) > 0;

(b) There exists a set N(t) ⊂ Rn such that f (t, ·) is continuous in Rn \ N(t);

(c) For each x ∈ N(t) there exists k ∈ C such that t ∈ [ak, bk], τk(t, x) ∈ Ak, and

∇τk(t, x) · (1/g′(t), z) ̸= 0 for all z ∈
⋂
ε>0

co f (t, Bε(x)) . (5.2)

Then, problem (1.1) has at least one Carathéodory solution.

Proof. The assumptions imply that the multivalued mapping

(t, x) 7−→ F (t, x) =
⋂
ε>0

co f (t, Bε(x))

is compact and convex-valued, and it is upper semicontinuous. Hence, Theorem 3.9 in [8]
ensures that problem (1.1) has at least one Krasovskij solution x : I −→ Rn. Let us prove that
x is a Carathéodory solution of (1.1).

Let E ⊂ I be a g-null measure set such that, first, conditions (a), (b) and (c) hold for all
t ∈ I \ E, and, second,

x′g(t) ∈ F (t, x(t)) for all t ∈ I \ E.

Observe that for each t ∈ I \ E such that t ∈ Dg or x(t) ̸∈ N(t) the assumptions ensure
that f (t, ·) is continuous at x(t), and therefore

x′g(t) ∈ F (t, x(t)) = { f (t, x(t))}.

Hence, it suffices to prove that the set J = {t ∈ I \ E, t ̸∈ Dg : x(t) ∈ N(t)} is g-null.
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We deduce from condition (c) that

J ⊂
⋃
k∈C

{t ∈ [ak, bk] \ E, t ̸∈ Dg : τk(t, x(t)) ∈ Ak},

so the proof is reduced to showing that each Jk = {t ∈ [ak, bk] \ E, t ̸∈ Dg : τk(t, x(t)) ∈ Ak}
is a null g-measure set. For an arbitrarily fixed k ∈ C, we define φ(t) = τk(t, x(t)) for all
t ∈ [ak, bk], so that Jk ⊂ φ−1(Ak) \ Dg and it suffices to prove that φ−1(Ak) \ Dg is g-null. Since
m(Ak) = 0, Theorem 3.7 guarantees the existence of a set B ⊂ φ−1(Ak), with null gc-measure,
such that for every t ∈ φ−1(Ak) \ B we have φ′

g(t) = 0, i.e. φ′
g(t) = 0 for gc-a.a. t ∈ φ−1(Ak)

or, equivalently, for g-a.a. t ∈ φ−1(Ak) \ Dg we have

d
dg(t)

τk(t, x(t)) = 0. (5.3)

Let us prove that φ−1(Ak) \ Dg ⊂ E, thus showing that φ−1(Ak) \ Dg is g-null. Reasoning by
contradiction, we assume that there is some t ∈ φ−1(Ak) \ Dg such that t ̸∈ E, and then we
can use the chain rule in (5.3) to deduce that

∇τk(t, x(t)) · (1/g′(t), x′g(t)) = 0,

a contradiction with condition (5.2).

Checking the transversality condition (5.2) might be a difficult task in practical situations.
Our next corollary gives a more friendly sufficient condition for it. Basically, it tells us that
(5.2) is satisfied provided that ∂τk/∂t is far from zero and g′(t) is small enough. This is an
interesting condition from the viewpoint of Stieltjes differential equations because it leans
precisely on the slopes of the derivator.

Corollary 5.2. Assume that for all x ∈ Rn the mapping f (·, x) is g-measurable, for all t ∈ [t0, t0 +

L)∩ Dg the mapping f (t, ·) is continuous, and there exists M ∈ L1
g([t0, t0 + L)) such that for g-almost

all t ∈ [t0, t0 + L) and all x ∈ Rn we have ∥ f (t, x)∥ ≤ M(t).
Moreover, assume that there exist null Lebesgue measure sets Ak ⊂ R, k ∈ C ⊂ N, and differen-

tiable mappings τk : [ak, bk]× Rn −→ R, [ak, bk] ⊂ I, such that for g-a.a. t ∈ [t0, t0 + L) \ Dg the
following conditions hold:

(a) g′(t) > 0;

(b) There exists a set N(t) ⊂ Rn such that f (t, ·) is continuous in Rn \ N(t);

(c*) For each x ∈ N(t) there exists k ∈ C such that t ∈ [ak, bk], τk(t, x) ∈ Ak, and∣∣∣∣∂τk

∂t
(t, x)

∣∣∣∣ > g′(t) M(t)
n

∑
j=1

∣∣∣∣∂τk

∂xj
(t, x)

∣∣∣∣ . (5.4)

Then, problem (1.1) has at least one Carathéodory solution.

Proof. We only have to check that condition (c∗) implies condition (c) in Theorem 5.1. To do
it, we take x as in (c∗) and we observe that z = (z1, z2, . . . , zn) ∈ ⋂

ε>0 co f (t, Bε(x)) implies
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that |zj| ≤ M(t) for j = 1, 2, . . . , n, so we have

∣∣∇τk(t, x) · (1/g′(t), z)
∣∣ = ∣∣∣∣∣ 1

g′(t)
∂τk

∂t
(t, x) +

n

∑
j=1

zj
∂τk

∂xj
(t, x)

∣∣∣∣∣
=

∣∣∣∣∣ 1
g′(t)

∂τk

∂t
(t, x)−

n

∑
j=1

(−zj)
∂τk

∂xj
(t, x)

∣∣∣∣∣
≥ 1

g′(t)

∣∣∣∣∂τk

∂t
(t, x)

∣∣∣∣−
∣∣∣∣∣ n

∑
j=1

(−zj)
∂τk

∂xj
(t, x)

∣∣∣∣∣
≥ 1

g′(t)

∣∣∣∣∂τk

∂t
(t, x)

∣∣∣∣− M(t)
n

∑
j=1

∣∣∣∣∂τk

∂xj
(t, x)

∣∣∣∣
and the last term is positive thanks to condition (5.4).

Observe that condition (5.4) is fulfilled when ∂τk/∂t is positive and either g′ is small
enough or ∂τk/∂t is large enough. Corollary 5.2 is new even in case g(t) = t, i.e. for or-
dinary differential equations, where condition (5.4) reduces to∣∣∣∣∂τk

∂t
(t, x)

∣∣∣∣ > M(t)
n

∑
j=1

∣∣∣∣∂τk

∂xj
(t, x)

∣∣∣∣ .

Finally, we get an interesting consequence for the scalar case in connection with bounded
variation (not necessarily continuous) nonlinear parts of the g-differential equations.

Corollary 5.3. The scalar problem

x′g = f (t, x), t ∈ I = [t0, t0 + L), x(t0) = x0, (5.5)

has at least one Carathéodory solution provided that there exists M > 0 such that | f (t, x)| ≤ M for all
(t, x) ∈ I ×R, f (t, ·) is continuous whenever t ∈ [t0, t0 + L)∩ Dg, and for g-a.a. t ∈ [t0, t0 + L) \ Dg

we have g′(t) > 0 and we can express f (t, x) = F(τ(t, x)) for some functions F and τ satisfying the
following assumptions:

(i) F : R −→ R has bounded variation on any compact interval;

(ii) τ : I × R −→ R is differentiable and∣∣∣∣∂τ

∂t
(t, x)

∣∣∣∣ > M g′(t)
∣∣∣∣∂τ

∂x
(t, x)

∣∣∣∣ , (t, x) ∈ ([t0, t0 + L) \ Dg)× R. (5.6)

Proof. The result follows from Corollary 5.2. First, observe that for any x ∈ R the composition
f (·, x) = F(τ(·, x)) is Borel measurable, hence g-measurable in the Lebesgue–Stieltjes sense.
On the other hand, for any t ∈ I \ Dg the function f (t, ·) = F(τ(t, ·)) is continuous everywhere
except at those x ∈ R such that τ(t, x) is a discontinuity point of F. Let A be a countable set
such that F is continuous in R \ A; then f (t, ·) is continuous in R \ N(t), where

N(t) = {x ∈ R : τ(t, x) ∈ A} = τ(t, ·)−1(A).

Obviously, for each x ∈ N(t) we have τ(t, x) ∈ A, and condition (5.6) implies condition
(5.4).

Remark 5.4. In the conditions of Corollary 5.3, solutions x(t) of (5.5) satisfy |x(t) − x0| ≤
M (g(t)− g(t0)) ≤ M (g(t0 + L)− g(t0)) for all t ∈ [t0, t0 + L). Hence, condition (5.6) is really
needed only for all (t, x) ∈ ([t0, t0 + L) \ Dg)× R such that |x − x0| ≤ M (g(t)− g(t0)).



14 V. Cora and R. López Pouso

5.1 An example

Let g : R −→ R be nondecreasing, left-continuous everywhere and assume that g′(t) > 0 for
g-a.a. t ∈ [t0, t0 + L) \ Dg.

We consider the following particular case of problem (5.5):

x′g = F(α t + β x)χI\Dg(t) + F(t)χI∩Dg(t), t ∈ I = [t0, t0 + L), x(t0) = x0, (5.7)

where α, β ∈ R, χA denotes the characteristic function of a set A ⊂ R, and F : R −→ R is
given by

F(y) = ∑
rn<y

2−n, y ∈ R,

where rn = r(n), n ∈ N, and r : N −→ Q is a bijection.
Observe that F is increasing, 0 < F(y) < 1 for all y ∈ R, and F is discontinuous at every

rational number.
It is easy to check that Corollary 5.3 applies if

|α| > g′(t)|β| for g-a.a. t ∈ I \ Dg,

so in that case (5.7) has at least one solution.
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