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Abstract. This paper studies the existence and multiplicity of weak solutions to degen-
erate weighted quasilinear elliptic equations with nonlocal nonlinearities and variable
exponents. The equation involves a degenerate nonlinear operator with variable expo-
nents, a nonlocal term, and growth conditions on the nonlinearity. Using critical point
theory, we prove the existence of at least three weak solutions under general assump-
tions, extending the applicability of the results to a broad class of nonlinear problems
in mathematical physics.
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1 Introduction

Significant challenges in the analysis and behavior of solutions arise from the presence of
singularities and degeneracies in elliptic equations. Singularities, especially those arising at
the origin or the boundary, can dramatically alter the properties of the operator, causing the
solutions to become more sensitive to changes in the domain. For example, when 1 < p < N,
it is known that u/|x| ∈ Lp(RN) if u ∈ W1,p(RN), or u/|x| ∈ Lp(Ω) when u ∈ W1,p(Ω), where
Ω is a bounded domain. This leads to the emergence of Hardy-type inequalities that control
the singular behavior of solutions near critical points, particularly when the equation includes
singular potential terms (see, e.g., [11, 13, 15, 16]).

In addition to the challenges posed by singularities, the inclusion of nonlocal terms further
complicates the situation. Nonlocal interactions, which typically arise from integral expres-
sions or global coupling terms, create dependencies that affect the solution at each point in
the domain, as well as its values across the entire domain. The nonlocal nature of these terms
requires the use of advanced techniques that go beyond classical local methods to analyze the
solution structure and its multiplicity.
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Furthermore, the operator’s degeneracy, especially when coupled with a weighted func-
tion ω(x) in the p-Laplacian or p(x)-Laplacian operator, adds another layer of complexity. The
degeneracy introduced by ω(x), whether singular or merely bounded, necessitates a shift in
the choice of functional spaces. In such cases, traditional Sobolev spaces such as W1,p(Ω) or
W1,p(x)(Ω) may no longer be suitable. Instead, we must consider alternative Sobolev spaces
that accommodate the weight function, such as W1,p(ω, Ω), to handle the singularities or
degeneracies (see [6] for further details).

This paper addresses these challenges by studying a class of weighted quasilinear elliptic
equations with nonlocal nonlinearities and variable exponents. The goal is to establish the
existence and multiplicity of weak solutions while taking into account the degeneracy of the
operator, the Hardy-type singularities, and the nonlocal interactions that frequently arise in
applied mathematical models.

In this paper, we investigate the existence of generalized solutions to a class of weighted
quasilinear elliptic equations of the form:{

−∆p(x),a(x,u)u + b(x)|u|q−2u
|x|q = λ f (x, u)

(∫
Ω F(x, u) dx

)r in Ω,

u = 0 on ∂Ω,
(1.1)

where, 1 < q < N, Ω ⊂ RN (with N ≥ 3) is a bounded open subset, ∂Ω denotes its smooth
boundary and b(x) is a non-negative measurable function. The unknown function u satisfies
a weighted quasilinear elliptic equation involving a variable exponent p(x), a nonlinear term
f (x, u), and a non-local term involving an integral expression with a positive exponent r.

The operator ∆p(x),a(x,u)u is a nonlinear generalization of the standard Laplacian, defined
as:

∆p(x),a(x,u)u = div
(

a(x, u)|∇u|p(x)−2∇u
)

,

where a(x, u) is a Carathéodory function satisfying the inequality

a1ω(x) ≤ a(x, u) ≤ a2ω(x) for some constants a1, a2 > 0,

and a positive measurable function ω(x). The function ω(x) is assumed to belong to the local
Lebesgue space L1

loc(Ω) and satisfy additional growth conditions, such as ω−h(x) ∈ L1(Ω),
where h(x) belongs to a range related to the variable exponent p(x), more precisely, we assume
that

(ω) ω−h(x) ∈ L1(Ω), for h(x) ∈ C(Ω) and h(x) ∈ (N/p(x),+∞) ∩ [1/(p(x)− 1),+∞),

The nonlinearity in the equation is characterized by the function f (x, u), which satisfies
growth conditions of the form:

( f1) M1|u|α(x)−1 ≤ | f (x, u)| ≤ M2|u|β(x)−1,

with 1 < α(x) ≤ β(x) < p∗h(x), where p∗h(x) = Nph(x)
N−ph(x) and ph(x) = h(x)p(x)

h(x)+1 . These conditions
allow for a broad class of nonlinearities, including those that are locally integrable and exhibit
power-like behavior at infinity.

The parameter λ > 0 scales the non-local term, which depends on the integral∫
Ω

F(x, u) dx
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of another function F(x, u), which itself is assumed to satisfy certain conditions. These non-
local terms introduce further complexity into the problem, as they may give rise to both local
and global interactions within the domain Ω.

The main objective of this paper is to establish the existence of at least three weak solutions
to the problem under very general assumptions on the weighted function ω(x) and the non-
linear non-local term. To achieve this, we apply critical point theory to the associated energy
functional, which is constructed by integrating the relevant terms of the equation over Ω. The
application of critical point theorems allows us to prove the existence of solutions without
the need for strict assumptions on the regularity or structure of the nonlinearity, making the
result highly general and applicable to a wide variety of problems in mathematical physics
and differential equations.

2 Preliminaries and variational structure

Set
C+(Ω) = {p(x)|p(x) ∈ C(Ω), p(x) > 1, ∀x ∈ Ω},

p+ = max
x∈Ω

p(x), p− = min
x∈Ω

p(x).

For k > 0, and p(x) ∈ C+(Ω), we use the following notations

k p̂ = max{kp− , kp+}, k p̌ = min{kp− , kp+}.

It is easy to verify that (one can see [3], for further details)

(i) k
1
p̂ = max

{
k

1
p− , k

1
p+
}

,

(ii) k
1
p̌ = min

{
k

1
p− , k

1
p+
}

,

(iii) k
1
p̌ = a ⇐⇒ k = a p̂, k

1
p̂ = a ⇐⇒ k = a p̌,

(iv) (kβ) p̌ ≤ k p̌β p̌ ≤ (kβ) p̂ ≤ k p̂β p̂.

Denote

Lp(x)(ω, Ω) =

{
u : measurable in Ω such that

∫
Ω

ω(x)|u(x)|p(x) dx < ∞
}

with a Luxemburg-type norm defined by

∥u∥Lp(x)(ω,Ω) = inf

{
η > 0 :

∫
Ω

ω(x)
∣∣∣∣u(x)

η

∣∣∣∣p(x)

dx ≤ 1

}
.

Now, we define the variable exponent Sobolev space

W1,p(x)(Ω) =
{

u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)
}

,

with the norm
∥u∥W1,p(x)(Ω) = ∥∇u∥p(x) + ∥u∥p(x),

where ∥∇u∥p(x) = ∥|∇u|∥p(x), |∇u| =
(

∑N
i=1
∣∣ ∂u

∂xi

∣∣2) 1
2 ,∇u =

(
∂u
∂x1

, ∂u
∂x2

, . . . , ∂u
∂xN

)
is the gradient

of u at (x1, x2, . . . , xN).
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Let
W1,p(x)(ω, Ω) =

{
u ∈ Lp(x)(Ω) : ω

1
p(x) |∇u| ∈ Lp(x)(Ω)

}
be the weighted Sobolev space, and denote by W1,p(x)

0 (ω, Ω) the closure of C∞
0 (Ω) in W1,p(x)(ω, Ω)

with the norm

∥u∥ = inf

{
η > 0 :

∫
Ω

ω(x)
∣∣∣∣∇u(x)

η

∣∣∣∣p(x)

dx ≤ 1

}
.

Lemma 2.1 ([9]). If p1(x), p2(x) ∈ C+(Ω) such that p1(x) ≤ p2(x) a.e. x ∈ Ω, then there exists the
continuous embedding W1,p2(x)(Ω) ↪→ W1,p1(x)(Ω).

Proposition 2.2 ([10]). For p(x) ∈ C+(Ω), u, un ∈ Lp(x)(Ω), we have

min
{
∥u∥p−

p(x), ∥u∥p+

p(x)

}
≤
∫

Ω
|u(x)|p(x)dx ≤ max

{
∥u∥p−

p(x), ∥u∥p+

p(x)

}
.

Let 0 < d(x) ∈ S(Ω) and S(Ω) be the set of all measurable real functions defined on Ω.
Define

Lp(x)
d(x)(Ω) = Lp(x)(d, Ω) =

{
u ∈ S(Ω) :

∫
Ω

d(x)|u(x)|p(x) dx < ∞
}

with a Luxemburg-type norm defined by

∥u∥
Lp(x)

d(x) (Ω)
= ∥u∥(p(x),d(x)) := inf

{
η > 0 :

∫
Ω

d(x)
∣∣∣∣u(x)

η

∣∣∣∣p(x)

dx ≤ 1

}
.

Proposition 2.3 ([7]). If p ∈ C+(Ω). Then

min
{
∥u∥p−

(p(x),d(x)), ∥u∥p+

(p(x),d(x))

}
≤
∫

Ω
d(x)|u(x)|p(x)dx ≤ max

{
∥u∥p−

(p(x),d(x)), ∥u∥p+

(p(x),d(x))

}
for any u ∈ Lp(x)

d(x)(Ω) and for a.e. x ∈ Ω.

Combining Proposition 2.2 with Proposition 2.3, one has

Lemma 2.4. Let
ρω(u) =

∫
Ω

ω(x) |∇u(x)|p(x) dx.

For p ∈ C+(Ω), u ∈ W1,p(x)(ω, Ω), we have

min
{
∥u∥p− , ∥u∥p+

}
≤ ρω(u) ≤ max

{
∥u∥p− , ∥u∥p+

}
.

From Proposition 2.4 of [13], if (ω) holds, W1,p(x)(ω, Ω) is a separable and reflexive Banach
space.

From Theorem 2.11 of [14], if (ω) holds, the following embedding

W1,p(x)(ω, Ω) ↪→ W1,ph(x)(Ω) (2.1)

is continuous, where

ph(x) =
p(x)h(x)
h(x) + 1

< p(x).
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Combining (2.1) with Proposition 2.7 and Proposition 2.8 in [8], we get the following embed-
ding

W1,p(x)(ω, Ω) ↪→ Lr(x)(Ω)

is continuous, where

1 ≤ r(x) ≤ p∗h(x) =
Nph(x)

N − ph(x)
=

Np(x)h(x)
Nh(x) + N − p(x)h(x)

.

Furthermore, the following embedding

W1,p(x)(ω, Ω) ↪→↪→ Lt(x)(Ω)

is compact, when 1 ≤ t(x) < p∗h(x).
Define the functional Iλ : W1,p(x)

0 (ω, Ω) → R by

Iλ(u) := Φ(u)− λΨ(u),

where

Φ(u) :=
∫

Ω

a(x, u)
p(x)

|∇u|p(x)dx +
1
q

∫
Ω

b(x)|u|q
|x|q dx,

Ψ(u) :=
1

r + 1

( ∫
Ω

F(x, u(x))dx
)r+1

,

and F(x, u) =
∫ u

0 f (x, τ)dτ, ∀(x, u) ∈ Ω × R.
It is clear that functionals Φ and Ψ are continuously Gâteaux differentiable with

Φ′(u)(v) =
∫

Ω
a(x, u)|∇u|p(x)−2∇u∇vdx +

∫
Ω

b(x)|u|q−2uv
|x|q dx,

and

Ψ′(u)(v) =
(∫

Ω
F(x, u) dx

)r ∫
Ω

f (x, u)vdx, ∀u, v ∈ W1,p(x)
0 (ω, Ω).

We say that u ∈ W1,p(x)
0 (ω, Ω) is a generalized solution of the problem (1.1) if

I ′
λ(u)(v) = Φ′(u)(v)− λΨ′(u)(v) = 0, ∀v ∈ W1,p(x)

0 (ω, Ω).

Lemma 2.5. The functional Φ′ is coercive and strictly monotone in W1,p(x)
0 (ω, Ω).

Proof. For any u ∈ W1,p(x)
0 (ω, Ω) \ {0}, by Lemma 2.4 one has

Φ′(u)(u) =
∫

Ω
a(x, u)|∇u|p(x)−2∇u∇udx +

∫
Ω

b(x)|u|q−2u2

|x|q dx

≥ a1ρω(u)

≥ a1 · min{∥u∥p+ , ∥u∥p−},

thus

lim
∥u∥→∞

Φ′(u)(u)
∥u∥ ≥ a1 · lim

∥u∥→∞

min{∥u∥p+ , ∥u∥p−}
∥u∥ = +∞,
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then Φ′ is coercive in view of p(x) ∈ C+(Ω).
According to (2.2) of [17], for all x, y ∈ RN , there is a positive constant Cp such that

⟨|x|p−2x − |y|p−2y, x − y⟩ ≥ Cp|x − y|p, if p ≥ 2,

and

⟨|x|p−2x − |y|p−2y, x − y⟩ ≥
Cp|x − y|2

(|x|+ |y|)2−p , if 1 < p < 2, and (x, y) ̸= (0, 0),

where ⟨., .⟩ is the usual inner product in RN . Thus, for any u, v ∈ X satisfying u ̸= v, by
standard arguments we can obtain

⟨Φ′(u)− Φ′(v), u − v⟩ =
∫

Ω
a(x, u)(|∇u|p(x)−2∇u − |∇v|p(x)−2∇v)(∇u −∇v)dx

+
∫

Ω

b(x)
|x|q (|u|

q−2u − |v|q−2v)(u − v))dx

> 0,

hence we have Φ′ is strictly monotone in W1,p(x)
0 (ω, Ω).

Lemma 2.6. The functional Φ′ is a mapping of (S+)-type, i.e. if un ⇀ u in W1,p(x)
0 (ω, Ω), and

limn→∞⟨Φ′(un)− Φ′(u), un − u)⟩ ≤ 0, then un → u in W1,p(x)
0 (ω, Ω).

Proof. Let un ⇀ u in W1,p(x)
0 (ω, Ω), and limn→∞⟨Φ′(un)− Φ′(u), un − u⟩ ≤ 0.

Noting that Φ′ is strictly monotone in W1,p(x)
0 (ω, Ω), one has

lim
n→∞

⟨Φ′(un)− Φ′(u), un − u⟩ = 0,

while

⟨Φ′(un)− Φ′(u), un − u⟩ =
∫

Ω
a(x, u)(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u)dx

+
∫

Ω

(b(x)|un|q−2

|x|q un(un − u)− b(x)|u|q−2

|x|q u(un − u)
)

dx,

thus we get

limn→∞

∫
Ω

a(x, u)(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u)dx ≤ 0.

Further, by (1.2) one has

limn→∞

∫
Ω

ω(x)(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un −∇u)dx ≤ 0,

then un → u in W1,p(x)
0 (ω, Ω) via Lemma 3.2 in [12].

Lemma 2.7. The functional Φ′ is a homeomorphism.

Proof. The strict monotonicity of Φ′ implies that it is injective. Since Φ′ is coercive, it is also
surjective, and hence Φ′ has an inverse mapping.

Next, we show that the inverse mapping (Φ′)−1 is continuous.
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Let f̃n, f̃ ∈ (W1,p(x)
0 (ω, Ω))∗ such that f̃n → f̃ . We aim to prove that (Φ′)−1( f̃n) →

(Φ′)−1( f̃ ).
Indeed, let (Φ′)−1( f̃n) = un and (Φ′)−1( f̃ ) = u, so that Φ′(un) = f̃n and Φ′(u) = f̃ . By

the coercivity of Φ′, the sequence un is bounded. Without loss of generality, assume un ⇀ u0,
which implies

lim
n→∞

(
Φ′(un)− Φ′(u), un − u0

)
= lim

n→∞

(
f̃n − f̃ , un − u0

)
= 0.

Thus, un → u0 because Φ′ is of (S+)-type, which ensures that Φ′(un) → Φ′(u0). Combin-
ing this with Φ′(un) → Φ′(u), we deduce that Φ′(u) = Φ′(u0). Since Φ′ is injective, it follows
that u = u0, and hence un → u. Therefore, we have (Φ′)−1( f̃n) → (Φ′)−1( f̃ ), proving that
(Φ′)−1 is continuous.

Lemma 2.8 (Hölder type inequality [1, 8]). Let p, q, s ≥ 1 be measurable functions defined on Ω
and

1
s(x)

=
1

p(x)
+

1
q(x)

, for a.e. x ∈ Ω.

If f ∈ Lp(x)(Ω) and g ∈ Lq(x)(Ω), then f g ∈ Ls(x)(Ω) and

∥ f g∥s(x) ≤ 2∥ f ∥p(x)∥g∥q(x). (2.2)

Lemma 2.9. The functional Ψ′ : X := W1,p(x)
0 (ω, Ω) → (W1,p(x)

0 (ω, Ω))∗ is compact.

Proof. The condition ( f1) and the compact embedding W1,p(x)
0 (ω, Ω) ↪→↪→ Lβ(x)(Ω), where

1 ≤ β(x) < p∗h(x), imply the compactness of Ψ′(u). Specifically, let (uk)k ⊂ X be a sequence

such that uk ⇀ u. Since the embedding W1,p(x)
0 (ω, Ω) ↪→↪→ Lβ(x)(Ω) is compact, there exists a

subsequence, still denoted by (uk)k, such that uk → u strongly in Lβ(x)(Ω) and uk(x) → u(x)
almost everywhere. The continuity of F(x, u) with respect to u ensures that

F(x, uk) → F(x, u) for almost every x.

Moreover, there exists C > 0 such that

|F(x, uk)| ≤ C|uk|β(x).

Applying the dominated Convergence theorem we can conclude∫
Ω

F(x, uk) dx →
∫

Ω
F(x, u) dx as k → +∞. (2.3)

From condition ( f1), it follows that the Nemytskii operator N f (u)(x) = f (x, u(x)) is contin-
uous, as f : Ω × R → R is a Carathéodory function that satisfies ( f1). Consequently, we

conclude that N f (uk) → N f (u) in L
β(x)

β(x)−1 (Ω).

Using Hölder’s inequality, for any v ∈ W1,p(x)
0 (ω, Ω), we obtain∣∣∣∣∫Ω

f (x, uk)vdx −
∫

Ω
f (x, u)vdx

∣∣∣∣ ≤ ∫
Ω
|( f (x, uk)− f (x, u))v|dx

≤ 2∥N f (uk)− N f (u)∥ β(x)
β(x)−1

∥v∥β(x)

≤ 2cβ∥N f (uk)− N f (u)∥ β(x)
β(x)−1

∥v∥,
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where cβ is the embedding constant of the embedding W1,p(x)
0 (ω, Ω) ↪→ Lβ(x)(Ω), 1 ≤ β(x) <

p∗h(x). Thus, from (2.3) and the above inequality, Ψ′(uk) → Ψ′(u) in X∗, i.e. Ψ′ is completely
continuous, thus Ψ′ is compact.

The following critical point theorems constitute the principal tools used to obtain our
result.

Theorem 2.10 ([5, Theorem 3.6]). Let X be a reflexive real Banach space, and let Φ : X → R be a
coercive functional that is continuously Gâteaux differentiable and weakly lower semicontinuous in the
sequential sense. Assume that the Gâteaux derivative of Φ has a continuous inverse on the dual space
X∗. Additionally, let Ψ : X → R be a continuously Gâteaux differentiable functional whose Gâteaux
derivative is compact. Assume the following conditions hold:

(a0) inf
X

Φ = Φ(0) = Ψ(0) = 0.

There exist constants d > 0 and a point x ∈ X such that d < Φ(x), and the following conditions
are satisfied:

(a1) supΦ(x)<d Ψ(x)

d
<

Ψ(x)
Φ(x)

,

(a2) For each λ ∈ Λd :=
(

Φ(x)
Ψ(x) , d

supΦ(x)≤d Ψ(x)

)
, the functional Iλ := Φ − λΨ is coercive.

Then, for every λ ∈ Λd, the functional Φ − λΨ has at least three distinct critical points in X.

3 Main results

In this section, a theorem about the existence of at least three weak solutions to the problem
(1.1) are obtained.

Recall the Hardy inequality (see Lemma 2.1 in [11] for more details), which states that for
1 < p < N, the following inequality holds:∫

Ω

|u(x)|p
|x|p dx ≤ 1

H

∫
Ω
|∇u|p dx, ∀u ∈ W1,p

0 (Ω),

where H =
(N−p

p

)p is the optimal constant.
By combining this with Lemma 2.1 and using the fact that 1 < q < ph(x) < N, we get the

continuous embeddings

W1,p(x)
0 (ω, Ω) ↪→ W1,ph(x)

0 (Ω) ↪→ W1,q
0 (Ω),

which leads to the inequality∫
Ω

|u(x)|q
|x|q dx ≤ 1

H

∫
Ω
|∇u|q dx, ∀u ∈ W1,p(x)

0 (ω, Ω),

where H =
(N−q

q

)q.
We are now ready to present our primary result. To this end, we define

D(x) := sup {D > 0 | B(x, D) ⊆ Ω}



Multiplicity of weak solutions to degenerate weighted quasilinear elliptic equations 9

for each x ∈ Ω, where B(x, D) denotes a ball centered at x with radius D. It is clear that there
exists a point x0 ∈ Ω such that B(x0, R) ⊆ Ω, where

R = sup
x∈Ω

D(x).

In the remainder of the paper, the symbol m will represent the constant

m =
π

N
2

N
2 Γ
(N

2

) ,

with Γ denoting the Gamma function.

Theorem 3.1. Assume that p− > β+(r + 1) and that there exist d, δ > 0, such that

a1

p+

(
2δ

R

) p̌

∥ω∥L1(B) ≥ d,

and

Aδ :=
a2
p−

(
2δ
R

) p̂
∥ω∥L1(B) +

(
2δ
R

)q ∥b∥∞
qH m

(
RN −

(R
2

)N
)

Mr+1
1

(r+1)(α+)r+1

(
(δ)α̌m(R

2 )
N
)r+1 < Bd :=

d

(M2)r+1
(

cβ̂
β

)(r+1)

(r+1)(β−)r+1

([( p+
a1

d
) 1

p̌ ]β̂
)r+1

,

then for any λ ∈]Aδ, Bd [ , problem (1.1) admits at least three weak solutions.

Proof. It is worth noting that Φ and Ψ satisfy the regularity assumptions outlined in Theo-
rem 2.10. We will now establish the fulfillment of conditions (a1) and (a2). To this end, let’s
consider

a1

p+
(2δ

R

) p̌
∥ω∥L1(B) ≥ d

and consider vδ ∈ X such that

vδ(x) :=


0 x ∈ Ω\B

(
x0, R

)
2δ
R

(
R −

∣∣x − x0
∣∣) x ∈ B := B

(
x0, R

)
\B
(
x0, R

2

)
,

δ x ∈ B
(
x0, R

2

)
.

Then, by the definition of Φ , we have

a1

p+

(
2δ

R

) p̌
∥ω∥L1(B) < Φ(vδ)

≤ a2

p−

(
2δ

R

) p̂

∥ω∥L1(B) +

(
2δ

R

)q ∥b∥∞

qH
m

(
RN −

(
R
2

)N
)

Therefore, Φ(vδ) > d. However, it is important to consider the following

Ψ(vδ) ≥
1

r + 1

(∫
Ω

F(x, vδ)dx
)r+1

≥
Mr+1

1
(r + 1)(α+)r+1

(∫
B(x0, R

2 )
|δ|α(x)dx

)r+1

,

≥
Mr+1

1
(r + 1)(α+)r+1

(
(δ)α̌m

(
R
2

)N
)r+1

, (3.1)
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which yields to Φ(vδ)
Ψ(vδ)

≤ Aδ < λ. In addition, for every u ∈ Φ−1(] − ∞, d]), one has the
following

a1

p+
∥u∥ p̌ ≤ d. (3.2)

therefore,

∥u∥ ≤
(

p+

a1
Φ(u)

) 1
p̌

<

(
p+

a1
d
) 1

p̌

.

Furthermore, under the assumption ( f1), we can conclude the following

Ψ(u) ≤ 1
r + 1

( ∫
Ω

F(x, u(x))dx
)r+1

,

≤ (M2)r+1

(r + 1)(β−)r+1

( ∫
Ω
|u|β(x)dx

)r+1
,

≤ (M2)r+1

(r + 1)(β−)r+1

(
∥u∥β̂

β

)r+1,

≤
(M2)r+1(cβ̂

β

)(r+1)

(r + 1)(β−)r+1

(
∥u∥β̂)r+1. (3.3)

This leads to the following result

sup
Φ(u)<d

Ψ(u) ≤
(M2)r+1(cβ̂

β

)(r+1)

(r + 1)(β−)r+1

([( p+

a1
d
) 1

p̌
]β̂
)r+1

,

and
1
d

sup
Φ(u)<d

Ψ(u) <
1
λ

.

Furthermore, we can establish the coerciveness of Iλ for any positive value of λ by employing
inequality (3.3) once more. This yields the following result

Ψ(u) ≤
(M2)r+1(cβ̂

β

)(r+1)

(r + 1)(β−)r+1

(
∥u∥β̂)r+1.

When ∥u∥ is great enough, the following can be inferred

Φ(u)− λΨ(u) ≥ a1

p+
∥u∥p− − λ

(M2)r+1(cβ̂
β

)(r+1)

(r + 1)(β−)r+1

(
∥u∥β̂)r+1.

By considering the fact that p− > β+(r + 1), we can reach the desired conclusion. In
conclusion, considering the aforementioned fact that

Λ̄d,δ := (Aδ, Bd) ⊆
(

Φ (vδ)

Ψ (vδ)
,

d
supΦ(u)<d Ψ(u)

)
,

Based on Theorem 2.10, it can be deduced that for any λ ∈ Λ̄d,δ, the function Φ−λΨ possesses
at least three critical points in X := W1,p

0 (ω, Ω). These critical points correspond to weak
solutions of problem (1.1).
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Remark 3.2. Setting d = a1
p+ , then Bd becomes

Bd =

a1
p+

(M2)r+1
(

cβ̂
β

)(r+1)

(r+1)(β−)r+1

,

moreover, one has

p+ ≥ p− > β+(r + 1) ≥ α+(r + 1) and q < p+,

thus limδ→0+ Aδ = 0, consequently, ]Aδ, Bd[ ̸= ∅ and Theorem 3.1, can be rewritten as follows:

Assume that p− > β+(r + 1) and that there exist δ > 0, such that

δ ≥ R
2

(
1

∥ω∥L1(B)

) 1
p̌

and

Aδ :=
a2
p−

(
2δ
R

) p̂
∥ω∥L1(B) +

(
2δ
R

)q ∥b∥∞
qH m

(
RN −

(R
2

)N
)

Mr+1
1

(r+1)(α+)r+1

(
(δ)α̌m(R

2 )
N
)r+1 < Bd :=

a1
p+

(M2)r+1
(

cβ̂
β

)(r+1)

(r+1)(β−)r+1

,

then for any λ ∈ ]Aδ, Bd [ , problem (1.1) admits at least three weak solutions.
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