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ABSTRACT: We consider the wave equation with a mild internal dissipa-
tion. It is proved that any small dissipation inside the domain is sufficient to
uniformly stabilize the solution of this equation by means of a nonlinear feed-
back of memory type acting on a part of the boundary. This is established
without any restriction on the space dimension and without geometrical con-
ditions on the domain or its boundary.
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1 INTRODUCTION

In this paper we are concerned with the uniform stability of the solution to
the following mixed problem:
u(t, ©) + aw(t, x) = Au(t,z) + g(t, z), t>0,x €,
Qu(t,x) + f(f k(t — s, x)us(s, z)ds = h(t, x), t >0, xz €Dy,
u(t,x) =0, t>0,zely,
u(0,2) = ug(x), w(z) = uy (), x € (),

(1.1)
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where 2 is a bounded domain in R"™ (the n-dimensional Euclidean space,
n > 1) with a boundary T' = 99 of class C?; (T'y,I';) is a partition of T' such
that int(I';) # 0; v(z) denotes the outward normal vector to I' at z € I'; 2
is the normal derivative on I'; « is a positive number and g, h, ug, u; are
given functions; A is the Laplacian with respect to the spatial variable x and
the subscript ¢ denotes differentiation with respect to the variable ¢.

Problem (1.1) models, for instance, the evolution of sound in a compress-
ible fluid with reflection of sound at the surface of the material. The bound-
ary condition in (1.1) is general and covers a fairly large variety of different
physical configurations. The physical meaning of this boundary condition as
well as the following three particular cases

Ip

g(t,x) + ((x)p(t, ) =0, t>0, zel, (1.2)

%(t, x) + B(x)p(t, x) + a(z)p(t,z) =0, t>0, zel, (1.3)

m(x)ou(t, ) + d(x)d(t, x) + K(z)d(t,x) = —p(t, z),

%(t,l‘) + 5tt(t7x) - 0, t > 07 x € ]_—" (].4)

is discussed in [4]. See also references therein for questions of existence,
uniqueness, regularity and asymptotic behavior. In [1] the exponential decay
of the energy of problem (1.1) with the boundary condition (1.2) in the case
((x) = C a positive constant, g = h = 0 and a < 0 on the n-dimensional
open unit cube was established. More delicate is the same problem with
boundary condition (1.2), g = h = 0 without internal damping i.e a = 0.
This is discussed in Komornik and Zuazua [2] and Zuazua [6].

Inspired by the method developed in [2], we shall prove exponential decay
for solutions of problem (1.1) (h = 0) using an appropriately chosen energy
functional. In fact, we shall uniformly stabilize the solution of the wave
equation by a nonlinear feedback of memory type acting on a part of the
boundary provided the equation contains a mild damping (however small it
is) in the interior of the domain.

Let R, denote the set of nonnegative real numbers and

HL(Q) = {ue H(Q) : ulp, =0} (1.5)

where H'(Q) is the usual Sobolev space.
By a real function a(t, z) € L}, (Ry; L=(Ty)) of positive type we mean a
function satisfying

/OT/FOU(t) /Ota(t—s)v(s)dsdadtzo (1.6)
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for all v € C(Ry; H}, () and for every T > 0. See [3] for more information
on functions of positive type.

In [4], Propst and Priiss have reformulated problem (1.1) (with o = 0)
as an integral equation of variational type and then have used results and
methods developed in the second author’s monograph [5] to derive, among
others the following theorem:

Theorem 1.1 Suppose that Ty and Ty are closed in T. Let ug € H*(Q) N
HE(Q), uy € HE(Q), g € WhH(R; LA(Q)), h € WEH(R,; LA(Ty)) and h €

loc loc
C(Ry; HY2(Ty)), k € BVioe(Ry; CY(Ty)) of positive type, either u; = 0 on T
or k is locally absolutely continuous in t, uniformly with respect to x € I'y and
k' (the derivative of k with respect to t) is in BVje(R4; L>(Ly)), then there
is a unique solution u € C(Ry; H*(Q)) N C'(Ry; HE (Q)) N C*(Ry; L*(Q))
and u(t, z) satisfies (1.1) for allt > 0 and almost all x.

Wm™P and C™ are the usual Sobolev space and the space of continuously
differentiable functions up to order m respectively. BV is the space of func-
tions of bounded variation.

2 Exponential decay

In this section we assume the existence of a regular strong solution to problem
(1.1) in the sense of the preceding theorem with h = 0.
Note that the Poincaré inequality holds in H} (Q) i.e

38> 0, |v]; <B|Vul;, forall ve HE(Q). (2.7)

Combined with the trace inequality the preceding inequality (2.7) yields
v >0, / vido < ’y/ Vo[> do, for all v € HE (Q). (2.8)
I'o Q

We suppose that our boundary material is characterized by the function
k(t,z) = p(x)e”, t>0, x €T, (2.9)

with 0 < p(z) € CY(T'y) and ||p(z)||,, = M.
Let us introduce the energy functional

2

Eu; t) = %/Q (Jue® + |Vul?) do + % /Fop(x) (/Ot e(ts)us(s)ds) do.
(2.10)
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Differentiating the energy functional (2.10) using (1.1) we obtain

2

d t
—FE(u; t) = —a/ urdz —/ p(x) (/ e(ts)us(s)ds) do + / wgdz.
dt 0 Ty 0 0

(2.11)

Remark 2.1 Note that if g = 0, then it is readily seen that the energy is
decreasing.

Next, for € > 0 we will define
E.(u; t) = E(u; t) + ep(u; t), t>0, (2.12)

where

o(u; t) = /Qutudx. (2.13)

For the sake of brevity, we will write E.(t) for E.(u; t) and o(t) for p(u; t).
Using the Poincaré inequality (2.7) we have

1 1
lo(t)] < 5 / urdr + 55/ \Vu|* dz < (1+ B)E(t). (2.14)
Q Q
It then follows that
|E.(t) — Et)| <e(1+ B)E(t), t>0. (2.15)
We are now ready to prove our main theorem.

Theorem 2.2 Assume that h and k are as above. Let uo € H*(Q)NHL (Q),
wi € HE(Q) and g € Wil (Ry; L*(Q). If

t
/ e? (/ g2d;1:) ds
0 Q

grows no faster than a polynomial ast — oo for some ¢ satisfying

0o 20 2 1
€ < min , ,
544023 1+2M~y 1+ 3

where B and vy are the constants in (2.7) and (2.8) and 1/2 < w < 1, then
there exists a positive constant C' such that

E(t) < Ce™=, t>0.
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Proof: Differentiating the functional E.(t) we find
E(t) = E(t)+eg'(t)

2
= —a [quide — [ p(x (fo ~=9y(s) ds) do
+ fQ urgdr + € fﬂ ugudr + € fQ uldzx.

Using problem (1.1) we get

fﬂ upudr = —a fﬂ wudx + fﬂ Au uder fQ ugdm
= —a [y uudr — fr f e~ =)y (s)dsdo
— [ IVl dx+fﬂugdx

Making use of the Holder inequality and the algebraic inequality

1
abg/\a2+ﬁb2, a, be R, A\ >0,

we have the following estimates

/UtUd.’,U<C1/ dﬂf“‘—/
Q

/ urgdr < cz/ 2de + — dex
Q 462

/ ugdr < c3/ *dr + — g2d:c
Q 463
fFo fo s)dsdo <
c4MfF 2d;1:+ HfFo (x) <f0 e (t=9) ds) do
(2.1

Replacing the expression (2.17) into
mates (2.19)-(2.22) we obtain

E/(t) < =2eB(t)— (a —2¢) [,uldr + (acie + ¢2) [ uid
+5 <4€ +C3€> fQ Vu| dx + 2Mcyye fQ Vu| dx
- 1—€—ﬁ)fpo <fe(t5us( )ds) do

1
S G Jo9%d

Note that we have used the inequalities (2.7) and (2.8) in (2.23).

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

6) and taking into account the esti-

(2.23)

Let us

choose ¢; =2af3, ca = ¢, c3 = 1/80 and ¢4 = 1/4M~, then (2.23) yields

E(t) < —eBE(t)— {a—(2+2a%3) e}fﬂ dx+(265+ =) [y 9Pdx
_{1_ M7+ }fr ( —(t=s) t(s)ds) do.

(2.24)
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Now we choose € > 0 so that oo — (g +2a?B)e > 0and 1 — (My + %)z—: >0,

ie.,
200 2
< mi . 2.25
g_mm{5+4a25’1+2M7} (2.25)
Hence,
E;(t) < —eE(t) + K(e, ) / g*dz. (2.26)
Q

It follows from (2.15) that
(1—(1+08)e)E(t) < E.(t) < (1+ (1+p)e)E(t), t>0. (2.27)

If moreover € > 0 satisfies ¢ < 1/(1+ ), let a be any real number such that
0<a<1-(1+p)e, then

aB(t) < B.(t) < (2 — a)E(t), t> 0. (2.28)

Using (2.28) in (2.16) we deduce

E.(t) < —5—B(t) + K(, ) / gdz. (2.29)

Consequently,

E.(t) < {EE(O) + K(g, 3) /Ot e (/Q dex) ds} et t>0, (2.30)

where w = 1/(2 — a). Once again in view of (2.28) we infer from (2.30) that

E(t) < {2 —“B0) + K(e.5) /Ot e (/Q dex) ds} e 1 >0. (2.31)

a a

The proof is now complete.

Remark 2.2 [t is clear from the proof that o may depend on the spatial
variable x.

Remark 2.3 If the mild damping is in the boundary instead of the equation,
i.e,

,x)zO, t>0,xely,
0.2) = ol), us(x) = (), 7 €
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then considering the energy functional (2.10) we proceed as in [2] with
a(r) = m(z).v(x) where m(z) = x —2°, 2° € R", and

To={z el :m(z)v(x) >0},
I ={zxel:m(x)v(x) <0}

The appropriate perturbed energy functional is

E.(u;t)=E(u; t) + 5/ u{(n — Du+2(m(x).Vu)}dz, t>0.
Q

In this case we do not impose to the function h (and g) to vanish identi-

cally, we are restricted however to the space dimension condition n < 3 when
c(To)Nel(Ty) # O because of the limited validity of Grisvard’s inequality (see

[2] and [6]).
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