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1. Introduction

To reveal the rule of population of the Australian sheep blowfly that obtained in exper-

imental data [1], Gurney et al [2] put forward the following Nicholson’s blowflies model

N ′(t) = −δN(t) + pN(t − τ)e−aN(t−τ). (1.1)

Here, N(t) is the size of the population at time t, p is the maximum per capita daily egg

production, 1
a

is the size at which the population reproduces at its maximum rate, δ is the per

capita daily adult death rate, and τ is the generation time. As a class of biological systems,
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Nicholson’s blowflies model and its analogous equation have attracted much attention. There

have been a large number of results about this model and its modifications. We refer the

reader to [3-9] and the references cited therein. Moreover, the main focus of Nicholson’s

blowflies model is on the scalar equation and results about patch structure of this model are

gained rarely (see e.g.[10-13] and the reference therein). On the other hand, L. Berezansky

et al [9] pointed out that a new study indicates that a linear model of density-dependent

mortality will be most accurate for populations at low densities and marine ecologists are

currently in the process of constructing new fishery models with nonlinear density-dependent

mortality rates. Consequently, B. Liu and S. Gong [14] and Liu [15] presented extensive

results on the permanence of the following Nicholson’s blowflies model with a nonlinear

density-dependent mortality term

N ′(t) = −D(N(t)) + PN(t − τ)e−aN(t−τ) (1.2)

where P is a positive constant and function D might have one of the following forms: D(N) =

aN
N+b

or D(N) = a − be−N with positive constants a, b > 0.

However, to the best of our knowledge, there have been few publications concerned with

the permanence for Nicholson-type delay system with patch structure and nonlinear density-

dependent mortality terms. Motivated by this, the main purpose of this paper is to give the

conditions to guarantee the permanence for the following Nicholson-type delay system with

patch structure and nonlinear density-dependent mortality terms:

N ′
i(t) = −Dii(t,Ni(t)) +

n
∑

j=1,j 6=i

Dij(t,Nj(t)) +
l

∑

j=1

cij(t)Ni(t− τij(t))e
−γij (t)Ni(t−τij (t)), (1.3)

where

Dij(t,N) =
aij(t)N

bij(t) + N
or Dij(t,N) = aij(t) − bij(t)e

−N ,

aij, bij , cik, γik : R → (0,+∞) are all continuous functions bounded above and below by pos-

itive constants, and τik(t) ≥ 0 are bounded continuous functions, ri = max
1≤j≤l

{supt∈R τij(t)} >

0, and i, j = 1, 2 · · · , n, k = 1, 2 · · · , l. Furthermore, in the case Dij(t,N) = aij(t)−bij(t)e
−N ,

we assume that aij(t) > bij(t) for t ∈ R and i, j = 1, 2 · · · , n, which show the biological

significance of the mortality terms.

For convenience, we introduce some notations. Throughout this paper, given a bounded

continuous function g defined on R, let g+ and g− be defined as

g− = inf
t∈R

g(t), g+ = sup
t∈R

g(t).
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Let Rn(Rn
+) be the set of all (nonnegative) real vectors, we will use x = (x1, . . . , xn)T ∈ Rn

to denote a column vector, in which the symbol ()T denotes the transpose of a vector. we

let |x| denote the absolute-value vector given by |x| = (|x1|, . . . , |xn|)T and define ||x|| =

max1≤i≤n |xi|. Denote C =
n
∏

i=1
C([−ri, 0], R

1) and C+ =
n
∏

i=1
C([−ri, 0], R

1
+) as Banach

space equipped with the supremum norm defined by ||ϕ|| = sup
−ri≤t≤0

max
1≤i≤n

|ϕi(t)| for all ϕ(t) =

(ϕ1(t), . . . , ϕn(t))T ∈ C (or ∈ C+). If xi(t) is defined on [t0 − ri, ν) with t0, ν ∈ R1 and

i = 1, . . . , n, then we define xt ∈ C as xt = (x1
t , . . . x

n
t )T where xi

t(θ) = xi(t + θ) for all

θ ∈ [−ri, 0] and i = 1, . . . , n.

The initial conditions associated with system (1.3) are of the form:

Nt0 = ϕ, ϕ = (ϕ1, . . . , ϕn)T ∈ C+ and ϕi(0) > 0, i = 1, . . . , n. (1.4)

We write Nt(t0, ϕ)(N(t; t0, ϕ)) for a solution of the initial value problem (1.3) and (1.4) .

Also, let [t0, η(ϕ)) be the maximal right-interval of existence of Nt(t0, ϕ).

Definition 1.1. The system (1.3) with initial conditions (1.4) is said to be permanent,

if there are positive constants ki and Ki such that

ki ≤ lim inf
t→+∞

Ni(t; t0, ϕ) ≤ lim sup
t→+∞

Ni(t; t0, ϕ) ≤ Ki, i = 1, 2 · · · , n.

The remaining part of this paper is organized as follows. In sections 2 and 3, we shall

derive new sufficient conditions for checking the permanence of model (1.3). In Section 4,

we shall give some examples and remarks to illustrate our results obtained in the previous

sections.

2. Permanence of Nicholson-type delay systems with

Dij(t, N) =
aij(t)N

bij(t)+N
(i, j = 1, 2, · · · , n)

Theorem 2.1. Assume that the following conditions are satisfied

min
1≤i≤n

{a−ii} >

n
∑

i=1

n
∑

j=1,j 6=i

a+
ij +

n
∑

i=1

l
∑

j=1

c+
ij

eγ−
ij

, (2.1)

sup
t∈R

aii(t)

bii(t)
n
∑

j=1
cij(t)

< 1, i = 1, 2, · · · , n. (2.2)

Then, the model (1.3) and (1.4) with Dij(t,N) =
aij(t)N

bij(t)+N
(i, j = 1, 2, · · · , n) is permanent.
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Proof. Set N(t) = N(t; t0, ϕ) for all t ∈ [t0, η(ϕ)). In view of ϕ ∈ C+, using Theorem

5.2.1 in [16, p.81], we have Nt(t0, ϕ) ∈ C+ for all t ∈ [t0, η(ϕ)). From(1.3) and the fact that

aii(t)N
bii(t)+N

≤ aii(t)N
bii(t)

for all t ∈ R,N ≥ 0, we obtain

N ′
i(t) = −Dii(t,Ni(t)) +

n
∑

j=1,j 6=i

Dij(t,Nj(t)) +
l

∑

j=1

cij(t)Ni(t − τij(t))e
−γij (t)Ni(t−τij (t))

≥ −aii(t)Ni(t)

bii(t)
+

l
∑

j=1

cij(t)Ni(t − τij(t))e
−γij (t)Ni(t−τij (t)), i = 1, 2, · · · , n. (2.3)

In view of Ni(t0) = ϕi(0) > 0, integrating (2.3) from t0 to t, we get

Ni(t) ≥ e
−

∫ t

t0

aii(u)

bii(u)
du

Ni(t0) +

e
−

∫ t

t0

aii(u)

bii(u)
du

∫ t

t0

e

∫ s

t0

aii(v)

bii(v)
dv

l
∑

j=1

cij(s)Ni(s − τij(s))e
−γij (s)Ni(s−τij(s))ds

> 0, for all t ∈ [t0, η(ϕ)), i = 1, 2, · · · , n.

Let y(t) =
n
∑

i=1
xi(t), where t ∈ [t0 − r, η(ϕ)), r = min

1≤i≤n
{ri}. Notice that max

x≥0
xe−x = 1

e
, we

have

y′(t) = −
n

∑

i=1

aii(t)Ni(t)

bii(t) + Ni(t)
+

n
∑

i=1

n
∑

j=1,j 6=i

aij(t)Nj(t)

bij(t) + Nj(t)
+

n
∑

i=1

l
∑

j=1

cij(t)Ni(t − τij(t))e
−γij (t)Ni(t−τij (t))

≤ −

n
∑

i=1
aii(t)Ni(t)

n
∑

i=1
bii(t) +

n
∑

i=1
Ni(t)

+
n

∑

i=1

n
∑

j=1,j 6=i

aij(t) +
n

∑

i=1

l
∑

j=1

cij(t)

eγij(t)

≤ −

n
∑

i=1
a−iiNi(t)

n
∑

i=1
bii(t) +

n
∑

i=1
Ni(t)

+
n

∑

i=1

n
∑

j=1,j 6=i

a+
ij +

n
∑

i=1

l
∑

j=1

c+
ij

eγ−
ij

≤ −
min

1≤i≤n
{a−ii}y(t)

n
∑

i=1
bii(t) + y(t)

+
n

∑

i=1

n
∑

j=1,j 6=i

a+
ij +

n
∑

i=1

l
∑

j=1

c+
ij

eγ−
ij

.

For each t ∈ [t0 − r, η(ϕ)), we define

M(t) = max{ξ : ξ ≤ t, y(ξ) = max
t0−r≤s≤t

y(s)}.
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We now claim that y(t) is bounded on [t0, η(ϕ)). In the contrary case, observe that M(t) →
η(ϕ) as t → η(ϕ), we get

lim
t→η(ϕ)

y(M(t)) = +∞.

But y(M(t)) = max
t0−r≤s≤t

y(s), and so y′(M(t)) ≥ 0 for all M(t) > t0. Thus,

0 ≤ y′(M(t))

≤ −
min

1≤i≤n
{a−ii}y(M(t))

n
∑

i=1
bii(M(t)) + y(M(t))

+
n

∑

i=1

n
∑

j=1,j 6=i

a+
ij +

n
∑

i=1

l
∑

j=1

c+
ij

eγ−
ij

, for all M(t) > t0,

which yields

min
1≤i≤n

{a−ii}y(M(t))

n
∑

i=1
bii(M(t)) + y(M(t))

≤
n

∑

i=1

n
∑

j=1,j 6=i

a+
ij +

n
∑

i=1

l
∑

j=1

c+
ij

eγ−
ij

, for all M(t) > t0. (2.4)

Therefore, from the continuities and boundedness of the functions bij(t), i, j = 1, 2, · · · , n, we

can select a sequence {Tn}+∞
n=1 such that

lim
n→+∞

Tn = η(ϕ), lim
n→+∞

y(M(Tn)) = +∞, lim
n→+∞

bij(M(Tn)) = b∗ij , (2.5)

and
min

1≤i≤n
{a−ii}y(M(Tn))

n
∑

i=1
bii(M(Tn)) + y(M(Tn))

≤
n

∑

i=1

n
∑

j=1,j 6=i

a+
ij +

n
∑

i=1

l
∑

j=1

c+
ij

eγ−
ij

. (2.6)

Letting n → +∞, (2.5) and (2.6) imply that

min
1≤i≤n

{a−ii} ≤
n

∑

i=1

n
∑

j=1,j 6=i

a+
ij +

n
∑

i=1

l
∑

j=1

c+
ij

eγ−
ij

.

which contradicts with (2.1). This implies that y(t) is bounded on [t0, η(ϕ)) . From Theorem

2.3.1 in [17], we easily obtain η(ϕ) = +∞.Thus, every solution N(t; t0, ϕ) of (1.3) and (1.4)

is positive and bounded on [t0,+∞). So there exist positive constants Ki, such that

0 < Ni(t) ≤ Ki, for all t > t0 , i = 1, 2, · · · , n

It follows that

lim
t→+∞

supNi(t) ≤ Ki, i = 1, 2, · · · , n. (2.7)

EJQTDE, 2012 No. 73, p. 5



We next prove that there exist positive constants ki, such that

lim
t→+∞

inf Ni(t) ≥ ki, i = 1, 2, · · · , n. (2.8)

For i = 1, 2, · · · , n, from (1.3) we have

N ′
i(t) ≥ −aii(t)Ni(t)

bii(t)
+

l
∑

j=1

cij(t)Ni(t − τij(t))e
−γij (t)Ni(t−τij (t)), (2.9)

where t ∈ [t0,+∞). Suppose that (2.8) does not hold, that is,

lim
t→+∞

inf Ni(t) = 0, i = 1, 2, · · · , n.

For each t ≥ t0, we define

θi(t) = max{ξ : ξ ≤ t,Ni(ξ) = min
t0≤s≤t

Ni(s), }, i = 1, 2, · · · , n.

Observe that θi(t) → +∞ as t → +∞,i = 1, 2, · · · , n, and

lim
t→+∞

Ni(θi(t)) = 0, i = 1, 2, · · · , n. (2.10)

However, Ni(θi(t)) = min
t0≤s≤t

Ni(s), and so N ′
i(θi(t)) ≤ 0, where θi(t) > t0, i = 1, 2, · · · , n.

According to (2.9), we have

0 ≥ N ′
i(θi(t))

≥ −aii(t)Ni(θi(t))

bii(t)
+

l
∑

j=1

cij(θi(t))Ni(θi(t) − τij(θi(t)))e
−γij (θi(t))Ni(θi(t)−τij (θi(t))),

which is equivalent to

aii(θi(t))

bii(θi(t))
Ni(θi(t)) ≥

l
∑

j=1

cij(θi(t))Ni(θi(t) − τij(θi(t)))e
−γij (θi(t))Ni(θi(t)−τij (θi(t))), (2.11)

where θi(t) > t0, i = 1, 2, · · · , n. This, together with (2.10), implies that

lim
t→+∞

Ni(θi(t) − τij(θi(t))) = 0, i = 1, 2, · · · , n (2.12)

Now we select a sequence {tn}+∞
n=1 such that











θi(tn) > t0, lim
n→+∞

tn = +∞, lim
n→+∞

Ni(θi(tn)) = 0, lim
n→+∞

aii(θi(tn)) = a∗ii

lim
n→+∞

bii(θi(tn)) = b∗ii, lim
n→+∞

cij(θi(tn)) = c∗ij , lim
n→+∞

γij(θi(tn)) = γ∗
ij,

(2.13)
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where i = 1, 2, · · · , n, j = 1, 2, · · · , l. Thus, we obtain

aii(θi(tn))

bii(θi(tn))
≥

l
∑

j=1

cij(θi(tn))e−γij (θi(tn))Ni(θi(tn)−τij(θi(tn))), (2.14)

where i = 1, 2, · · · , n. Letting n → +∞, from (2.12)-(2.14) we know that

sup
t∈R

aii(t)

bii(t)
l

∑

j=1
cij(t)

≥ lim
n→+∞

aii(θi(tn))

bii(θi(tn))
l

∑

j=1
cij(θi(tn))

=
a∗ii

b∗ii
l

∑

j=1
c∗ij

≥ 1,

which contradicts with (2.2). Hence, inequality of (2.8) holds. Combining (2.7) and (2.8) the

whole proof of Theorem 2.1 is complete.

3. Permanence of Nicholson-type delay systems with

Dij(t, N) = aij(t) − bij(t)e
−N(i, j = 1, 2, · · · , n)

Theorem 3.1. Assume that

a+
ii − b−ii <

n
∑

j=1,j 6=i

(a−ij − b+
ij), i = 1, 2, · · · , n, (3.1)

n
∑

j=1,j 6=i

a+
ij +

l
∑

j=1

c+
ij

eγ−
ij

< a−ii , i = 1, 2, · · · , n. (3.2)

Then, the model (1.3) and (1.4) with Dij(t,N) = aij(t) − bij(t)e
−N (i, j = 1, 2, · · · , n) is

permanent.

Proof. Let N(t) = N(t; t0, ϕ), we first claim that

Ni(t) > 0 for all t ∈ [t0, η(ϕ)), i = 1, 2, · · · , n. (3.3)

Contrarily, it must occur that there exist t∗ ∈ [t0, η(ϕ)) and k ∈ {1, 2, · · · , n} such that

Nk(t
∗) = 0, Ni(t) > 0 for all t ∈ [t0, t

∗), i = 1, 2, · · · , n.

Then, we have

0 ≥ N ′
k(t

∗)

= −Dkk(t
∗, Ni(t

∗)) +
n

∑

j=1,j 6=k

Dkj(t
∗, Nj(t

∗)) +
l

∑

j=1

ckj(t
∗)Nk(t

∗ − τkj(t
∗))e−γkj (t∗)Nk(t∗−τkj(t

∗))

≥ −akk(t
∗) + bkk(t

∗) +
n

∑

j=1,j 6=k

akj(t
∗) −

n
∑

j=1,j 6=k

bkj(t
∗)

≥ −a+
kk + b−kk +

n
∑

j=1,j 6=k

a−kj −
n

∑

j=1,j 6=k

b+
kj,
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It follows that a+
kk − b−kk ≥

n
∑

j=1,j 6=k

(a−kj − b+
kj) which contradicts with inequality of (3.1). This

implies that (3.3) holds. For all t ∈ [t0 − ri, η(ϕ)), we define

mi(t) = max{ξ : ξ ≤ t,Ni(ξ) = max
t0−ri≤s≤t

Ni(s)}, i = 1, 2, · · · , n.

We now show that Ni(t) are bounded on [t0, η(ϕ)),i = 1, 2, · · · , n. In the contrary case, it

exists k ∈ {1, 2, · · · , n} and observe that mk(t) → η(ϕ) as t → η(ϕ), we get

lim
t→η(ϕ))

Nk(mk(t)) = +∞. (3.4)

But Nk(mk(t)) = max
t0−rk≤s≤t

Nk(s), and so N ′
k(mk(t)) ≥ 0 for all mk(t) > t0. Thus,

0 ≤ N ′
k(mk(t))

≤ −akk(mk(t)) + bkk(mk(t))e
−Nk(mk(t)) +

n
∑

j=1,j 6=k

akj(mk(t)) +
l

∑

j=1

c+
kj

1

eγ−
kj

. (3.5)

Letting t → η(ϕ), (3.5) implies that

n
∑

j=1,j 6=k

a+
kj +

l
∑

j=1

c+
kj

eγ−
kj

≥ a−kk.

which contradicts with the inequality of (3.2). This shows that Ni(t) are positive and bounded

for all t ∈ [t0, η(ϕ)), i = 1, 2, · · · , n. From Theorem 2.3.1 in [17], we easily obtain η(ϕ) = +∞.

So there exist positive constants Li such that

0 < Ni(t) ≤ Li, i = 1, 2, · · · , n.

It follows that

lim
t→+∞

supNi(t) ≤ Li, i = 1, 2, · · · , n. (3.6)

In what follows, we prove that there exists a positive constant li such that

lim
t→+∞

inf Ni(t) ≥ li, i = 1, 2, · · · , n (3.7)

Assume that (3.7) does not hold, then it exists k ∈ {1, 2, · · · , n}, such that

lim
t→+∞

inf Nk(t) = 0.

For each t ≥ t0, we define

ω(t) = max{ξ : ξ ≤ t,Nk(ξ) = min
t0≤s≤t

Nk(s)}.
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Observe that ω(t) → +∞ as t → +∞ and

lim
t→+∞

Nk(ω(t)) = 0. (3.8)

However, Nk(ω(t)) = min
t0≤s≤t

Nk(s), and so N ′
k(ω(t)) ≤ 0, where ω(t) > t0. Then

0 ≥ N ′
k(ω(t))

≥ −akk(ω(t)) + bkk(ω(t))e−Nk(ω(t)) +
n

∑

j=1,j 6=k

(akj(ω(t)) − bkj(ω(t))e−Nj (ω(t)))

≥ −akk(ω(t)) + bkk(ω(t))e−Nk(ω(t)) +
n

∑

j=1,j 6=k

(a−kj − b+
kj). (3.9)

Letting t → +∞, (3.9) implies that

a+
kk − b−kk ≥

n
∑

j=1,j 6=k

(a−kj − b+
kj),

which contradicts with the inequality of (3.1). This ends the proof of Theorem 3.1.

4. Some examples

In this section we present some examples to illustrate our results.

Example 4.1. Consider the following Nicholson-type delay system with patch structure

and nonlinear density-dependent mortality terms:



































































































N ′
1(t) = − (13+| cos

√
3t|)N1(t)

5+| sin
√

2t|+N1(t)
+ (1+| sin 2t|)N2(t)

3+| cos 3t|+N2(t) + (1+| cos 2t|)N3(t)
4+| sin 3t|+N3(t)

+(1 + cos2 t)N1(t − 2| sin t|)e−4N1(t−2| sin t|)

+(1 + sin2 t)N1(t − 2| cos t|)e−4N1(t−2| cos t|)

N ′
2(t) = − (14+| sin

√
3t|)N2(t)

6+| cos
√

2t|+N2(t)
+ (1+| cos 2t|)N1(t)

3+| sin 3t|+N1(t) + (1+| sin 2t|)N3(t)
4+| cos 3t|+N3(t)

+(1 + sin2 t)N2(t − 2| cos t|)e−5N2(t−2| cos t|)

+(1 + cos2 t)N2(t − 2| sin t|)e−5N2(t−2| sin t|)

N ′
3(t) = − (15+| sin

√
5t|)N3(t)

6+| cos
√

6t|+N3(t)
+ (1+| cos 3t|)N1(t)

3+| sin 2t|+N1(t) + (1+| sin 3t|)N2(t)
4+| cos 2t|+N2(t)

+(1 + sin2
√

2t)N3(t − 2| cos 2t|)e−6N3(t−2| cos 2t|)

+(1 + cos2
√

2t)N3(t − 2| sin 3t|)e−6N3(t−2| sin 3t|),

(4.1)

Obviously, a−11 = 13, a−22 = 14, a−33 = 15, a+
ij = 2, (i, j = 1, 2, 3, i 6= j), c+

ij = 2, (i = 1, 2, 3, j =

1, 2), γ−
1j = 4,γ−

2j = 5,γ−
3j = 6, (j = 1, 2),ri = 2, (i = 1, 2, 3). So
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13 = min
1≤i≤3

{a−ii} >

3
∑

i=1

3
∑

j=1,j 6=i

a+
ij +

3
∑

i=1

2
∑

j=1

c+
ij

eγ−
ij

= 12 +
32

15e
,

and

max
1≤i≤3

{sup
t∈R

aii(t)

bii(t)
2
∑

j=1
cij(t)

} = max{14

15
,
5

6
,
8

9
} =

14

15
< 1.

It follows that the Nicholson’s blowflies model with patch structure and nonlinear density-

dependent mortality terms (4.1) satisfies all the conditions in Theorem 2.1. Hence, from

Theorem 2.1, the system (4.1) with initial conditions (1.4) is permanent.

Example 4.2. Consider the following Nicholson-type delay system with patch structure

and nonlinear density-dependent mortality terms:











































































































N ′
1(t) = −(9 + | cos t|) + (8 + | sin t|)e−N1(t) + (3 + | sin t|) − (0.5 + | cos t|)e−N2(t)

+(3 + | cos t|) − (0.5 + | sin t|)e−N3(t) + (1 + cos2 t)N1(t − 2| sin t|)e−4N1(t−2| sin t|)

+(1 + sin2 t)N1(t − 2| cos t|)e−4N1(t−2| cos t|)

N ′
2(t) = −(9 + | sin t|) + (8 + | cos t|)e−N2(t) + (3 + | cos t|) − (0.5 + | sin t|)e−N1(t)

+(3 + | sin t|) − (0.5 + | cos t|)e−N3(t) + (1 + sin2 t)N2(t − 2| cos t|)e−4N2(t−2| cos t|)

+(1 + cos2 t)N2(t − 2| sin t|)e−4N2(t−2| sin t|)

N ′
3(t) = −(9 + | sin 2t|) + (8 + | cos 2t|)e−N3(t) + (3 + | cos 2t|) − (0.5 + | sin 2t|)e−N1(t)

+(3 + | sin 2t|) − (0.5 + | cos 2t|)e−N2(t)

+(1 + sin2 2t)N2(t − 2| cos 2t|)e−4N2(t−2| cos 2t|)

+(1 + cos2 2t)N2(t − 2| sin 2t|)e−4N2(t−2| sin 2t|),
(4.2)

Obviously, a+
ii = 10, a−ii = 9, b+

ii = 9, b−ii = 8, (i = 1, 2, 3), a+
ij == 4, b+

ij = 1.5, a−ij = 3, b−ij =

0.5, (i, j = 1, 2, 3, i 6= j), c+
ij = 2, γ−

ij = 4, (i = 1, 2, 3, j = 1, 2), ri = 2, (i = 1, 2, 3). So

2 = a+
ii − b−ii <

n
∑

j=1,j 6=i

(a−ij − b+
ij) = 3, i = 1, 2, 3 ,

and

8 +
1

e
=

n
∑

j=1,j 6=i

a+
ij +

2
∑

j=1

c+
ij

eγ−
ij

< a−ii = 9, i = 1, 2, 3.

Hence, from Theorem 3.1, the model (4.2) is permanent.
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The above two examples that satisfy the conditions of Theorem 2.1 and Theorem 3.1 re-

spectively are permanent. Next we shall give the example that does not satisfy the conditions

of Theorem 2.1 is not permanent.

Example 4.3. Consider the following Nicholson-type delay system with patch structure

and nonlinear density-dependent mortality terms:


































N ′
1(t) = − (25+| cos t|)N1(t)

1+| sin t|+N1(t) + (12+| sin t|)N2(t)
13+| cos t|+N2(t) + (1 + cos2 t)N1(t − | sin t|)e−4N1(t−| sin t|)

+(1 + sin2 t)N1(t − | cos t|)e−4N1(t−| cos t|)

N ′
2(t) = − (25+| sin t|)N2(t)

1+| cos t|+N2(t) + (12+| cos t|)N1(t)
13+| sin t|+(1+sin2 t)N1(t)

+ N2(t − | cos t|)e−4N2(t−| cos t|)

+(1 + cos2 t)N2(t − | sin t|)e−4N2(t−| sin t|)

(4.3)

Obviously, a−11 = a−22 = 25, a+
ij = 12, (i, j = 1, 2, i 6= j), c+

ij = 2, γ−
ij = 4,ri = 1, (i, j = 1, 2). So

25 = min
1≤i≤2

{a−ii} <
2

∑

i=1

2
∑

j=1,j 6=i

a+
ij +

2
∑

i=1

2
∑

j=1

c+
ij

eγ−
ij

= 26 +
2

e
,

and

max
1≤i≤2

{sup
t∈R

aii(t)

bii(t)
2
∑

j=1
cij(t)

} =
26

3
> 1.

It follows that the Nicholson’s blowflies model with patch structure and nonlinear density-

dependent mortality terms (4.3) dose not satisfy the conditions of Theorem 2.1. Moreover,

we shall prove the model (4.3) is not permanent with the initial condition ϕ∗ satisfying

ϕ∗ ∈ C+, ϕ∗
i (0) > 0 and ||ϕ∗|| < e , i = 1, 2 . We write (4.3) as the following systems of delay

differential equation:

N ′
i(t) = fi(t,Nt), i = 1, 2

where






































































f1(t, ϕ) = − (25+| cos t|)ϕ1(0)
1+| sin t|+ϕ1(0)

+ (12+| sin t|)ϕ2(0)
13+| cos t|+ϕ2(0)

+ (1 + cos2 t)ϕ1(−| sin t|)e−4ϕ1(−| sin t|)

+(1 + sin2 t)ϕ1(−| cos t|)e−4ϕ1(−| cos t|)

= − a11(t)ϕ1(0)
b11(t)+ϕ1(0) + a12(t)ϕ2(0)

b12(t)+ϕ2(0) +
2
∑

j=1
c1j(t)ϕ1(−τ1j(t))e

−γ1j (t)ϕ1(−τ1j(t))

f2(t, ϕ) = − (25+| sin t|)ϕ2(0)
1+| cos t|+ϕ2(0)

+ (12+| cos t|)ϕ1(0)
13+| sin t|+ϕ1(0) + (1 + sin2 t)ϕ2(−| cos t|)e−4ϕ2(−| cos t|)

+(1 + cos2 t)ϕ2(−| sin t|)e−4ϕ2(−| sin t|)

= − a22(t)ϕ2(0)
b22(t)+ϕ2(0) + a21(t)ϕ1(0)

b21(t)+ϕ1(0) +
2
∑

j=1
c2j(t)ϕ2(−τ2j(t))e

−γ2j (t)ϕ2(−τ2j(t))
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Let N(t) = N(t; t0, ϕ
∗) be the solution of system (4.3) with the initial condition ϕ∗ for all

t ∈ [t0, η(ϕ)). In view of ϕ∗ ∈ C+, using Theorem 5.2.1 in [16,p.81], we have Nt(t, ϕ
∗) ∈ C+

for all t ∈ [t0, η(ϕ)). Now we prove that

||N(t)|| < e for all t ∈ [t0, η(ϕ)) and η(ϕ) = +∞. (4.4)

In the contrary case, there are i ∈ {1, 2} and t1 > t0 such that

Ni(t1) = e, 0 ≤ Nj(t) < e for all t0 ≤ t < t1, j = 1, 2.

We have

0 ≤ N ′
i(t1) = − aii(t1)Ni(t1)

bii(t1) + Ni(t1)
+

2
∑

j=1,j 6=i

aij(t1)Nj(t1)

bij(t1) + Nj(t1)

+
2

∑

j=1

cij(t1)Ni(t1 − τij(t1))e
−γij (t1)Ni(t1−τij(t1))

≤ − aii(t1)Ni(t1)

bii(t1) + Ni(t1)
+

2
∑

j=1,j 6=i

aij(t1)Nj(t1)

bij(t1)
+

2
∑

j=1

cij(t1)

γij(t1)

1

e

≤ − a−iie

b+
ii + e

+
2

∑

j=1,j 6=i

a+
ije

b−ij
+

2
∑

j=1

c+
ij

γ−
ij

1

e

= − 25e

2 + e
+ e +

1

e
< 0,

which is a contradiction. This implies that (4.4) holds. Let y(t) = N(t)eλt, where λ > 0 and

satisfying λ − 23−e
2+e

+ 4eλ < 0. We claim that

||y(t)|| < e for all t ∈ [t0,+∞). (4.5)

If this is not valid, there are i ∈ {1, 2} and t2 > t0 such that

yi(t2) = e, 0 ≤ yj(t) < e for all t0 ≤ t < t2, j = 1, 2.

We have

0 ≤ y′i(t2) = λNi(t2)e
λt2 + eλt2N ′

i(t2)

= λNi(t2)e
λt2 − aii(t2)Ni(t2)e

λt2

bii(t2) + Ni(t2)
+

2
∑

j=1,j 6=i

aij(t2)Nj(t2)e
λt2

bij(t2) + Nj(t2)
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+
2

∑

j=1

cij(t2)e
λτij (t2)Ni(t2 − τij(t2))e

λ(t2−τij(t2))e−γij (t2)Ni(t2−τij(t2))

≤ λe − aii(t2)e

bii(t2) + e
+

2
∑

j=1,j 6=i

aij(t2)e

bij(t2)
+

2
∑

j=1

cij(t2)e
λrie

≤ (λ − a−ii
b+
ii + e

+
2

∑

j=1,j 6=i

a+
ij

b−ij
+

2
∑

j=1

c+
ije

λri)e

= (λ − 23 − e

2 + e
+ 4eλ)e < 0,

which is a contradiction. This implies that (4.5) holds and the system (4.3) with initial

condition ϕ∗ is not permanent but extinct.

Remark 4.1. To the best of our knowledge, few authors have considered the problems

of the permanence of Nicholson’s blowflies model with patch structure and nonlinear density-

dependent mortality terms. It is clear that all the results in [12-15] and the references therein

cannot be applicable to prove the permanence of (4.1) and (4.2). This implies that the results

of this paper are new.
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