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LOCAL ESTIMATES

FOR MODIFIED RICCATI EQUATION

IN THEORY OF

HALF-LINEAR DIFFERENTIAL EQUATION

SIMONA FIŠNAROVÁ AND ROBERT MAŘÍK∗

Abstract. In this paper we study the half-linear differential equa-
tion (

r(t)Φp(x
′)

)
′

+ c(t)Φp(x) = 0,

where Φp(x) = |x|p−2x, p > 1. Using modified Riccati technique
and suitable local estimates for terms in modified Riccati equa-
tion we derive new characterization of principal solution and new
nonoscillation criteria.

1. Introduction

In this paper we consider the equation

(1) L[x] :=
(
r(t)Φp(x

′)
)′

+ c(t)Φp(x) = 0,

where Φp(x) = |x|p−2x, p > 1, r ∈ C((t0,∞), R+), c ∈ C((t0,∞), R)
for some t0. Under a solution of this equation we understand every
continuously differentiable function x such that rΦp(x

′) is differentiable
and (1) holds on (t0,∞). This equation is called half-linear, since a
constant multiple of any solution is also a solution of (1).

The asymptotic behavior of equation (1) is a subject of many papers.
It turns out (see [5]) that equation (1) can be classified as oscillatory
and nonoscillatory. Further, there is one significant solution of the
nonoscillatory equation – the principal solution.

The aim of this paper is to continue some previous studies of nonoscil-
latory equations (especially [1, 7, 8]) and derive nonoscillation criteria
for half-linear equations and new results related to the principal solu-
tions. We use and refine the modified Riccati technique introduced in
[3, 4] and show that global estimates used in these papers can be under
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some additional assumptions replaced by local versions. This results
to new nonoscillation criteria and also a new test which can be used to
detect whether a solution is principal or nonprincipal.

Throughout the paper we suppose that h(t) ∈ C1([t0,∞), (0,∞)) is
a positive function such that h′(t) has no zero in some neighborhood
of infinity. Given equation (1) and the function h(t), we define

(2) G(t) = r(t)h(t)Φp(h
′(t)).

Note that the requirement h′(t) 6= 0 is natural in some sense in view
of the following lemma.

Lemma A ([5, Lemma 4.1.1]). Let c(t) 6= 0 for large t and x be a
solution of nonoscillatory equation (1). Then either x(t)x′(t) > 0 or
x(t)x′(t) < 0 for large t.

The paper is organized as follows. In the next section we introduce
basic facts related to the modified Riccati technique and derive local
estimates to the nonlinear term in modified Riccati equation. Section
3 contains a short introduction to the principal solution and a new
criterion which allows to detect a solution of nonoscillatory equation
as principal. In Section 4 we derive new nonoscillation criteria.

2. Preliminary results

It is well known (see e.g. [5, Chapter 1.1.4]) that the substitution
w = rΦp

(
x′

x

)
converts (1) into the following Riccati type equation

(3) R[w] := w′ + c(t) + (p − 1)r1−q(t)|w|q = 0.

The following lemma shows that the Riccati operator from this equa-
tion is closely related to the nonoscillatory equation (1), see e.g. [5,
Theorem 2.2.1].

Lemma 1. Equation (1) is nonoscillatory if and only if there exists a
differentiable function w which satisfies the Riccati type inequality

(4) R[w](t) ≤ 0

for large t.

Our results heavily depend on the following relationship between the
Riccati type differential operator R[·] defined in (3) and the so-called
modified Riccati operator (the operator on the right hand side of (5)
below).
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Lemma 2 ([7, Lemma 2.2]). Let h and w be differentiable functions
and v = hpw − G, then we have the identity

(5) hpR[w] = v′ + hL[h] + (p − 1)r1−qh−qH(t, v),

where H(t, v) = |v + G|q − qΦq(G)v − |G|q ≥ 0.

The following estimate plays a crucial role in the proofs of our main
results.

Lemma 3. Let v(t) and G(t) be real functions defined on [t0,∞), such
that

(6) lim
t→∞

v(t)

G(t)
= 0.

Let γ ∈ (1, 2) and K > 0 be real numbers. There exists t1 ≥ t0 such
that

(7) H(t, v(t)) ≤ K|G(t)|q
∣∣∣∣
v(t)

G(t)

∣∣∣∣
γ

for t ≥ t1.

Remark 1. The inequality

(8) H(t, v(t)) ≤ qβγ,p|G(t)|q
∣∣∣∣
v(t)

G(t)

∣∣∣∣
γ

which holds for p ≥ 2, γ ∈ [q, 2], a convenient number βγ,p and every
t has been proved in [7, Lemma 2.3]. In contrast to (8), inequality (7)
holds only for restricted values of the quotient v(t)/G(t) and from this
poin of view it can be considered as a local version of (8). It shows
that if we restrict ourselves to the case v

G
→ 0 as t → ∞, then we can

drop some of the assumptions of [7, Lemma 2.3].

Proof of Lemma 3. From the defininiton the function H we have

H(t, v) = |v + G|q − qΦq(G)v − |G|q

= q|G|q
(

1

q

∣∣∣
v

G
+ 1

∣∣∣
q

− v

G
− 1

q

)

= q|G|qg
( v

G

)

where g(x) = |x+1|q

q
− x − 1

q
. The function g(x) satisfies

g(x) = (q − 1)
1

2!
x2 + O(x3)
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in an neighborhood of x = 0 and hence for every γ ∈ (1, 2) and every
K > 0 there exists x0 such that

g(x) ≤ K

q
|x|γ

for every x which satisfies |x| ≤ x0. This inequality together with (6)
implies that there exists t1 such that (7) holds for every t ≥ t1. �

The following lemma presents a local lower estimate for the function
H(t, v(t)). Since there is a close correspondence

(9) H(t, v) = qP (Φq(G), v + G),

between the function H and the function P given by

(10) P (a, b) :=
|a|p
p

− ab +
|b|q
q

,

(see [7, Eq. (14)]) the estimates from Lemma 3 and 4 can be also
treated as local estimates for the function P .

Lemma 4. For every γ ≥ 2 and every K0 ∈ (0,∞) there exists a

constant K > 0 such that if G(t) = 0 or
∣∣∣ v(t)+G(t)

G(t)

∣∣∣ ≤ K0, then

(11) H(t, v(t)) ≥ qK|G(t)|q−γ|v(t)|γ.

Proof. Let γ ≥ 2 and K0 ∈ (0,∞) be arbitrary. If G(t) = 0 then (11)

holds. Suppose that G(t) 6= 0 and
∣∣∣v(t)+G(t)

G(t)

∣∣∣ ≤ K0. Using (9), (10) and

the obvious fact

P (a, b) = |a|pP
(

1,
b

Φp(a)

)

we can write the function H in the form

(12) H(t, v) = q|Φq(G)|pP
(
1,

v

G
+ 1

)
= q|G|qf

( v

G
+ 1

)
,

where

f(x) = P (1, x) =
1

p
− x +

|x|q
q

.

It is easy to see that the function

ϕ(x) =

{
|x−1|γ

f(x)
x 6= 1

limx→1
|x−1|γ

f(x)
x = 1
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is well defined, nonegative and continuous on [−K0, K0] and there exists
C such that ϕ(x) ≤ C on [−K0, K0]. This shows that

f(x) ≥ K|x − 1|γ

holds with K = 1
C

and |x| ≤ K0. Combining the above coputations we
get (11). �

3. Principal solution of nonoscillatory equation

If a half-linear equation is nonoscillatory, then there is a solution of
the associated Riccati equation which can be extended to some neigh-
borhood of infinity. It has been shown in [9], that among all solutions
of (3) which can be extended to infinity there exists the so-called mini-
mal solution w̃ with the following property: if w̃ and w are two distinct
solutions of (3) defined on [T,∞), then w(t) > w̃(t) for t ∈ [T,∞).

The principal solution x̃ of (1) is defined as the solution which deter-
mines the minimal solution w̃ of (3) via the substitution w̃ = rΦp(x̃

′/x̃),
i.e.,

x̃(t) = C exp

{∫ t

Φq

(
w̃(s)/r(s)

)
ds

}
.

This principal solution is unique up to a nonzero constant multiple.
In [7, Theorem 4.1] we proved the following theorem.

Theorem A. Suppose that (1) is nonoscillatory and h(t) is its positive
solution which satisfies h′(t) 6= 0 for large t.

(i) Let p ≥ 2. If h is a principal solution, then for every γ ∈ [q, 2]

(13)

∫ ∞ dt

rγ−1(t)hγ(t)|h′(t)|(p−1)(γ−q)
= ∞

holds.
(ii) Let p ∈ (1, 2]. If (13) holds for some γ ∈ [2, q], then h is a

principal solution.

The following theorem shows that under some additional assump-
tions we can drop the restrictions p ≤ 2 and γ ≤ q from the implication
(ii) and we get the following statement which is in some sense close to
the opposite implication of the statement (i) of Theorem A.

Theorem 1. Suppose that (1) is nonoscillatory and h(t) is its positive
solution which satisfies h′(t) 6= 0 for large t. Further suppose that∫ ∞

t
c(s) ds ≥ 0,

∫ ∞

t
c(s) ds 6≡ 0 for large t and

∫ ∞
r1−q(t) dt = ∞. If
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there exists a real number γ ≥ 2 such that (13) holds, then h is the
principal solution.

Proof. Suppose, by contradiction, that assumptions of the theorem
hold and h is not principal. Denote wh := rΦp(h

′/h) the correspond-
ing solution of (3). Since h is not principal, there exists T > 0 and
a solution w̃ of (3) such that w̃(t) < wh(t) for t ≥ T . Condition∫ ∞

r1−q(t) dt = ∞ and the convergence of
∫ ∞

c(s) ds imply (see [5,
Theorem 2.2.3 and Theorem 2.2.4]) that

∫ ∞
r1−q(t)|w̃(t)|q dt < ∞ and

w̃(t) =

∫ ∞

t

c(s) ds + (p − 1)

∫ ∞

t

r1−q(t)|w̃(t)|q ds

for t ≥ T . Since
∫ ∞

t
c(s) ds ≥ 0, we have w̃(t) ≥ 0 and hence 0 ≤

ew(t)
wh(t)

< 1. Consequently, consider the function v = hpw̃ − G = hp(w̃ −
wh). It holds v(t) < 0 for t ≥ T and since L[h] = 0, we see from
identity (5) that v is a solution of the modified Riccati equation

(14) v′ + (p − 1)r1−q(t)h−q(t)H(t, v) = 0

for t ≥ T . We have v
G

= hp ew
G

− 1 = ew
wh

− 1, i.e., −1 ≤ v
G

< 0 and∣∣v+G
G

∣∣ ≤ 1 for t ≥ T . Now, using (11), there exists K > 0 such that

H(t, v(t)) ≥ qK|G(t)|q−γ|v(t)|γ, t ≥ T,

hence

(p − 1)r1−q(t)h−q(t)H(t, v(t)) ≥ pKr1−q(t)h−q(t)|G(t)|q−γ|v(t)|γ

= pKr1−γ(t)h−γ(t)|h′|(p−1)(q−γ)|v(t)|γ, t ≥ T.

It follows from (14), that v is a solution of the inequality

v′ + pKr1−γ(t)h−γ(t)|h′|(p−1)(q−γ)|v(t)|γ ≤ 0,

i.e.,

− v′

|v|γ ≥ pKr1−γ(t)h−γ(t)|h′|(p−1)(q−γ)

on t ∈ [T,∞). Integrating this inequality over [T, t] we obtain

1

(γ − 1)|v(T )|γ−1
− 1

(γ − 1)|v(t)|γ−1
≥ pK

∫ t

T

r1−γ(s)h−γ(s)|h′(s)|(p−1)(q−γ) ds.

Letting t → ∞, we have

1

(γ − 1)|v(T )|γ−1
≥ pK

∫ ∞

T

r1−γ(s)h−γ(s)|h′(s)|(p−1)(q−γ) ds.

This contradicts (13). �
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Note that the case when G(t) → 0 as t → ∞ is delicate in some
sense, since in this case the integral in (13) may fail to be divergent if
γ is not sufficiently large. Hence the “usual” integral criteria to detect
principality which deal with γ = 2 (see [1, Example 1 and Remark 2])
may fail.

Using the definition (2) of the function G we can write (13) in the
form

(15)

∫ ∞

|G(t)|1−γ |h′(t)|
h(t)

dt = ∞.

The following simple corollary shows, that if the function G(t) ap-

proaches zero sufficiently fast and the fraction |h′(t)|
h(t)

does not tend to

zero faster than a power function, then h is a principal solution.

Corollary 1. Suppose that
∫ ∞

t
c(s) ds ≥ 0,

∫ ∞

t
c(s) ds 6≡ 0 for large t

and
∫ ∞

r1−q(t) dt = ∞. Suppose that there exist a positive solution h
of equation (1), real number β and positive real numbers ε and K such
that

h′(t) 6= 0 and
|h′(t)|
h(t)

≥ Ktβ for large t,

G(t) = O(t−ε) as t → ∞.

Then h is the principal solution of (1).

Proof. Let γ ≥ 2. From the assumptions it follows that there exist K1

such that
|G(t)| ≤ K1t

−ε

and hence
|G(t)|1−γ ≥ K2t

ε(γ−1)

for t ≥ T0. This shows that

|G(t)|1−γ |h′|
h

≥ KK2t
β+ε(γ−1)

and if γ ≥ γ0 := max{2, 1−(β+1)/ε}, then (15) holds and the solution
h is principal by Theorem 1. �

Example 1. Consider equation

(16) (Φ3/2(x
′))′ +

15t−3/2

(t9 − 1)1/2
Φ3/2(x) = 0, t > 1.

The function h(t) = 1−1/t9 is a solution of this equation. This solution
is a principal solution, as follows easily from Corollary 1 and from the
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fact that h(t) ∼ 1, h′(t) ∼ 9t−10 and G(t) ∼ 3t−5 near infinity. Note
that the principality of this solution has been proved in [1] and [7], but
in both cases using more advanced arguments.

4. Nonoscillation criteria

A frequently used approach in the nonoscillation criteria is to estab-
lish sufficient conditions which guarantee that the Riccati inequality
(4) has a solution in a neighborhood of infinity. This approach has
been used in [2] and [6] to show that if an expression involving integral∫

dt
r(t)h2(t)|h′(t)|p−2 and another term arising from the fact that the equa-

tion is viewed as a perturbation of another nonoscillatory equation fit
into certain bounds (limes inferior is not too small and limes superior
is not too large), then the equation is nonoscillatory. See also [8] for
summary and refinement of these results. A typical result from [8] is
the following.

Theorem B ([8, Theorem 1]). Let h be a function such that h(t) > 0
and h′(t) 6= 0, both for large t. Suppose that the following conditions
hold

(17)





∫ ∞ dt

r(t)h2(t)|h′(t)|p−2
< ∞,

lim
t→∞

|G(t)|
∫ ∞

t

ds

r(s)h2(s)|h′(s)|p−2
= ∞.

If

lim sup
t→∞

∫ ∞

t

ds

r(s)h2(s)|h′(s)|p−2

∫ t

h(s)L[h](s) ds <
1

q

(
−α +

√
2α

)
,

lim inf
t→∞

∫ ∞

t

ds

r(s)h2(s)|h′(s)|p−2

∫ t

h(s)L[h](s) ds >
1

q

(
−α −

√
2α

)

for some α > 0, then equation (1) is nonoscillatory.

In view of the results from [7] it seems to be natural to derive a vari-
ant of Theorem B and related theorems with

∫
dt

r(t)h2(t)|h′(t)|p−2 replaced

by the integral from (13). Note that we do not allow γ = 2 in Theorems
2 and 3 and from this reason these theorems do not include the results
from [2, 6, 8] as special cases. Also note that we use opposite estimates
than in the previous section and thus the condition γ ≥ 2 from Section
3 is replaced by the condition γ ∈ (1, 2) in the following theorems.
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Theorem 2. Let γ ∈ (1, 2) be a real number and γ̄ = γ
γ−1

be the

conjugate number to γ. Let h be a positive continuously differentiable
function such that h′(t) 6= 0 in some neighborhood of infnity. Denote

(18) R(t) = rγ−1(t)hγ(t)|h′(t)|(γ−q)(p−1)

and suppose that
∫ ∞

R−1(s) ds < ∞(19)

and

lim
t→∞

|G(t)|
[∫ ∞

t

R−1(s) ds

]γ̄−1

= ∞.(20)

If

lim sup
t→∞

[∫ ∞

t

R−1(s) ds

]γ̄−1 ∫ t

h(s)L[h](s) ds < ∞(21)

and

lim inf
t→∞

[∫ ∞

t

R−1(s) ds

]γ̄−1 ∫ t

h(s)L[h](s) ds > −∞,(22)

then (1) is nonoscillatory.

Proof. Denote

Y (t) :=

[∫ ∞

t

R−1(s) ds

]γ̄−1 ∫ t

h(s)L[h](s) ds.

Conditions (21), (22) imply that there exist t0 ∈ R and positive con-
stants α, c0 such that

(23) |Y (t) + α|γ <
α

c0
, for t ≥ t0.

Define the function

v(t) = −α

[∫ ∞

t

R−1(s) ds

]1−γ̄

−
∫ t

h(s)L[h](s) ds.

Then

v′(t) =
α(1 − γ̄)

R(t)
[∫ ∞

t
R−1(s) ds

]γ̄ − h(t)L[h](t)
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and

v(t)

G(t)
=

−α
[∫ ∞

t
R−1(s) ds

]1−γ̄ −
∫ t

h(s)L[h](s) ds

G(t)

=
−α − Y (t)

G(t)
[∫ ∞

t
R−1(s) ds

]γ̄−1 .

Conditions of the Theorem imply that v(t)/G(t) → 0 as t → ∞, hence,
using inequality (7) with K = c0(γ̄ − 1)(q − 1), we obtain that there
exists t1 ≥ t0 such that
(24)

(p − 1)r1−q(t)h−q(t)H(t, v(t)) ≤ c0(γ̄ − 1)r1−q(t)h−q(t)|G(t)|q
∣∣∣∣
v(t)

G(t)

∣∣∣∣
γ

= c0(γ̄ − 1)r(t)|h′(t)|p
∣∣∣∣
v(t)

G(t)

∣∣∣∣
γ

.

holds for t ≥ t1.
Consequently, if w = h−p(v + G), we have by identity (5)

hp(t)R[w](t) = v′(t) + h(t)L[h](t) + (p − 1)r1−q(t)h1−q(t)H(t, v(t))

≤ − α(γ̄ − 1)

R(t)
[∫ ∞

t
R−1(s) ds

]γ̄

+ c0(γ̄ − 1)r(t)|h′(t)|p
∣∣∣∣∣

−α − Y (t)

G(t)
[∫ ∞

t
R−1(s) ds

]γ̄−1

∣∣∣∣∣

γ

=
1

R(t)
[∫ ∞

t
R−1(s) ds

]γ̄

×
[
−α(γ̄ − 1) + c0(γ̄ − 1)

r(t)|h′(t)|pR(t)

|G(t)|γ |α + Y (t)|γ
]

=
γ̄ − 1

R(t)
[∫ ∞

t
R−1(s) ds

]γ̄ [−α + c0|α + Y (t)|γ]

< 0.

This means that (1) is nonoscillatory by Lemma 1. �

Theorem 3. Let γ ∈ (1, 2) be a real number and γ̄ = γ
γ−1

be the
conjugate number to γ. Let h be a positive continuously differentiable
function such that h′(t) 6= 0 in some neighborhood of infinity. Define
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R(t) by (18) and suppose that
∫ ∞

h(t)L[h](t) dt is convergent and

(25) lim
t→∞

|G(t)|
[∫ t

R−1(s) ds

]γ̄−1

= ∞.

If

lim sup
t→∞

[∫ t

R−1(s) ds

]γ̄−1 ∫ ∞

t

h(s)L[h](s) ds < ∞

and

lim inf
t→∞

[∫ t

R−1(s) ds

]γ̄−1 ∫ ∞

t

h(s)L[h](s) ds > −∞,

then (1) is nonoscillatory.

Proof. We take

v(t) = α

[∫ t

R−1(s) ds

]1−γ̄

+

∫ ∞

t

h(s)L[h](s) ds

and similarly as in the proof of Theorem 2, using (5), (7) and (23), we
conclude that

hp(t)R[w](t) ≤ γ̄ − 1

R(t)
[∫ t

R−1(s) ds
]γ̄ [−α + c0|α + Y (t)|γ] < 0,

where

Y (t) =

[∫ t

R−1(s) ds

]γ̄−1 ∫ ∞

t

h(s)L[h](s) ds

and α, c0 are positive constants. �

Remark 2. If we compare Theorems 2 and 3 with Theorem B and
other related results from [2, 6, 8] we can see that finite nonoscillation
constants which appear in [2, 6, 8] are replaced by ∞ and −∞. An
explanation for this phenomenon is the fact that an arbitrary constant
K can be used in (7) in contrast to the estimate used in [2, 6, 8], where
quadratic approximation is used and the constant in this approximation
has to be bigger than the second derivative of the function from this
approximation.

In the following theorems we view equation (1) as a perturbation of
another nonoscillatory equation

(26) L̃[x] :=
(
r(t)Φp(x

′)
)′

+ c̃(t)Φp(x) = 0.
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Theorem 4. Let γ ∈ (1, 2) be a real number and γ̄ = γ
γ−1

be the

conjugate number to γ. Let h be a function such that h(t) > 0 and
h′(t) 6= 0, both for large t. Let R be defined by (18) and suppose that
both (19) and (20) hold. If

lim sup
t→∞

R(t)h(t)L̃[h](t)

[∫ ∞

t

R−1(s) ds

]γ̄

< ∞,

lim sup
t→∞

[∫ ∞

t

R−1(s) ds

]γ̄−1 ∫ t

hp(s)
(
c(s) − c̃(s)

)
ds < ∞

and

lim inf
t→∞

[∫ ∞

t

R−1(s) ds

]γ̄−1 ∫ t

hp(s)
(
c(s) − c̃(s)

)
ds > −∞,

then (1) is nonoscillatory.

Proof. Denote

Y (t) =

[∫ ∞

t

R−1(s) ds

]γ̄−1 ∫ t

hp(s)
(
c(s) − c̃(s)

)
ds.

From the assumptions of the theorem it follows, that there exist positive
numbers c0, T0 and α (c0 sufficiently small and T0, α sufficiently large)
such that

f(c0, α, t) := R(t)h(t)L̃[h](t)

[∫ ∞

t

R−1(s) ds

]γ̄

+α(1−γ̄)+c0(γ̄−1)|α+Y (t)|γ < 0

for every t ≥ T0. Consider functions v and w defined by

(27) v(t) = −α

[∫ ∞

t

R−1(s) ds

]1−γ̄

−
∫ t

hp(s)
(
c(s) − c̃(s)

)
ds

and w(t) = h−p(t)
(
v(t) + G(t)

)
. According to (5) we have

hp(t)R[w](t) = v′(t) + h(t)L[h](t) + (p − 1)r1−q(t)h−q(t)H(t, v(t))

= α(1 − γ̄)
[∫ ∞

t

R−1(s) ds
]−γ̄

R−1 + h(t)L̃[h](t)

+ (p − 1)r1−q(t)h−q(t)H(t, v(t)).
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As in the proof of Theorem 2, there exists T1 ≥ T0 such that (24) holds
for every t ≥ T1. Sumarizing these computations we get

hp(t)R[w](t) ≤ α(1 − γ̄)
[∫ ∞

t

R−1(s) ds
]−γ̄

R−1(t)

+ h(t)L̃[h](t) + c0(γ̄ − 1)r(t)|h′(t)|p
∣∣∣
v(t)

G(t)

∣∣∣
γ

for t ≥ T1 and hence

hp(t)R[w](t) ≤ R−1(t)
[∫ ∞

t

R−1(s) ds
]−γ̄

f(c0, α, t) ≤ 0

holds for t ≤ T1. The equation (1) is nonoscillatory by Lemma (1). �

Theorem 5. Let γ ∈ (1, 2) be a real number and γ̄ = γ
γ−1

be the

conjugate number to γ. Let h be a function such that h(t) > 0 and
h′(t) 6= 0, both for large t. Let R be defined by (18) and suppose that∫ ∞

hp(c(t) − c̃(t)) dt is convergent and (25) holds. If

lim sup
t→∞

R(t)h(t)L̃[h](t)

[∫ t

R−1(s) ds

]γ̄

< ∞,

lim sup
t→∞

[∫ t

R−1(s) ds

]γ̄−1 ∫ ∞

t

hp(s)
(
c(s) − c̃(s)

)
ds < ∞

and

lim inf
t→∞

[∫ t

R−1(s) ds

]γ̄−1 ∫ ∞

t

hp(s)
(
c(s) − c̃(s)

)
ds > −∞

then (1) is nonoscillatory.

Proof. Denote

Y (t) =

[∫ t

R−1(s) ds

]γ̄−1 ∫ ∞

t

hp(s)
(
c(s) − c̃(s)

)
ds.

Analogously to the proof of Theorem 4, there exists T0 ∈ R and positive
constants α, c0 such that

f(c0, α, t) := R(t)h(t)L̃[h](t)

[∫ t

R−1(s) ds

]γ̄

+α(1−γ̄)+c0(γ̄−1)|α+Y (t)|γ < 0.

Conditions of the theorem imply that v(t)/G(t) → 0 as t → ∞, where

v(t) = α

[∫ t

R−1(s) ds

]1−γ̄

+

∫ ∞

t

hp(s)
(
c(s) − c̃(s)

)
ds,
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hence, defining w = h−p(v + G), using identity (5) and inequality (7),
we have

hp(t)R[w](t) = α(1 − γ̄)

[∫ t

R−1(s) ds

]−γ̄

R−1(t)

+ h(t)L̃[h](t) + (p − 1)r1−q(t)h−q(t)H(t, v(t))

≤ α(1 − γ̄)

[∫ t

R−1(s) ds

]−γ̄

R−1(t)

+ h(t)L̃[h](t) + c0(γ̄ − 1)r(t)|h′(t)|p
∣∣∣∣
v(t)

G(t)

∣∣∣∣
γ

= R−1(t)

[∫ t

R−1(s) ds

]−γ̄

f(c0, α, t) ≤ 0.

Nonoscillation of (1) follows from Lemma 1. �
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[4] O. Došlý, S. Fǐsnarová, Half-linear oscillation criteria: Perturbation in term
involving derivative, Nonlinear Anal. 73 (2010), 3756–3766.
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