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Abstract

A characterization of exponential stability for a 1-periodic evolu-

tion family of bounded linear operators acting on a Banach space in

terms of lower semicontinuous functionals is given.

1 Introduction

Let T = {T (t)}t≥0 be a strongly continuous semigroup on a Banach space X
and x ∈ X. We denote by fx the map t 7→ ||T (t)x||. The Datko-Pazy theorem
is well known. It says that the semigroup T is uniformly exponentially stable
if and only if for each x ∈ X the function fx belongs to Lp([0,∞)) for some
1 ≤ p < ∞. See [3] for p = 2 and [9] for the general case. Jan van Neerven
has shown that a part of this result still works replacing Lp([0,∞)) by any
Banach function space as in [7, Theorem 3.1.5].

Moreover an autonomous variant of Rolewicz theorem says that if φ :
[0,∞) → [0,∞) is a nondecreasing function such that φ(t) > 0 for every

1This paper is in final form and no version of it will be submitted for publication

elsewhere.
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t > 0 and if for each x ∈ X the map φ ◦ fx belongs to L1([0,∞)), then T is
exponentially stable. Recently, Jan van Neerven obtained characterizations
of exponential stability for semigroups in terms of lower semicontinuous func-
tionals. The aim of this note is to extend the Neerven result from semigroups
to periodic evolution families.

A family U = {U(t, s))}t≥s≥0 of bounded linear operators acting on a
Banach space X, is called a 1-periodic evolution family if:

1. U(t, t) = I (I is the identity operator on X);
2. U(t, s)U(s, r) = U(t, r) for every t ≥ s ≥ r ≥ 0;
3. U(t + 1, s + 1) = U(t, s) for every t ≥ s ≥ 0;
4. sup0≤s≤t≤1 ||U(t, s)|| = M < ∞.
An 1-periodic evolution family U is called measurable if for each x ∈ X

the map t 7→ ||U(t, 0)x|| is measurable. This notion will be used in the
Corollary 2.3 below.

Practically one parameter semigroups will always occur with U(t, s) =
T (t − s).

It is easy to see that such family U has a growth bound, that is, there
exist ω ∈ R and Mω ≥ 1 such that

||U(t, s)|| ≤ Mωeω(t−s) for every t ≥ s ≥ 0. (1)

We say that the family U is exponentially stable if we can choose a negative
ω such that the estimation (1) holds. Let V := U(1, 0) be the monodromy
operator associated with the family U . It is well-known, see e.g. [1], that
the family U is exponentially stable if and only if the spectral radius of the
operator V satisfies r(V ) < 1.

We denote by M loc [0,∞) the space of all locally bounded functions on
[0,∞) endowed with the topology of uniform convergence on bounded sets.

By M+

loc [0,∞) we denote the positive cone of M loc [0,∞). The fol-
lowing result holds:

Theorem 1.1 Let J : M+

loc [0,∞) → [0,∞] be a map with the following
properties:

1. J is lower semicontinuous;
2. J is nondecreasing, i.e. if f, g ∈ M+

loc [0,∞) and 0 ≤ f ≤ g then

J(f) ≤ J(g);
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3. for each natural number k and any positive ρ there exists t ≥ 0 such
that J(ρ · 1[0,t]) > k.

If a 1-periodic evolution family U is not exponentially stable then the set

{x ∈ X : J(||U(·, 0)x||) = ∞}

is residual, that is, its complement is of the first category.
Here 1[0,t] is the characteristic function of the interval [0, t].

The proof of Theorem 1.1 is based on the following operator theoretical
result which was proved by Jan van Neerven in [8]:

Theorem 1.2 Let T be a bounded linear operator on a Banach space X
and assume that its spectral radius satisfies r(T ) ≥ 1. Then for all x ∈ X
and δ > 0 there exists a positive constant C with the following property: for
all n ∈ N (N is the set of all natural numbers) there exists y ∈ X such that
||x − y|| < δ and ||T jy|| ≥ C for all j = 0, 1, · · · , n.

A natural consequence of Theorem 1.1 is the following result which ex-
tends a similar one from [8]:

Theorem 1.3 Let J as in the above Theorem 1.1 and T = {T (t)}t≥0

be a locally bounded semigroup on a Banach space X, i. e. a semigroup of
operators for which sup{||T (t)|| : t ∈ [0, 1]} < ∞. If T is not exponentially

stable, i.e. its uniform growth bound ω0(T) := inf
t>0

ln ||T (t)||
t

is nonnegative,

then the set
{x ∈ X : J(||T (·)x||) = ∞}

is residual.

Particularly we can obtain the following generalization of a semigroup
version of the Rolewicz theorem and of the Datko-Pazy theorem see for ex-
ample [2], [10], [4], [7],[6], [5].

Theorem 1.4 Let φ be a [0,∞)-valued, nondecreasing function on [0,∞)
such that φ(t) > 0 for all t > 0 and T = {T (t)}t≥0 be a locally bounded
semigroup on a Banach space X. If T is not exponentially stable, then the
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set

{x ∈ X :

∞∫

0

φ(||T (t)x||)dt = ∞}

is residual.

Proof. The fact that T is locally bounded implies that for each x ∈ X
the map t 7→ ||T (t)x|| is measurable. Now we can apply the above Theorem

1.1 for the functional J(f) :=
∞∫
0

φ(f(t))dt defined for any locally bounded

and measurable function f on [0,∞).

2 Proof of Theorem 1.1 and other

consequences

Using Theorem 1.2 we can establish the following simple Lemma.

Lemma 2.1 If a 1-periodic evolution family U is not exponentially stable
(or equivalently if r(V ) ≥ 1) then for each x ∈ X and each positive constant
δ, there exists a positive constant L with the following property: for all t ≥ 0
there exists y ∈ X such that ||y − x|| < δ and

||U(s, 0)y|| ≥ L for all s ∈ [0, t]. (2)

Proof of Lemma 2.1. Let C be as in Theorem 1.2, t ≥ 0, s ∈ [0, t] and
n = [s] + 1, where [s] denotes the integer part of s i.e. the biggest natural
number which is less than or equal to s. We choose y as in Theorem 1.2 and
we have:

C ≤ ||V ny|| = ||U(n, 0)y||
= ||U(n, s)U(s, 0)y|| = ||U(1, s − [s])U(s, 0)y||
≤ M ||U(s, 0)y||.

This shows that (2) holds with L = C
M

.
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Proof of Theorem 1.1. We shall use the same ideas as in the proof of
Theorem 4 in [8]. We may suppose that (1) is fulfilled with some positive ω.
Thus from (1), using the fact that each operator U(t, 0) is linear, follows the
continuity of the map x 7→ ||U(·, 0)x||. The lower semicontinuity of J and
the continuity of the map x 7→ ||U(·, 0)x|| implies that for each k = 1, 2, · · · ,
the set

Xk := {x ∈ X : J(||U(·, 0)x||) > k}

is open. Then is suffices to prove that each Xk is dense in X.
Let x ∈ X and δ > 0. We choose the constant L as in Lemma 2.1. Then

for every k = 1, 2, · · · there exist tLk
≥ 0

and yk ∈ X with ||yk − x|| < δ and J(L · 1[0,tL
k
]) > k such that

||U(s, 0)yk|| ≥ L for every s ∈ [0, tLk
].

Finally we obtain:

J(||U(·, 0)yk||) ≥ J(||U(·, 0)yk|| · 1[0,tLk
])

≥ J(L · 1[0,tL
k
]) > k,

that is, yk ∈ Xk.

In the end of this note we mention the following result which characterizes
the exponential stability of periodic evolution families in terms of Banach
function spaces.

Theorem 2.2 Let E be a Banach function space over [0,∞) such that

lim
t→∞

||1[0,t]||E = ∞

and U be a 1-periodic evolution family which is not exponentially stable. Then
the set

{x ∈ X : ||U(·, 0)x|| /∈ E}

is residual.

The details of the proof can be found in [8, page 485]. We remark here
that Jan van Neerven have not used the measurability condition in his proof
from [8].
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Corollary 2.3. Let E as in the Theorem 2.2. We suppose that the norm
of E has the Fatou property (see [8]) and that U is a 1-periodic and measurable
evolution family. If the set of all x ∈ X for which the map ||U(·, 0)x|| belongs
to E is of second category in X, then U is exponentially stable.

Proof. The proof is modelled after [8]. Using the Fatou property follows
that for each natural number k the set

Yk := {x ∈ X : |||U(·, 0)x|||E ≤ k},

is closed. By assumption follows that ∪k≥1Yk is of the second category, so
there exists k0 such that Yk0

has nonempty interior. Moreover, if the open
ball with centre in x and radius 2δ > 0 is contained in Yk0

then by the triangle
inequality in E, the ball with centre in origin and radius 2δ is contained in
Y2k0

. Then for each nonzero x ∈ X, we have:

|||U(·, 0)x|||E =
||x||

δ
|||U(·, 0)(

δ

||x||
x)|||E < ∞.

In order to obtain the assertion we apply Theorem 4.5 from [1].
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[8] J. M. A. M. van Neerven, Lower semicontinuity and the theorem of
Datko and Pazy, Integral Equations Operator Theory, 42(2002), 482–
492.

[9] A. Pazy, Semigroups of Linear Operators and Applications to Partial
Differential Equations, Springer, Berlin-Heidelberg-New York-Tokyo,
(1983).

[10] S. Rolewicz, Functional Analysis and Control Theory (D. Riedel and
PWN-Polish Scientific Publishers, Dordrecht-Warszawa, 1987).

(Received July 23, 2003)

EJQTDE, Proc. 7th Coll. QTDE, 2004 No. 5, p. 7


