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1. Introduction and main results

In this paper, we consider the p-Laplacian system

ile)P=2a() + YV (L u(t) = 70 (L1)

where p > 1, V(t,x) = —K(t,z) + W(t,z), K,W € C*(R x RY R) and f : R — RY
is a continuous and bounded function. A solution u(t) is nontrivial homoclinic (to 0) if
u(t) # 0, u(t) — 0 and u(t) — 0 as t — £00. Let ¢ > 1 and ; + = 1.

When p = 2, system (1.1) reduces to the second order Hamiltonian system

i(t) + VV(tu(t) = f(t) (1.2)
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Since 1978, lots of contributions on the existence and multiplicity of homoclinic solu-
tions for system (1.2) have been presented (for example, see [1, 2, 3, 4, 5, 6, 7, 8, 9, 11,

13, 14, 15, 16, 18] and references therein). Most of them considered the following system:
i(t) — L(t)u(t) + VW (t,u(t)) =0, (1.3)

where L(t) is a symmetric matrix value function and W satisfies the following AR-
condition:

(W1) there exists u > 2 such that
0 < puW(t,z) < (VW(t,z),z), V(t,z) € Rx (RV/{0}). (1.4)

In 2005, Izydorek and Janczewska [14] considered system (1.2), more general than

system(1.3), and obtained the following result:

Theorem A Assume that V and f satisfy (W1) and the following conditions:
(V) V(t,z) = —K(t,x) + W(t,z), where K,W : R x RN — R are C'-maps, T-periodic
with respect tot, T > 0;

(K1) there are constants by, by > 0 such that for all (t,r) € R x RY,
bilef* < K(t, 2) < bofa]?;

(K2) for all (t,z) e R x RY, K(t,7) < (z,VK(t,x)) < 2K(t,z);
(W2) VW (t,z) = o(|z|), as |x| = 0 uniformly with respect to t;

(f) by := min{1,2b:} > 2M and || f|2@r) < El;Tz*M, where

M= sup W(tx) (1.5)

te[0,T],|x|=1
and C* is a positive constant that depends on T. When T > 1/2, C* = 1/2. Then system

(1.2) possesses a nontrivial homoclinic solution.

Since then, several results for system (1.2) in this direction have been obtained (see

[11] and [18]). When p > 1, the following result can be seen in [17]:

Theorem B Assume that V and f satisfy assumptions (V) and the following conditions:
(11) there exist constants b > 0 and v € (1, p| such that

K(t,0)=0, K(t,z)>blz|", forall (t,z) € R x RY;
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(12) there is a constant 6 > p such that
K(t,z) < (VK(t,x),z) < 0K(t,x), for all (t,r) € R x RY;

(I3) W (t,0) =0 and VW (t,x) = o(|z|P7"), as |x| = 0 uniformly with respect to t;

(14) there are two constants p > 60 and v € [0, u — 0) such that
0 < uW(t,x) < (VW(t,z),z) +vblz|", for all (t,z) € R x RY /{0};

(15)
P
lim inf Witr) 7
|z|—o0 ’.]7‘9 pr

+my  uniformly with respect to t,

where

my = sup{ K (£, )|t € [0, T],x € RN, [a] = 1};

/’f th<( — 1m1n{5p 1 (1__) 57—1—M5M—1})q’
,C =

where M is determined by (1.5), Il)—i— e (1 + [5])/? and 6 € (0,1] such that

( Y ) bo7 "t — M&* ! = max ((1 _ Y bl — Ma:“1> .
="y 2€[0,1] =y

Then system (1.1) possesses a nontrivial homoclinic solution.

(16)

For the p-Laplacian system (1.1) with f(f) = 0 and K(t,z) = 0 (or K(t,z) =
(L(t)|z[P~2z, x), where L € C(R,RY") is a positive definite symmetric matrix), recently,
under different assumptions, some results on the existence and multiplicity of periodic
solutions, subharmonic solutions and homoclinic solutions have been obtained (for ex-
ample, see [21, 22, 23, 24, 25, 26]). In [21], the authors considered the existence of
subharmonic solutions for system (1.1) with f(¢) = 0 and K(¢t,z) = (L(t)|z|P "%z, ),
where L € C(R,RY 2) is a positive definite symmetric matrix. Under some reasonable
assumptions, they obtained that the system has a sequence of distinct periodic solutions
with period k;T satisfying k; € N and k; — oo as j — oo. In [22], the authors considered
the existence of homoclinic solutions for system (1.1) with f(¢) = 0. They assumed that
W is asymptotically p-linear at infinity, K satisfies (K1) and W and K are not periodic in

t. In [23]-[26], the authors considered the existence and multiplicity of periodic solutions
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for system (1.1) with f(¢t) = 0 and K(¢,z) = 0. Motivated by [11, 14, 17, 18], in this
paper, we consider the existence of homoclinic orbits for system (1.1) and present some

new existence criteria. Next, we state our main results.
Theorem 1.1. Assume that f # 0, W and K satisfy (V) and the following conditions:
(H1) there exist v € (1,p) and a > 0 such that

K(t,x) > al|z|”, for all (t,x) € [0,T] x RY;

(H2) K(t,0)=0, (z,VK(t,x)) <pK(t,z), forall (t,x) € [0,T] x RN;
(H3) (i) there exist r € (0,1] and 0 < b < a such that

W(tx) < blel?, ¥ |a] < r: (L6)

or (i) there exist r > 1 and 0 < b < ar?™P such that (1.6) holds;

(H4)
»
lim Wi(t,z) =
2| —s+oo  |x|P pIP

+ Ay uniformly for all t € [0, T,

where

Ay = a K(t. z);
0 |z|=rfte}[{o,ﬂ (¢, z);

(H5) there exist positive constants £,n and v € [0,y — 1) such that
1
0< <p + §+—77‘55|V) W(t,x) < (VW(t,z),x) for all (t,z) € [0,T] x RY;

(H6) f € LYR,RN)N f € L 1(R,RY) and

p—1

1
(@) Nflo@rry < %min {1—),(1 — b}, when 1 € (0,1],

0

. rp=t 1 a
(44) ||f||Lq(R,RN) < o min ]—9, —by, when r € (1,400),

5 rp—y
where
1 1 1/27
Cy = {max{ﬁ—k%,é}} , when p# 2,
and

, when p=2.

1++1+47T2
Co=\—"m7

Then system (1.1) possesses a nontrivial homoclinic solution.
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Next, we present an example of K and W, which satisfies (H1)-(H5) but does not
satisfy those conditions in [11, 14, 17, 18].

Example 1.1. Let p = 5,
1
K(t,z) = ln(2—5 +2)|z|* + |z|°, W(t,z) = |z’ In(|z|” + 1).

Choose v = 4 and @ = In(35 + 2). Then it is easy to verify that (H1) and (H2) hold. If

one chooses r = %, then
1 5
W(t,z) < ln(ﬁ + 1)|x]?, V|z| <.

Choose b = In(55 + 1). Then (H3)(i) holds. Obviously,
Wi(t,x)

m = +oo uniformly for all ¢ € [0, T7.
|x| =400 ’SL’|5

(H4) holds. Moreover, note that
5¢|z|° > In(|z|> + 1) and 5n|z|* > In(jz|> + 1), for all z € RY,
when we choose sufficiently large £ and 7. Hence
5¢|a|> + 5nlz|" = In(|z* + 1) + In(|z]* + 1)|2]”

5(€ +nlz[*)|=* = In(l2” + 1)(|2]” + 1)

5(€ +nlz[*)|=" = |2 In(|a]” + 1)(|2* + 1)
Sl e In(l=” + 1)
[P +1 7 Sl

[

— (VW(t,z),z) —5W(t,xz) > Wit z).

for all z € RY
&4l ’

which implies that (H5) holds.

Theorem 1.2. Assume that f # 0, W and K satisfy (V), (H1)-(H5) and the following
conditions:
(H6) f € L*(R,RY) and

rp—1

1
(1) HfHLl(R,RN) < Fmin{]—?,a— b}, when r € (0,1],
0

. rp=t 1 a

’ 4 ) — ) ) .

(i) [ fllor@eyy < C mln{p o —b} when 1 € (1,4+00)
0
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Then system (1.1) possesses a nontrivial homoclinic solution.

Theorem 1.3. Assume that f # 0, W and K satisfy (V), (H2), (H4), (H5) and the
following conditions:

(H1) there ezists a > 0 such that
K(t,x) > al|z|P for all (t,z) € [0,T] x RY;
(H3) there exist r > 0 and 0 < b < a such that
W(t,z) <blaf’, V [z <r;
(H6)' f e LYR,RV)N f € L-v1(R,RY) and
sz < ompmin {2},

0

Then system (1.1) possesses a nontrivial homoclinic solution.

Theorem 1.4. Assume that f # 0, W and K satisfy (V), (H1), (H2), (H3), (H4),
(H5) and the following condition:
(H6)" f € LY(R,RY) and

Pl (1
[ fllz @ rry < v min {;a — b} )
Then system (1.1) possesses a nontrivial homoclinic solution.

Remark 1.1. Theorem 1.3 and Theorem 1.4 show that f can be large when r is large,
which is different from Theorem A and Theorem B. Moreover, in Theorem 1.1 and The-

orem 1.2, if r € (1,4+00), it is also possible that f can be large.

Theorem 1.5. Assume that f = 0, W and K satisfy (H1), (H4) and the following
conditions:
(H2) K(t,0) =0, K(t,r)<(z,VK(t,x)) <pK(t,z) forall (t,x) € [0,T] x RY;

(H3)" there exist v > 0 and 0 < b < ar?’™? such that
W(t,x) <blz|’, Vl|z| <r;
(H5) there exist positive constants &1 and v € [0,v) such that
0< (p + ﬁ) W(t,2) < (VW(t,2),2), forall (t,2) € [0,T] x RY;
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(H7) Y (0) < min{1,a}, where the function Y : [0,+00) — [0, 400) is defined by

o (YW(ta)a)
Yis)= max —op
0<|z|<s

for s >0 and

t
Y(0) = lim Y(s) = lim max M
s—0+ s=0F JEDT] |z|P

Then system (1.1) possesses a nontrivial homoclinic solution.

Theorem 1.6. Assume that f =0, W and K satisfy (H1), (H2), (H3), (H4), (H7)

and the following conditions:

(H5)" there ezist positive constants £,m and v € [0,p) such that
1
0< (p + f+—77‘1'|”) W(t,z) < (VW(t,x),z) forall (t,z) €[0,T] x RY.

Then system (1.1) possesses a nontrivial homoclinic solution.

2. Preliminaries

Similar to [11, 14, 17, 18], we will obtain the homoclinic orbit of system (1.1) as a

limit of solutions of a sequence of differential systems:

Cale)Pa(0) + YVt u(t) = filt), (2.)

where f, : R — R is a 2kT-periodic extension of restriction of f to the interval
[—kT,kT), k € N,
For p > 1, let L}, (R, RY) denote the Banach space of 2kT-periodic functions on R

with values in RY and the norm defined by

kT 1/p
lull s, = ( | \u<t>rpdt) .

Let L35, (R,RY) denote a space of 2kT-periodic essential bounded (measurable) functions

from R to RY equipped with the norm

ul| g, = esssup{|u(t)|,t € [-KT,kT]}.

EJQTDE, 2013 No. 67, p. 7



For each k € N, define Ej, = W% by

Wob = {u: R — RY|u(t) is absolutely continuous on [—kT, kT, u(t + 2kT) = u(t)

and @ € LP([—kT, kT); RM)}.
On W, we define the norm as follows:

kT kT 1/p )
e = [ [ wtorae+ [ jaopa] . wewl.

—kT —kT

Then (Wzl,;’}, -1l Ek) is a reflexive and uniformly convex Banach space (see [19], Theorem

3.3 and Theorem 3.6).

Lemma 2.1. Let ¢ > 0 and u € WY (R,RY). Then for every t € R, the following

imequalities hold:

o = 0 ([ aopan) s ([Mara) L e2)

hmner([Twwww+[fﬁwW@fm (23)

t+1 t+1 /p
u(t)| < (/t |u(3)|Pd5—|—/tl |u(s)|pds> (2.4)

2 2

and

Proof. Fixt € R. Then for every 7 € R,

u(t) = u(r) +/ u(s)ds. (2.5)

Set
s—t+c, t—c<s<t,
t+c—s, t<s<t+c

Integrating (2.5) on [t — ¢, t + ¢| and using the Holder’s inequality, we have

2clu(t)] < /ttjcl )| dr + / /|u )|dsdr
[t [ [atasar+ [ [ jacojass

—C

IN

IN
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= [Tt [ oot

—C

< e ([ utopar ) i (o) " ([ ratsyeas) "

t+c 1P 91/q.la+1)/q t+c 1/p
= (20)1/‘1 (/ |u(7)|pd7) 4+ </ |u(s)|pds) ) (2.6)
¢ ¢

—c (g+1)Ye \ e
So (2.2) holds. Let ¢ =1 and ¢ = 1/2, respectively. Then (2.3) and (2.4) hold.
Remark 2.1. When p = 2, Lemma 2.1 reduces to Lemma 2.2 in [12] and (2.4) improved

Lemma 2.2 in [17].

The following (2.8) and its proof have been given in [11] (see [11], Lemma 2.2). Here,
for readers’ convenience, we also present it. In our Lemma 2.2, our main aim is to present

the following (2.7) which generalizes Lemma 2.2 in [11] in some sense.
Lemma 2.2. For every k € N, if p> 1 and u € Ey, then

ull g, < P " /le<>|”d +/kTi‘()Il”d v (2.7)
Ullrge, = |Mmax ST 5 % 7kTus S 7kTus S ; .

If p=2 and u € F, then the following better result holds:

ol <\/ LA ([ ugppas+ [ |u<s>|2ds)1/2. 28)

T 4kT kT kT

Proof. Let ¢t € [—kT,kT| and t* € [t,t + 2kT] such that

, 1 kT , )
uDP = iz [ fuPds and u(t)] = _max ().
Then
[u(@)” = [u(®)[” +P/t_ (lu(s)[P~2u(s), (s))ds (2.9)
and
ut” = 2kT)|P = |u()]” — p/t*_M(IU(S)I”_QU(S)? u(s))ds (2.10)

It follows from (2.9), (2.10) and Young’s inequality that

()" = 5 [u@) + |u(® = 2RT) ]

)
1
5 *

SOF + 5@ + 5 [ () 2ute),afe)ds
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t* t
< lu@P+? / ()P i)\ s + 2 / fu(s) [P~ i) ds
2 Jr 2 Ji okt
}
= ®P 5 [ )P i)
t*—=2kT
1 kT p kT .
= — uspds+—/ w(s)|P~|u(s)|ds 2.11
sir | uras+ 5 [ juGe)piGs) (2.11)
o p (T TP s
< — u(s pds—l——/ [ + }ds
2T —kT| ()l 2 —kT q p
1 P 1} {/kT /kT ' ]
< u(s)|Pds + u(s)[Pds
Fragp | leras [ )

max { 51T + —
= max {_QkT + p_2 ,5} [/kT |u(s)|Pds + /kT |U(s)|pds]
When p = 2, it follows from (2.11) and Young’s inequality that

kT kT
@ < g [P [ ol

2T o
< 1 kT| (s)[2ds + / 5)[2d
e u\s S S
- 2kT 1+\/1+4k‘T

+1+\/1+47’fT/ s)|2ds
1+\/m[/w (s)] ds+/kT]u(s)\2ds].

—kT

Corollary 2.1. For every k € N, if p > 1 and u € Ey, then

lullzs, < Lpo /kT\ ()P +/kT|'<>1pd T e
U,LSET_ max 2T 2 2 _kTUS S _kTUS S 3 .

If p =2 and u € Ey, then the following better result holds:

b, < T ([ s [ ) e

—kT

Remark 2.2. It is easy to verify that Corollary 2.1 improves Corollary 2.1 in [17].

Corollary 2.2. Ifp>1 and u € E}, then there exists kg € N such that for all k > ko,

kT kT 1/p
lullzs, < C* ( / u(s)[Pds + / |u(s)|pds) (2.14)
—kT —kT

where C* > [max{pfl, %Hl/p.

2
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Proof. It follows from sequences {[max {% + ’%1, %}]l/p} and {\/ 1+ 1+4k777 W} are

decreasing and
1 p—1 1)1 p—1 1)1
—_t—, = — —_— = k —
[maX{QkT+ 5 ,2” max 5 % , as o0

\/1+\/1+4k2T2_>\/§

and

ART 7, as k — 0.

Remark 2.3. Corollary 2.2 generalizes (3.3) in [11].

Define 1 : Ej, — [0, +00) by

() = ( / ol + KL, u<t>>1dt) v

kT

and ¢y : Ey — R by

at) = [ [aor-vieaw]as [ gio.uena
1 kT kT

= - [ W [ (G

p —kT —kT

It is easy to obtain that ¢ € C'(Ey, R) and for u,v € Ey,

kT

o) = [ a2, o0) - (Ve u®) o] do+ [ Gl

—kT —kT

kT
= / [(la@)P~2a(t), o(t)) + (VE(t u(t)), v(t)) = (VW (L, u(t)), v(1))] dt

—kT

+ / (fult), o(t))dt.

kT

By (H2) or (H2)', for all u € E}, we obtain

kT

[|a(®)]P~2 + pK(t, u(t))] dt—/ (VW (t,u(t)),u(t))dt

—kT

kT

(h(u)u) < /

—kT
kT
[ (o).
—kT
It is well known that critical points of ¢ correspond to solutions of system (1.1).

Different from [11, 14, 17], we shall use one linking method in [20] to obtain the critical

points of ¢ (the details can be seen in [20]). Let (£, || - ||) be a Banach space. Define the
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continuous map I' : [0,1] x E — E by I'(¢t,x) = I'(t)z, where I'(¢) satisfies the following

conditions:
1) I'(0) = I, the identity map.

2) For each t € [0,1), I'(¢) is a homeomorphism of E onto E and I'"'(t) € C(E x
0,1), E).

3) ['(1)E is a single point in £ and I'(¢)A converges uniformly to I'(1)E as t — 1 for
each bounded set A C E.

4) For each ty € [0,1) and each bounded set A C E,

sup {[T(Eull + [T (F)ul]} < oo,
<t<tq
ucA

Let @ be the set of all continuous maps I as defined above.

Definition 2.1. (see [20], Definition 3.2) We say that A links B[/hm] if A and B are
subsets of E such that AN B = 0, and for each T' € ®, there is a t' € (0,1] such that
T(tYANB#0D.

Example 1. (see [20], page 21) Let B be an open set in E, and let A consist of two
points ey, e; with e; € B and e; € B. Then A links 9B[hm].

We use the following theorem to prove our main results.

Theorem 2.1. (see [20], Theorem 3.4 and Theorem 2.12) Let E be a Banach space,
p € CY(E,R) and A and B two subsets of E such that A links B[hm]. Assume that

sup p < infp
A B

and

c:= inf su T'(s)u) < oo.
FE(bsg[olg]qJ(())
ue

Let (t) be a positive, nonincreasing, locally Lipschitz continuous function on [0, 00) sat-
isfying fooow(r)dr = o00. Then there ezists a sequence {u,} C E such that p(u,) — ¢
and @' (u,)/Y(||un||) — 0, as n — oo. Moreover, if ¢ = sup, @, then there is a sequence

{u,} C E satisfying p(u,) — ¢, ¢'(un) — 0, and d(u,, B) = 0, as n — oo.
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Remark 2.4. Since A links B, by Definition 2.1, it is easy to know that ¢ > infg .

By [20], if we let ¢(r) = ﬁ, the sequence {u,} is the Cerami sequence, that is {u,}

satisfying

p(un) = ¢, (14 [lunlDll¢"(un)| = 0, as n — oo.

3. Proofs of theorems

For convenience, we denote by C;, ¢ = 1,... various positive constants. When p > 1

1 p—11)1"
o= moc{ g+ P53

1+ V144772
C(]: T.

and p # 2, let

and when p = 2, let

Lemma 3.1. Suppose that (H2) or (H2) holds. Then

K(t,z) <K (t, ’x—‘) |z|P for allt € R, |x| > 1;
x

T

||

Proof. Since the function ¢ € (0,+o00) — K(t,£7'x)&P is nondecreasing, the proof is

K(t,x) > K (t, ) |z|P for allt € R, |z| < 1.

easy to be completed.

Lemma 3.2. Suppose that (H1) or (H1) holds. Then for any u € E,

Mo (w) 2 min{|[ul/g,, paCy " llully, }, VR €N

Proof. It follows from (2.7), (H1) or (H1)" and v < p that for any u € E,

kT
) = / [a(6)P + pK (¢, u(t))] dt

v

kT
: Y—p
[ (it + palli Juoyr] ai
kT

/_ |a(t)|Pdt +p&<COHUHEk)’y_p/ |u(t)|Pdt

—kT

Y]
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> min{l,pa(COHUHEk)W_p}HUH%k

= minJull}, paCy lul}, -

Proof of Theorem 1.1. We divide the proof into the following Lemma 3.3-Lemma 3.5.

Lemma 3.3. Under the assumptions of Theorem 1.1, for every k € N, system (2.1) has

a nontrivial solution uy i Ej.

Proof. We first construct A and B which satisfy assumptions in Theorem 2.1.
(i) when r € (0, 1], by Corollary 2.1, (H1), (H3)(i), Holder inequality and v < p, for

u € By, with ||u||g, = r/Co, we have

Al 2 St - f Z|u<t>|pdt—( / Zlf(t)lth)l/q ( /ZTT|U(t)|pdt)1/p

1 kT kT
> 1 / a(t)P + palu(t)[) dt — b / ()Pt
P J_kr —kT
kT 1/q kT 1/p
—(/ If(t)!th> (/ ru<t>|pdt)
—kT —kT
1 kT kT kT
> 1 / ()Pt + a(Collull s, / ()Pt — b / o
P J_kr —kT —kT
11 ooy 1l
. 1 _
> min {5 - b} ll?, — 11 ol
. 1
> min {5"‘ _ b} el — 1 ooyl (3.1)

(H6)(i) implies that there exists oz > 0 such that

op(u) > a >0, forall u € Ey, with ||ul|g, = C’L’ Vk € N.
0

(ii) when r € (1,400), by Corollary 2.1, (H1), Holder’s inequality and ~ < p, for

u € By, with ||ul|g, = r/Co, we have

1 kT kT kT
o) = o [ jatopdt +aCollle) ™ [ upae=s [ jutop
D J-kr —kT —kT
_HfHL‘I(R;RN)”uHEk
N .
> min{ 207 <ol — s (32)

(H6)(ii) implies that there exists a > 0 such that

op(u) > a >0, forall u € Eyr with ||lu||g, = CL’ Vk € N.
0
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By Lemma 3.1 and the periodicity of K, there exists a constant By > 0 such that
K(t,z) < Ag|z|P + By, forall (t,7) € R x RY. (3.3)

where

Ay= max K(t z).

|z|=1,t€[0,T]

By (H4), we know that there exist € > 0 and L > 0 such that

P

Wi(t,xz) > ( T + Ay + 50) |z|P, forall t € R and V|z|> L. (3.4)
D

By (3.4) and the periodicity of W, there exists a constant By > 0 such that
p
W(t,x) > (% A+ 50> P — By, forall (t,2) € R x RV, (3.5)
p
Define wy, € E) by
(|sin %t],0,...,0) ift e [-T,T]
w(t) =
0 if t € [—kT,kT)/[-T,T).

Since K (t,0) = 0 and W (t,0) = 0 which is implied by (H5), we have ¢k (§wy) = ¢1(Ewr)
for all £ € R. Then by (3.5), we have

ep(§wy) = @1(&wn)
Trq -
— /T L—?|§w1(t)|P+K(t,§w1(t))—W(t,gwl(t))] dt+/T(f1(t)7§w1(t))dt
pop [T T
= ETZ_ /_T’COS%t\deAo\élp /_T|sin %t|pdt+2TBO

P O
- (]ﬁ —|—A0 +€0) |§|p /_T|sm Tt|pdt+2TBl

T : T - 1
+[¢] </_T\f1(t)\th) (/_T|sin ?t\pdt)

T
= —50|§|p/ | cos %t|pdt—|—2TBo
T

T : T .
LT By + [€] ( /_ | fl(t)|"dt> ( /_ sin %t|pdt) | (3.6)

So there exists { € R such that [[§owy|| > & and ¢(§wk) < 0. Moreover, it is clear that

SDk;(O) - O Let 61 — gowk and
r
A={0,e1}, B={uecE;:|u| < 5}
0
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Then 0 € B and e; ¢ B. So by Example 1 in Section 2, we know that A links 9B [hm].

So by Theorem 2.1 and Remark 2.4, we have

= inf r > inf 0
¢ = inf SG.I;)}L op(T(s)u) > inf o > a >0,
u€eA

and there exists a sequence {u,} C Ej, such that

oi(un) = e, (1A [lunll) ek (un) || — 0.

Then there exists a constant C; > 0 such that

lor(un)] < Oy, (1 + |Jun]]) |5 (un)|| < Cix for all n € N.

It follows from (H5) and the periodicity and continuity of W that

(VW (t,z),z) — pW (t,2)](C +nlz|”) > W(t,x), V (t,z) € R x RV,

So by (3.5), there exists Cy > 0 such that
W(t,x)
¢ +nlzf”
(% + Ao + 50) 2P — By
N ¢+l
75+ Ao+ 20

[(VW<t7 .T), ZC) - pW(t, QZ)] Z

n
Hence, it follows from (H2), (3.8) and (3.10) that

pChi + Chp
> ptpk(un) - <90;~c(un)v un)
kT
> / T (00 0) 0 (1)) = W (0 (1)
1) / 0w
PWTPP + Ag + &9 kT v
> <#> /kT |un(£)[P~" dt
1) / ) Jun ()| dt — 26TC
—kT
» kT
> ( LN @> / lup (4)[Pdt — 2KTCh

pI?  n  n) ok

kT » P kT 1/(p—v)
—p-1) ( /. \f<t>|p”»1dt) ( | |un<t>\p-”dt) |

pr PO e s eRY,

(3.7)

(3.8)

(3.10)

(3.11)

(3.12)
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The fact p — v > 1 and the above inequality show that ffZT |un (t)[P~7dt is bounded. It
follows from (H5) that

(VW (t,2), ) = pW(t, 2)I(¢ + nlz|”) = W(t,z) = 0. (3.13)

By (H1), (H6), (3.8), (3.11), (3.13), Hélder’s inequality and (2.12), there exist C5 > 0 and

Cs > 0 such that

kT kT 1 kT
= o) — | K@)+ [ W un(t)dt+ / ()Pt
_kT —kT PJ-kr

kT
- / (F(t), un(t))dt

kT

IN

i (un) + /kT[(VW(tun(t)),Un(t)) — PW(t, un (£)))(C + nfun (t)[")dt

=1 ntorar+ ([ |un<t>|p>; (f If(t)lthy

1 kT q
Gt [ o s ( [ o)
DJ_kr R

+H(CHnllunllzg,) /_kT[(VW(t,un(t)%un(t)) — PW(t, un(t))]dt

IN

IN

1 , kT . %
Cuct Sl [ (@~ dt+ Junls, ([ 100
p —kT R

P+ 1)Cu + (p = Dllunlz, (/R If(t)lth) é]

(¢ + nlluallys )

IA

cy kT :
ot L, [ ey at+ Jonls, ([ 1010
p kT R

q

(0 + 1)Cui+ (0 — Dlfunlls, ( / |f(t)!th>

H(C A+ 0 [unllz, )

] . (3.14)

Since v <y —1 < p—1, (3.14) implies that ||u,| g, is bounded. Similar to the argument
of Lemma 2 in [10], next we prove that in Fj, {u,} has a convergent subsequence, still
denoted by {u,}, such that u,, — wuy, as n — oo. Since ng,f} is a reflexive Banach space,

then there is a renamed subsequence {u,} such that

U, — g weakly in Wy (3.15)
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Furthermore, by Proposition 1.2 in [4], we have
U, — up strongly in CO([—kT, kT],RY). (3.16)
Note that

(o' (un), un — ur)

kT T
N /_kT(|un(t)|P—2an(t), fin(£) = G (E))d /_kT(VK(t’ Un (1)), un(t) — ug(t))dt
_/kT(VW(t,un(t)),un(t) _Uk(t))dt—f-/kT(fk(t),un(t) —up(t))dt  (3.17)

Since {||uy,||} is bounded and ¢y (u,) — 0, we have
(o' (Uup), up —ug) = 0 as n — oo. (3.18)

By assumption (V) and (3.16), we have

kT
/ (VI (t, (), un(t) — we())dt 0 as n — oo (3.19)
—kT
and
kT
/ (VW (t, (), tn(t) — wua())dt = 0 as n — oo. (3.20)
—kT
Since fi(t) is bounded, (3.16) also implies that
kT
/ (fe(t), un(t) — ug(t))dt - 0 asn — oo. (3.21)
—kT
Hence, it follows from (3.18), (3.19), (3.20) and (3.21) that
kT
/ (| (8) P20 (1), 1ty (t) — e (t))dt — 0 as n — oo. (3.22)
—kT

On the other hand, it is easy to derive from (3.16) and the boundedness of {u,} that

KT
/_kT(lun(t)|p_2un(t), Un(t) —up(t))dt -0 as n — oo. (3.23)

ot =5 ([ wtopars [ astopar).

(@ (un), un —ug) = /_ ([t (O 2w (t), n () — i (t))dt

Set

Then we have

—l—/_ (|2 (8) [P 2000 (1), ¥t () — g (2))dlt, (3.24)

EJQTDE, 2013 No. 67, p. 18



and

(k) un — up) = /_ (Jur ()P i (8), un(t) — i (t)) dt

kT
kT
[ i OP 20, in(0) — iu)dr
—kT
From (3.22) and (3.23), we obtain
(Urp(un),up —ug) — 0 as n — oo.
On the other hand, it follows from (3.15) that
(W) (ug),up —ug) -0 as n — .

By (3.24), (3.25) and the Holder’s inequality, we get

(W (tn) — Uy (k) tn, — )

(3.25)

(3.26)

(3.27)

— [ QP P 0)a0) = o)+ [ (G i (0) (1) — ()

—kT
kT

kT
- / (D2 (8), () — 0y (£)) it — / (L (D2 (£), o (£) — 1 (1)l

—kT

kT kT

= Nl + lsllp, — |
[ o 0@y~ [ (0P i), 0,0

kT —kT

—1 . —1 .
> Yl + el = (lnll2y Neasllog,, + Vil il g, )
—1 . —1 .
= (Il el g, + Vil il s, )
> p p p g p 1/p p : p La
> Jually, + el = (lely 4 lliellyy ) (luallty -+ lially

o (O T (T A T
" Lng " Lng Lng Lng

= lunll, + lunll, = el e, ol = lualle, !
= (Ml = llunll) (lunlle, = luxlls,) -

It follows that

0 < (llunll,” = lunll,") Ulanllme = llunllm) < @ (wn) = 9" (un)s wn — ),

(Tt (E)7 2 (2), s (£)) t — / i (£)7 2 (1), ()

which, together with (3.26) and (3.27) yields ||u,||g, — ||uk|/ g, (see [10]). By the uniform

convexity of Ej and (3.15), it follows from the Kadec—Klee property (see [27]) that |lu, —
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ug||g, — 0. Moreover, by the continuity of ¢; and ¢} , we obtain ¢} (ux) = 0 and
or(ur) = ¢ > 0. It is clear that ux # 0 and so uy is a desired nontrivial solution of

system (2.1). The proof is complete.

Lemma 3.4. Let {uy }ren be the solution of system (2.1). Then there exists a subsequence

{u,} of {ur}tren convergent to a certain function ug € C'(R,RY) in C] (R,RY).

loc
Proof. First, we prove that the sequence {cy}ren is bounded and the sequence {uy}ren
is uniformly bounded. Second, we prove {u}ren is also uniformly bounded. Finally,
we prove both {u;} and {u;} are equicontinuous and then by using the Arzela—Ascoli
Theorem, we obtain the conclusion. We only prove the first step. The rest of proof is the

same as Lemma 3.2 in [17]. For every k € N, define Ty, : [0, 1] X Ey — Ej by
Fi(s)v=(1—-s)v, v € F.
Then I" € ®. Note that set A = {0,e1}. So (3.7) implies that

or(ur) = ¢ < sup wp((1 —s)u) = sup Yip((1 —s)er) = sup @1((1 = s)ey) == My,
s€po.] s€[0,1] s€[0,1]

where My is independent of k£ € N. Moreover, ¢} (ux) = 0. Then it follows from (H2) and
(3.10) that

pMy > per = por(ur) — (9 (ug), ug)
kT
/_ (YW, u(8)), wnlt)) — pW (1, ()]t

kT

v

1) / (F(8), (1))t

—kT

kT W(t,uk(t)) B kT
= /—kT §+ n!uk(t)l”dt * (p 1) /_kT(f(t)JUk@))dt
So
W, g (1)) o
/kT—umuk(tnvdtSpM‘) 1) / (0wl
Then
) = potu) +p [ S gl [ (70w

kT kT
< pastun) +pl€ +lul) | Wit uld)) 4, /

e €+ nfup ()] (F(t), up(t))dt

kT
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kT

IN

per () + p(€ + nCollualy,) (pMo -1 [

—kT

IO ()
[ (O

kT

kT
pMy —i—piMo +p27700M0HukHVEk —p(p— 1)5/ T(f(t): ug(t))dt

k
kT kT

(F(), un())dt — p / (F(8), welt))dt

—kT

IN

—p(p— VyCollunlly, /

—kT
kT

IA

(0 + Mo+ [p(p = D€+ </R|f (t>lth> ) (/ Iuk(t)\f’dt) )

kT

1/q 1/p
nCoMollugly, + p(p — UnCollun, ( / |f(t)|th) ( / |uk<t>\pdt)
R _

kT

IN

1/q
(p+p*) Mo + [p(p — 1)& + p] (/R If(t)lth> lugl g, + p°nCoMo||uell%,

1/q
+ato = 0o ([ 110at) (3.29
R
Thus (3.28) and Lemma 3.2 imply that
1/q
w0+ POMo+ =~ 1€+ 1] ([ 1£01at) unls, + oMl
R
1/q
oo = nCo ([ 150ar) sl
R
> min{||ugg,, paCy " llull, -
Note that v > v + 1. So (H6) implies there exists M; > 0 (independent of k) such that
llukllg, < My for every k € N.
By Corollary 2.1,
urllrg, < CoMy := My for every k € N.

Thus the proof is complete.

Lemma 3.5. Let ug € CY(R,RY) be determined by Lemma 3.4. When f # 0, ug is a

nontrivial solution of system (1.1) such that ug(t) — 0 and 1y(t) — 0 as t — £oo.
Proof. The proof is the same as Step 1-Step 3 in the proof of Lemma 3.3 in [17].

Proof of Theorem 1.2. The proof is easy to be completed by replacing

[ woana< ([ o) " ([ worar) 7 < el ([ opa) "
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with
ET

/ (o)t < bl |

—kT —kT

£®ldt < Coluls, [ 170l
R
in the proofs of Lemma 3.3 and Lemma 3.4.

Proofs of Theorem 1.3 and Theorem 1.4. We only note that in the proof of Lemma
3.3, when v = p, we dot not need r € (0,1] and it is sufficient that » > 0. The re-
maining parts of the proofs are the same as the proofs of Theorem 1.1 and Theorem 1.2,

respectively.

Proof of Theorem 1.5. Note that f = 0. By (H1), (H3)” and v < p, for u € E} with

|u||g, = r/Coh, we have

kT
or(u) > 1771,3(U)—b/ lu(t)[Pdt

P —kT
1 kT kT
> 1 / a()P + palu(t)[") i — b / ()t
P J_kr —kT
1 kT kT kT
> o [ jawpde+ oCallalln )y [ uora-b [ juopa
P J-kr —kT —kT

/rp

1
> min {5,ar7_p — b} C—g.

So (H3)"” implies that there exists a > 0 such that

or(u) > a >0, forall ue Ey with ||u||g, = C’L’ Vk € N.
0

(H5)" implies that W (¢,0) = 0 and (H2)’ implies that (H2). So (3.6) holds with f;(¢) = 0.
Hence there exists § € R such that [[§ows| > & and p(§wk) < 0. Moreover, it is clear

that ¢ (0) = 0. Let e; = {uwy and
,
A={0,e1}, B={ue€E;:|ul< ?}
0

Then 0 € B and e; ¢ B. So by Example 1 in Section 2, we know that A links 9B [hm].
So by Theorem 2.1 and Remark 2.4,

= inf r > inf 0
cr = inf sup pe(l(s)u) = inf o > a >0,
ucA

and there exists a sequence {u,} C Ej such that

oi(un) = i, (L [lunll) ek (un)ll — 0,
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Then there exists a constant C; > 0 such that
[or(un)| < Ciks (L4 [Junll) |9k (un)ll < Cri for all n € N.

Similar to the argument in Lemma 3.3 and Lemma 3.4 with f(¢) = 0, noting that it is
sufficient v < v < p when f = 0, we can obtain that u, is a desired nontrivial solution
of system (2.1). By the Step 1-Step 3 in the proof of Lemma 3.3 in [17], we obtain that
up(t) — 0 and ug(t) — 0 as t — +oo. Next, we prove, when f = 0, v is nontrivial. The
proof is the similar to that in [18] and same as step 4 in the proof of Lemma 3.3 in [17]
(with v = p and b = a there). Here, for readers’ convenience, we also present it. It is easy
to see that the function Y defined in (H7) is continuous, nondecreasing, Y'(s) > Y (0) > 0.

By the definition of Y, we have

(VW (t, uk (), ur(t)) <Y ([luell g, ) lux ()]

2T

Integrating the above inequality on the interval [—kT, kT'], we obtain that for every k € N,
kT
/kT(VW(t,uk(t)),uk(t))dt <Y ([lullzg, ) v, - (3.29)

Note that (¢ (ux), ur) = 0. Hence,

kT kT

[y (1) |Pdt + / (VE(t, (), up())dt.  (3.30)

—kT

/kT(VW(t, we(t)), up(t))dt = /

—kT —kT

By (3.29), (3.30), (H1)" and (H2)’, we obtain that

Y ([Jukll g, ) lun i, = min{1, a}{|ugl[F, -

Then

Y (lukllzge,) > min{1, a}.

The remainder of the proof is the same as in [7, 11, 17, 18]. If [[uy[|rg, — 0 as k — oo,
we would have Y (0) > min{1, a}, a contradiction to (H7). Thus there is m > 0, which is
independent of k, such that

Jurllzg, =m (3.31)

2T —
for every k € N. Now to complete the proof, observe that by the T-periodicity of V' and

f =0, whenever uy(t) is a 2kT-periodic solution of system (2.1), so is uy(t + j57') for every
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j € Z. Hence, by replacing earlier, if necessary, uy, by u(t + jT') for some j € [—k, k| NZ,
one can assume that the maximum of uy occurs in [-7,7T]. Suppose, contrary to our

claim, that ug = 0. Then by Lemma 3.4,

s g . = Jhax |ug, (t)] = 0, as j — oc.

which contradicts (3.31).

Proof of Theorem 1.6. Similar to the argument of Lemma 3.3 and Lemma 3.4, it is easy
to obtain that, under the conditions of Theorem 1.6, u; is a desired nontrivial solution of

system (2.1). Then by the proof of Theorem 1.5, we know that ug is nontrivial.
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