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Abstract. In this paper we study weighted L estimates for the elliptic Schrodinger
operator P = —A + V(x) with non-negative potentials V(x) on R" (n > 3) which
belongs to certain reverse Holder class.
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1 Introduction

Shen [19] proved the L? boundedness with 1 < p < 2 of the nontangential maximal function
of Vu for the LP-Neumann problem of the elliptic Schrodinger operator

P=-A+V(x) onR", n>3 (1.1)

with V € Vi, (see Definition 1.1 ) in a domain () C R". Moreover, Shen [20] has obtained the
following L? estimates for (1.1)

I8

for 1 < p < g, assuming that V € V; for some g > n/2. In this paper we consider weighted
L? estimates for the elliptic Schrodinger operator (1.1)

D2 (—A+V(x) " f]P dx < c/ FIP dx
.

P=-A+V(x) onR", n>3
n
with V € Vio, where x = (x!,...,x") and A = } 2.
i=1 "t

Definition 1.1. The function V (x) is said to belong to the reverse Holder class V; for some1 < q < oo
if V.e L] (R"), V > 0 almost everywhere and there exists a constant C such that for all balls B, of

R",
(][B, Vi(x) dx) o < C][B, V(x)dx,
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with

][ V(x) dx = 1 V(x) dx.
Br |B1’| . Br

If g = oo, then the left-hand side is the essential supremum on B, i.e.,
sup |V (x)] < c][ V(%) dx.
B: B,

In fact, if V € Vi, it clearly implies V € V; for every q > 1.

We can refer to [2, 20, 21] regarding the reverse Holder class. In particular, V(x) = |x|* €
Vit ag > —n.

We use the Hardy-Littlewood maximal function which controls the local behavior of a
function.

Definition 1.2. Let v be a locally integrable function. The Hardy-Littlewood maximal function
Mo(x) is defined as

Mo(x) = supf [oly)ldy,
where the supremum is taken over all cubes Q in R" containing x.

It is well known that the maximal functions satisfy strong p-p estimate for any 1 < p < o0
and weak (1,1) estimate (see [21]).

We now introduce the weighted Lebesgue spaces (see [11, 12, 15, 16, 18, 21, 22]).

Definition 1.3. A, for some q > 1 is the class of the Muckenhoupt weights: w € A, if w € L} .(R"),
w > 0 almost everywhere and there exists a constant C such that for all balls B, in R",

<][Br w(x) dx> <][Br w(x)q%ll dx) " <C.

Av= | 4

1<g<oo

Moreover, we denote

and

where Q) C R™. Furthermore, the corresponding weighted Lebesgue space LY, (Q)) consists of all func-
tions h which satisfy

1/q
lllgioy = ([ 7o) ) < e
Remark 1.4. We remark that A; C A, forany 1 < g1 < g2 < oo (see [21, p. 195]).
Lemma 1.5. If w € A, with g > g1 > 1, then we have

L%(B,) € L1(B,).
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Proof. From Holder’s inequality we have

i

/B, |fI"dx = /Br |F|T w(X)%]w(x)_F dx

< ([ et d) () ot ) "

Since w € A; with ¢ > g1 > 1, from Remark 1.4 we find that w € A;/, . Furthermore, we
conclude that

_a . | B| >qq1
—n d :][ /n-1dx < C .
][Byw(x) 1 dx Brw(x) 1T dx < <w(Br)

Thus, if f € LZ,(Br), then we have

/Br |f|Tdx < C (/Br |f]Tw(x) dx)"; |B, | -7 (%)2 <C,

1 (R") and w > 0 almost everywhere. This finishes our proof. O

since w € Lloc

Lemma 1.6 (see [5, 6, 12, 15, 16, 21, 22]). Assume that w(x) € A, for some q > 1and g € L{,(RM).
Then we have

(1)
Mg g ey < ClIgI L Ry
(2)
n C q
w({x € R Mg(x) > p}) < = [ gl w() dx.
H R
(3)

[ gl dr=q [ p o ({x e R [g] > ) d.

Next, we shall give some lemmas on the properties of A; weight.

Lemma 1.7 (see [5, 6, 15, 16, 22]). If w € A, for some q > 1 and B, C Bg C R", then there exists a

constant C1 > 0 such that
w(Br) <!BR\ )q
<C .
w(B,) = '\ [B/]

Furthermore, we have the following reverse Holder inequality.

Lemma 1.8 (see [22, Theorem 3.5 in Chapter 9]). If w € A, for some q > 1, then there exists a
small positive constant €y < 1 and a constant Cy > 1 such that

ey
<][ w(x)1+eo dx) < Cz][ w(x) dx
B, B,

for any ball B, C R".
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Lemma 1.9. If w € A, for some g > 1 and B, C Br C R", then there exists 0 > 0 such that

w(B,)

Proof. We first conclude that

w(By) :/B w(x) dx
r % e
< (/ w(x)eo dx) .. |B,]ﬁ

1
< <][ w(x) e dx) o |BR|ﬁ : |Br|1‘%o
Br

by using Holder’s inequality. Thus, it follows from the lemma above that

1 € | B T
w(B,) < Cz][ w(x) dx - |Br| ™ - |B| ™0 = Cow (BR) i
Bx | Br|

which finishes our proof by selecting o = €p/ (1 + €9). O

Now let us state the main results of this work: Theorem 1.10 and Theorem 1.11. We
shall give the direct proofs of the main results via the maximal function approach which was
employed by [1, 5, 7, 13, 15, 16, 17].

Theorem 1.10. Assume that w(x) € A, for some p > 1 and f € L}, (IR"). If u is the solution of the
Poission equation

—Au=f(x) onR", n>3, (1.2)

then we have

I8

Theorem 1.11. Assume that w(x) € A, for some p > 1,V € Vo and f € LL,(R"). Ifu € C(R")
is the solution of the following elliptic Schrodinger equation

D?u|’ w(x) dx < C/IR” |f|P w(x) dx.

—Au(x)+ V(x)u(x) = f(x) onR", n>3, (1.3)

then we have
/ |VulP w(x) dx—I—/ |D?u|" w(x) dxﬁC/ |f|P w(x) dx.
IRn R?l Rn

Remark 1.12. Assume that u € C°(R") and V € V; with 1 < p < g and g > n/2. The authors
of [4] proved that

lllwer ey + 1Vl ey < € (11 ey + 1l

for (1.3) and the general case.

2 Proofs of the main results

In this section we shall finish the proofs of the main results: Theorem 1.10 and Theorem 1.11.
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2.1 Proof of Theorem 1.10

We first give the following Calderé6n-Zygmund decomposition, which is much influenced by
[14].

Lemma 2.1. Let D be a cube in R" and A,B C D be measurable sets. Assume that 0 < w(A) <
pw(D) for 0 < u < 1. Then there exists a sequence of disjoint cubes { Qx }rcn satisfying

(1) w (A\ Uken Q) =0,
(2) w(ANQy) > pw (Q),
(3) w (A N ka) < pw (@) zf@ is the predecessor (father) of Q.

Furthermore, if for any Qy, its predecessor Qy. satisfies

w(Bm@) > aw (@) for 0<a<1, 2.1)

then we have

Proof. 1. We first divide D into 2" (denote by {Q]f}f;l) disjoint cubes (daughters) with
the same size. Choose those cubes satisfying w(A N Q]f) > ‘uw(QJf) and continue to divide
every remaining cube Q) into 2" (denote by {Q];’jz}?::l) disjoint cubes with the same size.
Therefore, we obtain a sequence of disjoint cubes {Qy } . Which satisfies (2)—(3) by repeating

the process above. If x € D \ {Qx },cp, then there is a sequence of cubes P; containing x with
the diameters of P; converging to 0 and

w(ANP) <uw(P).

From elementary measure theory and the fact that w(x) > 0 almost everywhere we can
conclude that for almost every x € D \ {Qx};en, X € D\ A. That is say, (1) is true.

2. Let /ka be the predecessor (father) of Q. Now we choose a disjoint predecessor subse-
quence {Qy,} (still denoted by {Qy}) such that Uxen Qk € Ugen Qk- Thus, from (1), (3) and
the hypothesis (2.1) we deduce that

w(A)=;W(AﬂQ7<) Sy;w@vk) <Z;w<Bm§k> <

=

“w (B
Lw(B),
which finishes our proof. O

Next, we shall prove the following important result.

Lemma 2.2. Assume that 1 < q < p. Forany p,a € (0,1) there exist two constants My = My(n) >
land 6 = 6(n,u) € (0,1), such that if

HxGQ:M (‘D2u|q) (x) gl}m{er:M(\f\") (x) Sé”’}’ >oc‘@ , (2.2)

then we have

{xeQ:M(ID%") (0 = M| < pQl.
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Proof. 1. From the hypothesis (2.2) there exists xo € Q such that

<‘D2u‘ ) x0) <1 and M (|f]7) (x0) < 7. (2.3)
Since xgy € Q C 3Q, we conclude that

][4Q ID?u|"dx <1 and ][4Q F]dx < 8. (2.4)

Let v1 be the solution of
—ANvy=f on R

where f is the zero extention of f from 4Q to R". Then from the elementary LP-type estimates

we have
/ |D%v,|" dxg/ |f|9dx,
n Rl/l

which implies that

/ |D?v|" dx g/ |D%v|" dax §/ ]f_]qu:/ |17 dx. (2.5)
4Q RR" R 4Q
Therefore, from (2.4) we conclude that
][ D0, |" dx g][ f7dx < &, (2.6)
4Q 4Q

Set h; = u — vy. From the definition of f, we find that h; satisfies
—Ah; =0 in 4Q. 2.7)
Moreover, it follows from leo‘c>o regularity that
sup |D2h1‘ < My,
3Q
where M; > 1 only depends on .
2. The proof is totally similar to the proof of Lemma 2.8. Here we omit the details. ]

Corollary 2.3 (cf. Corollary 2.9). Assume that 1 < q < p and w € A,. For any u € (0,1) there
exist two constants Mz = Mz(n) > 1and 6 = 6(n, o, u) € (0,1) such that if

({x eQ: M (‘D2u‘ ) 1} {x eQ: M (1£17) (x) géq}) > %w (Q), (2.8)

then we have
({xEQ M(’DZu‘ ) >Mq}) <uw(Q).

Corollary 2.4 (cf. Corollary 2.10). Let D be a cube in R". Assume that q, w, u, 5, M3 satisfy the
same conditions as those in Corollary 2.3. If

w({xeD: M(|D%|") (x) = M}}) < (D),

w({xeD:M(|D%[") (x) = MI})
<2ufw ({xeD: M (|D%[") (x) > 1}) 2.9)
+w({xeD: M(fY) (x) > 7}) |.

then we have
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Corollary 2.5 (cf. Corollary 2.11). Assume that y € (0,1) with Cou” < 1 and q, w, 6, M3 satisfy
the same conditions as those in Corollary 2.3. For any A > 0 we have

w ({x eR": M (’Dzu‘q> (x) > )\qu}>
<20 [w ({x e R": M (|D%]") (x) > A7}) (2.10)
+w ({x e R M(f|") (x) > 257} )|

The rest of the proof of Theorem 1.10 is totally similar to that of Theorem 1.11 in §2.2.

2.2 Proof of Theorem 1.11
We first recall the following result (see [21, p. 195]).

Lemma 2.6. If V € Vi, then there exist t € [1,00) and C > 0 such that

fosins (st fveos)

holds for any nonnegative function g and all cubes Q, where
V(Q) = / 'V dx.
Q

Furthermore, we have the following local boundedness property.
Lemma 2.7. Assume that V € V. If h(x) satisfies —Ah(x) + V(x)h(x) = 0 in 2Q, then

C
sup |h| < 7/ V|h| dx,

where C depends on n.

Proof. Since V € V and u € Cf° (R") satisfies —Au(x) + V(x)u(x) = f(x), we may as well
assume that

suppu C B;,, V(x)=0 inR"\B, and |V(x)]<C inR"

for some g > 0. Recalling the elementary local boundedness property of the second-order
elliptic equation (see [9, Theorem 9.20], or [10, Theorem 4.1]), we have

sup [ < C (f h%lx)r
wp 1] < C (f I

for any r > 0. Then using the above inequality and Lemma 2.6 with r = }, we find that

t
C

su th][ h}dx) gi/ Vlh| dx.

wp i <€ (f 1 753 oo VM

This completes our proof. O

Next, we shall prove the following important result.
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Lemma 2.8. For any p,a € (0,1) there exist two constants Ny = Np(n) > 1and § = é6(n, u) €
(0,1), such that if

({x €Q:MViu)(x) <1}n{xe Q: M(f]) (x) < 5}‘ > a‘@ , 2.11)
then we have
[{x e Q: M (Vl]u|) (x) = N} < p[Ql.
Proof. 1. From the hypothesis (2.11) there exists xy € Q such that
M (V]ul) (xo) <1 and M (If]) (x0) < &. @12)
Since xg € Q C 3Q, we conclude that
< <. .
][4Qqu\dx_1 and ][4Q fldx <6 2.13)

Let v be the solution of
—Av(x) +V(x)o(x) = f onR",

where f is the zero extention of f from 4Q to R". Then recalling the well-known L! estimate

(see [3, 8]), we have
/ Vol dx < / 7 dx,
R” R”

which implies that

/ vyvydxg/ V|v\dx§/ \f\dx:/ If| dax. (2.14)
40 R R 40

Therefore, from (2.13) we conclude that

][ Vo] dx §][ f|dx < 6. (2.15)
4Q 4Q

Set h = u — v. From the definition of f , we find that & satisfies
— Ah(x) 4+ V(x)h(x) =0 in 4Q. (2.16)

Moreover, it follows from (2.13) and (2.15) that

][ V|h\dx§][ V|v|dx+][ Viu|dx < 2.
40 40 40

Then from the above inequality and Lemma 2.7 we find that

-1
supV|h| < CsupV [V (4Q)]71/ V|h|dx < CsupV < de) ,
3Q 40 4Q 40 J 40

which implies that

sup V|h| < Nj, (2.17)
3Q

since V € Vi, where N; > 1 depends on n.



Weighted LP estimates for the elliptic Schrodinger operator 9

2. Next, we shall prove that
fx € Q: M(VIul) (x) > Na} € {x € Qs M (Vo) () > Ni}, 2.18)
where N, := max {2Ny,3"}. Actually, from (2.17) we find that
Vl|u| < V| 4+ V]h| < V]v|+ N; forany x € 3Q.

Let x be a pointin {x € Q : M (V|v]) (x) < Np}. If x € Q1 C 3Q, then we have
][ Vuldx §][ Vo|dx + Ni < 2Ni. (2.19)
Q Q1

Moreover, if x € Q7 ¢ 3Q, then we have x € Q C Q7 and 3Q C 3Q;. Therefore, from (2.12)
we find that

Vluld g:-s"][ Vluldy < 37, (2.20
f, viddy <3'f Viuldy )

since xp € Q C 3Q C 3Q; and M (V|u|) (x9) < 1. Thus, it follows from (2.19) and (2.20) that
M (V|u]) (x) < Ny, which implies that (2.18) is true. Finally, from (2.15), (2.18) and the weak
(1,1) estimate of the maximal functions we have

[{x € Q: M (Vl]ul) (x) > Na}|
< [{x e Q: M(|Vo]) (x) > Ni}|

gc/ \Vv|dx§C/ Vo|dx < C6[4Q| < C5|Q| < 10,
Q 4Q

by choosing é small enough satisfying the last inequality. Thus we complete the proof. O
Furthermore, we can directly obtain the following result from the lemma above.

Corollary 2.9. Assume that w € A, for p > 1. For any y € (0,1) there exist two constants
N3 = N3(n) > 1land 6 = é(n,o, 1) € (0,1) such that if

w({xe@: M) () <1} n{xe@: M(f) (x) <5}) > %w (@), e

then we have
w({xeQ: M(V]ul|) (x) = N3}) < pw (Q).
Proof. From Lemma 1.9 and (2.21) we have
({xe 3 M (V]u]) (x) Sl}ﬁ{xe Q: M(f]) (x) g(s}]
Q
w({xre@: M) (x) <1hn{re G M(f) (x) <5})
ca )

1

>

> (2G,) 77 € (0,1),

since C; > 1 and ¢ > 0. So, for any y; € (0,1) with Copuf < 1, it follows from Lemma 2.8 that
there exist two positive constants N3 = N3(n) > 1 and é = 6(n,0,Cy, 1) € (0,1) such that
{xe Q: M(Vl]ul) (x) = Na}| < |Ql.
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Then Lemma 1.9 implies that
w({x € Q: M (V]u]) (x) = N3}) < Copiw (Q),
which completes our proof by selecting u = Couf{. O

Furthermore, we can obtain the following result.

Corollary 2.10. Let D be a cube in R". Assume that w, u, 6, N3 satisfy the same conditions as those
in Corollary 2.9. If
w({x € D: M(V|u|) (x) > Ns}) < pw (D),

then we have
w({x € D: M(Vl|ul) (x) = N3})

(2.22)
< z;l[w({x eD: M (V]ul)(x) > 1) +w({x € D: M(|f]) (x) > (5})]

Proof. We denote
A=w({xeD: M (V]ul|)(x) > N3})

and

B:w({xeD:M(V\uD(x)>1}U{xeD:M(|f|)(x)>(5}>.

Then A,B C D and w (A) < pw(D). Therefore, it follows from Lemma 2.1 that there exists a
sequence of disjoint cubes {Qy} satisfying

(1) w(A\ Uken Qx) =0,
(2) w(ANQx) > pw (Qx),
3) w (A N ka) < pw (ka) if (’ka is the predecessor (father) of Q.

If w(Qx N B) < %w(@), where Qy is the predecessor of Qy, then we obtain (2.21) with Q

repacing by Q. Furthermore, it follows from Corollary 2.9 that

w(ANQ) <w({x € Qu: M(Vl]u|) (x) = Na}) < pw (Qx)-

So, we get a contradiction with (2) and then know that w(@ N B ) > %w(@) Finally, we can
use Lemma 2.1 again to get that
w(A) < 2pw (B),

which implies (2.22) is true. Thus, we finish the proof. O

Corollary 2.11. Assume that y € (0,1) with Cou’ < 1 and w,d, N3 satisfy the same conditions as
those in Corollary 2.9. For any A > 0 we have

w({x e R": M (Vl]u|) (x) > AN3})

<2Cu  [w ({x € R" : M (Vu]) (x) > A}) (2.23)
+w ({x € R" : M ([f]) (x) > Ad})].
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Proof. Without loss of generality, we may as well assume that A = 1. Let
R" =] Q;
i=1

where {Q;} is a sequence of disjoint same side-length cubes. Moreover, from the weak 1-1
estimate and L! estimate (see [3, 8]) we conclude that

) C C
[{x € R" : M (V]u]) (x) > Ns}| < EHVL‘HLI(IR”) < ﬁSHfHLl(]R”)-

We may as well assume that f € C§°(IR”) via an elementary approximation argument. So, we
can obtain

[{x € Qi: M(V]u]) (x) = Na}| < p]Qil

by selecting |Q;| large enough for i € IN. Furthermore, from Lemma 1.9 we have
w({x € Qi: M(Vl]ul) (x) = Na}) < Copw (Qi) -
Thus, by Corollary 2.10 we obtain

w({x € Qi: M (V]ul) (x) = Ns})
<2Cp7 [w ({x € Qi : M (Vlu[) (x) > 1}) + w ({x € Qi : M(If]) (x) > 6}) ],

which implies that the desired estimate (2.23) is true. This finishes our proof. O
Now we are ready to prove Theorem 1.11.

Proof. From Lemma 1.6 (3) and Corollary 2.11 we have
[ MVl o) dx
—p [T (B w0 ({x € R M (V]ul) (1) > NoA}) d [NsA]
< 2Cpu” [ (NaA) w0 ({x € R s M (V]u]) (x) > A}) d [NoA]
$2Cop” [T (NN w0 ({x € R M(IfI) () > A3} d [Na
< Ca” [ M (VIul) [Pro(x)dx+Cq [ IM(Uf) [Peo(x)
for any u € (0,1) with Cou” < 1, where C3 = C3(p,n) and Cy4 = Cyu(p,n, p, o). Without loss

of generality we may as well assume that f € C°(IR"”). Then choosing a suitable y such that
Csp” < 1, we obtain

[ M@ o dx<c [ M) Petxdr <€ [ IfPw(x)ds

in view of Lemma 1.6 (1). Thus, we can obtain

/ Vu|Pw(x) dx < c/ f|Po(x) dx
R R
by using the fact that V|u|(x) < M (V]u|) (x). Thus from Theorem 1.10 we observe that

| Dy < ¢ [ fro)

which completes the proof.
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