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Abstract. In this paper we study weighted Lp estimates for the elliptic Schrödinger
operator P = −∆ + V(x) with non-negative potentials V(x) on Rn (n ≥ 3) which
belongs to certain reverse Hölder class.

Keywords: weighted, regularity, Lp estimates, elliptic, Schrödinger operator.

2010 Mathematics Subject Classification: 35J10, 35J15.

1 Introduction

Shen [19] proved the Lp boundedness with 1 < p ≤ 2 of the nontangential maximal function
of ∇u for the Lp-Neumann problem of the elliptic Schrödinger operator

P = −∆ + V(x) on Rn, n ≥ 3 (1.1)

with V ∈ V∞ (see Definition 1.1 ) in a domain Ω ⊂ Rn. Moreover, Shen [20] has obtained the
following Lp estimates for (1.1)∫

Rn

∣∣D2 (−4+ V(x))−1 f
∣∣p dx ≤ C

∫
Rn
| f |p dx

for 1 < p ≤ q, assuming that V ∈ Vq for some q ≥ n/2. In this paper we consider weighted
Lp estimates for the elliptic Schrödinger operator (1.1)

P = −∆ + V(x) on Rn, n ≥ 3

with V ∈ V∞, where x = (x1, . . . , xn) and ∆ =
n
∑

i=1

∂2

∂x2
i
.

Definition 1.1. The function V(x) is said to belong to the reverse Hölder class Vq for some 1 < q ≤ ∞
if V ∈ Lq

loc(R
n), V ≥ 0 almost everywhere and there exists a constant C such that for all balls Br of

Rn, (∫
Br

Vq(x) dx
)1/q

≤ C
∫

Br

V(x) dx,
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with ∫
Br

V(x) dx =
1
|Br|

∫
Br

V(x) dx.

If q = ∞, then the left-hand side is the essential supremum on Br, i.e.,

sup
Br

|V(x)| ≤ C
∫

Br

V(x) dx.

In fact, if V ∈ V∞, it clearly implies V ∈ Vq for every q > 1.

We can refer to [2, 20, 21] regarding the reverse Hölder class. In particular, V(x) = |x|α ∈
Vq if αq > −n.

We use the Hardy–Littlewood maximal function which controls the local behavior of a
function.

Definition 1.2. Let v be a locally integrable function. The Hardy–Littlewood maximal function
Mv(x) is defined as

Mv(x) = sup
∫

Q
|v(y)|dy,

where the supremum is taken over all cubes Q in Rn containing x.

It is well known that the maximal functions satisfy strong p-p estimate for any 1 < p < ∞
and weak (1, 1) estimate (see [21]).

We now introduce the weighted Lebesgue spaces (see [11, 12, 15, 16, 18, 21, 22]).

Definition 1.3. Aq for some q > 1 is the class of the Muckenhoupt weights: w ∈ Aq if w ∈ L1
loc(R

n),
w > 0 almost everywhere and there exists a constant C such that for all balls Br in Rn,(∫

Br

w(x) dx
)(∫

Br

w(x)
−1
q−1 dx

)q−1

≤ C.

Moreover, we denote
A∞ =

⋃
1<q<∞

Aq

and
w(Ω) =

∫
Ω

w(x) dx,

where Ω ⊂ Rn. Furthermore, the corresponding weighted Lebesgue space Lq
w(Ω) consists of all func-

tions h which satisfy

‖h‖Lq
w(Ω) :=

(∫
Ω
|h|q w(x) dx

)1/q

< ∞.

Remark 1.4. We remark that Aq1 ⊂ Aq2 for any 1 < q1 ≤ q2 < ∞ (see [21, p. 195]).

Lemma 1.5. If w ∈ Aq with q > q1 > 1, then we have

Lq
w(Br) ⊂ Lq1(Br).
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Proof. From Hölder’s inequality we have∫
Br

| f |q1 dx =
∫

Br

| f |q1 w(x)
q1
q w(x)−

q1
q dx

≤
(∫

Br

| f |q w(x) dx
) q1

q
(∫

Br

w(x)−
q1

q−q1 dx
)1− q1

q

.

Since w ∈ Aq with q > q1 > 1, from Remark 1.4 we find that w ∈ Aq/q1 . Furthermore, we
conclude that

∫
Br

w(x)−
q1

q−q1 dx =
∫

Br

w(x)−
1

q/q1−1 dx ≤ C
(
|Br|

w(Br)

) q1
q−q1

.

Thus, if f ∈ Lq
w(Br), then we have

∫
Br

| f |q1 dx ≤ C
(∫

Br

| f |q w(x) dx
) q1

q

|Br|1−
q1
q

(
|Br|

w(Br)

) q1
q

≤ C,

since w ∈ L1
loc(R

n) and w > 0 almost everywhere. This finishes our proof.

Lemma 1.6 (see [5, 6, 12, 15, 16, 21, 22]). Assume that w(x) ∈ Aq for some q > 1 and g ∈ Lq
w(R

n).
Then we have

(1)
‖Mg‖Lq

w(Rn) ≤ C‖g‖Lq
w(Rn).

(2)

w ({x ∈ Rn :Mg(x) > µ}) ≤ C
µq

∫
Rn
|g|q w(x) dx.

(3) ∫
Rn
|g|qw(x) dx = q

∫ ∞

0
µq−1w ({x ∈ Rn : |g| > µ}) dµ.

Next, we shall give some lemmas on the properties of Aq weight.

Lemma 1.7 (see [5, 6, 15, 16, 22]). If w ∈ Aq for some q > 1 and Br ⊂ BR ⊂ Rn, then there exists a
constant C1 > 0 such that

w(BR)

w(Br)
≤ C1

(
|BR|
|Br|

)q

.

Furthermore, we have the following reverse Hölder inequality.

Lemma 1.8 (see [22, Theorem 3.5 in Chapter 9]). If w ∈ Aq for some q > 1, then there exists a
small positive constant ε0 < 1 and a constant C2 > 1 such that

(∫
Br

w(x)1+ε0 dx
) 1

1+ε0
≤ C2

∫
Br

w(x) dx

for any ball Br ⊂ Rn.



4 F. Yao

Lemma 1.9. If w ∈ Aq for some q > 1 and Br ⊂ BR ⊂ Rn, then there exists σ > 0 such that

w(Br)

w(BR)
≤ C2

(
|Br|
|BR|

)σ

.

Proof. We first conclude that

w(Br) =
∫

Br

w(x) dx

≤
(∫

Br

w(x)1+ε0 dx
) 1

1+ε0
· |Br|

ε0
1+ε0

≤
(∫

BR

w(x)1+ε0 dx
) 1

1+ε0
· |BR|

1
1+ε0 · |Br|

ε0
1+ε0

by using Hölder’s inequality. Thus, it follows from the lemma above that

w(Br) ≤ C2

∫
BR

w(x) dx · |BR|
1

1+ε0 · |Br|
ε0

1+ε0 = C2w (BR)

(
|Br|
|BR|

) ε0
1+ε0

,

which finishes our proof by selecting σ = ε0/(1 + ε0).

Now let us state the main results of this work: Theorem 1.10 and Theorem 1.11. We
shall give the direct proofs of the main results via the maximal function approach which was
employed by [1, 5, 7, 13, 15, 16, 17].

Theorem 1.10. Assume that w(x) ∈ Ap for some p > 1 and f ∈ Lp
w(R

n). If u is the solution of the
Poission equation

− ∆u = f (x) on Rn, n ≥ 3, (1.2)

then we have ∫
Rn

∣∣D2u
∣∣p w(x) dx ≤ C

∫
Rn
| f |p w(x) dx.

Theorem 1.11. Assume that w(x) ∈ Ap for some p > 1, V ∈ V∞ and f ∈ Lp
w(R

n). If u ∈ C∞
0 (Rn)

is the solution of the following elliptic Schrödinger equation

− ∆u(x) + V(x)u(x) = f (x) on Rn, n ≥ 3, (1.3)

then we have ∫
Rn
|Vu|p w(x) dx +

∫
Rn

∣∣D2u
∣∣p w(x) dx ≤ C

∫
Rn
| f |p w(x) dx.

Remark 1.12. Assume that u ∈ C∞
0 (Rn) and V ∈ Vq with 1 < p ≤ q and q ≥ n/2. The authors

of [4] proved that

‖u‖W2,p(Rn) + ‖Vu‖Lp(Rn) ≤ C
(
‖ f ‖Lp(Rn) + ‖u‖Lp(Rn)

)
for (1.3) and the general case.

2 Proofs of the main results

In this section we shall finish the proofs of the main results: Theorem 1.10 and Theorem 1.11.
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2.1 Proof of Theorem 1.10

We first give the following Calderón–Zygmund decomposition, which is much influenced by
[14].

Lemma 2.1. Let D be a cube in Rn and A, B ⊂ D be measurable sets. Assume that 0 < w(A) <

µw(D) for 0 < µ < 1. Then there exists a sequence of disjoint cubes {Qk}k∈N satisfying

(1) w (A \⋃k∈N Qk) = 0,

(2) w (A ∩Qk) > µw (Qk),

(3) w
(

A ∩ Q̃k

)
≤ µw

(
Q̃k

)
if Q̃k is the predecessor (father) of Qk.

Furthermore, if for any Qk, its predecessor Q̃k satisfies

w
(

B ∩ Q̃k

)
> αw

(
Q̃k

)
for 0 < α < 1, (2.1)

then we have
w(A) ≤ µ

α
w(B).

Proof. 1. We first divide D into 2n (denote by
{

Qj1
1

}2n

j1=1

)
disjoint cubes (daughters) with

the same size. Choose those cubes satisfying w
(

A ∩ Qj1
1

)
> µw

(
Qj1

1

)
and continue to divide

every remaining cube Qj1
1 into 2n (denote by

{
Qj1,j2

2

}2n

j2=1

)
disjoint cubes with the same size.

Therefore, we obtain a sequence of disjoint cubes {Qk}k∈N which satisfies (2)–(3) by repeating
the process above. If x ∈ D \ {Qk}k∈N, then there is a sequence of cubes Pi containing x with
the diameters of Pi converging to 0 and

w (A ∩ Pi) ≤ µw (Pi) .

From elementary measure theory and the fact that w(x) > 0 almost everywhere we can
conclude that for almost every x ∈ D \ {Qk}k∈N, x ∈ D \ A. That is say, (1) is true.

2. Let Q̃k be the predecessor (father) of Qk. Now we choose a disjoint predecessor subse-
quence

{
Q̃k j

} (
still denoted by

{
Q̃k
})

such that
⋃

k∈N Qk ⊂
⋃

k∈N Q̃k. Thus, from (1), (3) and
the hypothesis (2.1) we deduce that

w(A) = ∑
k

w
(

A ∩ Q̃k

)
≤ µ ∑

k
w
(

Q̃k

)
<

µ

α ∑
k

w
(

B ∩ Q̃k

)
≤ µ

α
w (B) ,

which finishes our proof.

Next, we shall prove the following important result.

Lemma 2.2. Assume that 1 < q < p. For any µ, α ∈ (0, 1) there exist two constants M2 = M2(n) >
1 and δ = δ(n, µ) ∈ (0, 1), such that if∣∣∣{x ∈ Q̃ :M

(∣∣D2u
∣∣q) (x) ≤ 1

}
∩
{

x ∈ Q̃ :M
(
| f |q

)
(x) ≤ δq

}∣∣∣ > α
∣∣∣Q̃∣∣∣ , (2.2)

then we have ∣∣∣{x ∈ Q :M
(∣∣D2u

∣∣q) (x) ≥ Mq
2

}∣∣∣ ≤ µ |Q| .
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Proof. 1. From the hypothesis (2.2) there exists x0 ∈ Q̃ such that

M
(∣∣D2u

∣∣q) (x0) ≤ 1 and M
(
| f |q

)
(x0) ≤ δq. (2.3)

Since x0 ∈ Q̃ ⊂ 3Q, we conclude that∫
4Q

∣∣D2u
∣∣q dx ≤ 1 and

∫
4Q
| f |q dx ≤ δq. (2.4)

Let v1 be the solution of
− ∆v1 = f̄ on Rn,

where f̄ is the zero extention of f from 4Q to Rn. Then from the elementary Lp-type estimates
we have ∫

Rn

∣∣D2v1
∣∣q dx ≤

∫
Rn
| f̄ |q dx,

which implies that∫
4Q

∣∣D2v1
∣∣q dx ≤

∫
Rn

∣∣D2v1
∣∣q dx ≤

∫
Rn
| f̄ |q dx =

∫
4Q
| f |q dx. (2.5)

Therefore, from (2.4) we conclude that∫
4Q

∣∣D2v1
∣∣q dx ≤

∫
4Q
| f |q dx ≤ δq. (2.6)

Set h1 = u− v1. From the definition of f̄ , we find that h1 satisfies

− ∆h1 = 0 in 4Q. (2.7)

Moreover, it follows from W2,∞
loc regularity that

sup
3Q

∣∣D2h1
∣∣ ≤ M1,

where M1 > 1 only depends on n.
2. The proof is totally similar to the proof of Lemma 2.8. Here we omit the details.

Corollary 2.3 (cf. Corollary 2.9). Assume that 1 < q < p and w ∈ Ap. For any µ ∈ (0, 1) there
exist two constants M3 = M3(n) > 1 and δ = δ(n, σ, µ) ∈ (0, 1) such that if

w
({

x ∈ Q̃ :M
(∣∣D2u

∣∣q) (x) ≤ 1
}
∩
{

x ∈ Q̃ :M
(
| f |q

)
(x) ≤ δq

})
>

1
2

w
(

Q̃
)

, (2.8)

then we have
w
({

x ∈ Q :M
(∣∣D2u

∣∣q) (x) ≥ Mq
3

})
≤ µw (Q) .

Corollary 2.4 (cf. Corollary 2.10). Let D be a cube in Rn. Assume that q, w, µ, δ, M3 satisfy the
same conditions as those in Corollary 2.3. If

w
({

x ∈ D :M
(∣∣D2u

∣∣q) (x) ≥ Mq
3

})
≤ µw (D) ,

then we have

w
({

x ∈ D :M
(∣∣D2u

∣∣q) (x) ≥ Mq
3

})
≤ 2µ

[
w
({

x ∈ D :M
(∣∣D2u

∣∣q) (x) > 1
})

+ w
({

x ∈ D :M
(
| f |q

)
(x) > δq}) ].

(2.9)
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Corollary 2.5 (cf. Corollary 2.11). Assume that µ ∈ (0, 1) with C2µσ < 1 and q, w, δ, M3 satisfy
the same conditions as those in Corollary 2.3. For any λ > 0 we have

w
({

x ∈ Rn :M
(∣∣D2u

∣∣q) (x) ≥ λq Mq
3

})
≤ 2C2µσ

[
w
({

x ∈ Rn :M
(∣∣D2u

∣∣q) (x) > λq
})

+ w
({

x ∈ Rn :M
(
| f |q

)
(x) > λqδq} )] .

(2.10)

The rest of the proof of Theorem 1.10 is totally similar to that of Theorem 1.11 in §2.2.

2.2 Proof of Theorem 1.11

We first recall the following result (see [21, p. 195]).

Lemma 2.6. If V ∈ V∞, then there exist t ∈ [1, ∞) and C > 0 such that

∫
Q

g dx ≤
(

C
V(Q)

∫
Q

Vgt dx
) 1

t

holds for any nonnegative function g and all cubes Q, where

V(Q) =
∫

Q
V dx.

Furthermore, we have the following local boundedness property.

Lemma 2.7. Assume that V ∈ V∞. If h(x) satisfies −∆h(x) + V(x)h(x) = 0 in 2Q, then

sup
Q
|h| ≤ C

V(2Q)

∫
2Q

V|h| dx,

where C depends on n.

Proof. Since V ∈ V∞ and u ∈ C∞
0 (Rn) satisfies −∆u(x) + V(x)u(x) = f (x), we may as well

assume that

supp u ⊂ Br0 , V(x) ≡ 0 in Rn \ Br0 and |V(x)| ≤ C in Rn

for some r0 > 0. Recalling the elementary local boundedness property of the second-order
elliptic equation (see [9, Theorem 9.20], or [10, Theorem 4.1]), we have

sup
Q
|h| ≤ C

(∫
2Q
|h|r dx

) 1
r

for any r > 0. Then using the above inequality and Lemma 2.6 with r = 1
t , we find that

sup
Q
|h| ≤ C

(∫
2Q
|h| 1t dx

)t

≤ C
V (2Q)

∫
2Q

V|h| dx.

This completes our proof.

Next, we shall prove the following important result.
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Lemma 2.8. For any µ, α ∈ (0, 1) there exist two constants N2 = N2(n) > 1 and δ = δ(n, µ) ∈
(0, 1), such that if∣∣∣{x ∈ Q̃ :M (V|u|) (x) ≤ 1

}
∩
{

x ∈ Q̃ :M (| f |) (x) ≤ δ
}∣∣∣ > α

∣∣∣Q̃∣∣∣ , (2.11)

then we have
|{x ∈ Q :M (V|u|) (x) ≥ N2}| ≤ µ |Q| .

Proof. 1. From the hypothesis (2.11) there exists x0 ∈ Q̃ such that

M (V|u|) (x0) ≤ 1 and M (| f |) (x0) ≤ δ. (2.12)

Since x0 ∈ Q̃ ⊂ 3Q, we conclude that∫
4Q
|Vu| dx ≤ 1 and

∫
4Q
| f | dx ≤ δ. (2.13)

Let v be the solution of
− ∆v(x) + V(x)v(x) = f̄ on Rn,

where f̄ is the zero extention of f from 4Q to Rn. Then recalling the well-known L1 estimate
(see [3, 8]), we have ∫

Rn
V|v| dx ≤

∫
Rn
| f̄ | dx,

which implies that ∫
4Q

V|v| dx ≤
∫

Rn
V|v| dx ≤

∫
Rn
| f̄ | dx =

∫
4Q
| f | dx. (2.14)

Therefore, from (2.13) we conclude that∫
4Q

V|v| dx ≤
∫

4Q
| f | dx ≤ δ. (2.15)

Set h = u− v. From the definition of f̄ , we find that h satisfies

− ∆h(x) + V(x)h(x) = 0 in 4Q. (2.16)

Moreover, it follows from (2.13) and (2.15) that∫
4Q

V|h| dx ≤
∫

4Q
V|v| dx +

∫
4Q

V|u| dx < 2.

Then from the above inequality and Lemma 2.7 we find that

sup
3Q

V|h| ≤ C sup
4Q

V [V (4Q)]−1
∫

4Q
V|h| dx ≤ C sup

4Q
V
(∫

4Q
V dx

)−1

,

which implies that

sup
3Q

V|h| ≤ N1, (2.17)

since V ∈ V∞, where N1 > 1 depends on n.
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2. Next, we shall prove that

{x ∈ Q :M (V|u|) (x) > N2} ⊂ {x ∈ Q :M (|Vv|) (x) > N1} , (2.18)

where N2 := max {2N1, 3n}. Actually, from (2.17) we find that

V|u| ≤ V|v|+ V|h| ≤ V|v|+ N1 for any x ∈ 3Q.

Let x be a point in {x ∈ Q :M (V|v|) (x) ≤ N1}. If x ∈ Q1 ⊂ 3Q, then we have∫
Q1

V|u|dx ≤
∫

Q1

V|v|dx + N1 ≤ 2N1. (2.19)

Moreover, if x ∈ Q1 6⊂ 3Q, then we have x ∈ Q ⊂ Q1 and 3Q ⊂ 3Q1. Therefore, from (2.12)
we find that ∫

Q1

V|u|dy ≤ 3n
∫

3Q1

V|u|dy ≤ 3n, (2.20)

since x0 ∈ Q̃ ⊂ 3Q ⊂ 3Q1 andM (V|u|) (x0) ≤ 1. Thus, it follows from (2.19) and (2.20) that
M (V|u|) (x) ≤ N2, which implies that (2.18) is true. Finally, from (2.15), (2.18) and the weak
(1, 1) estimate of the maximal functions we have

|{x ∈ Q :M (V|u|) (x) > N2}|
≤ |{x ∈ Q :M (|Vv|) (x) > N1}|

≤ C
∫

Q
|Vv| dx ≤ C

∫
4Q
|Vv| dx ≤ Cδ |4Q| ≤ Cδ |Q| ≤ µ |Q| ,

by choosing δ small enough satisfying the last inequality. Thus we complete the proof.

Furthermore, we can directly obtain the following result from the lemma above.

Corollary 2.9. Assume that w ∈ Ap for p > 1. For any µ ∈ (0, 1) there exist two constants
N3 = N3(n) > 1 and δ = δ(n, σ, µ) ∈ (0, 1) such that if

w
({

x ∈ Q̃ :M (V|u|) (x) ≤ 1
}
∩
{

x ∈ Q̃ :M (| f |) (x) ≤ δ
})

>
1
2

w
(

Q̃
)

, (2.21)

then we have
w ({x ∈ Q :M (V|u|) (x) ≥ N3}) ≤ µw (Q) .

Proof. From Lemma 1.9 and (2.21) we have∣∣∣{x ∈ Q̃ :M (V|u|) (x) ≤ 1
}
∩
{

x ∈ Q̃ :M (| f |) (x) ≤ δ
}∣∣∣∣∣∣Q̃∣∣∣

≥

w
({

x ∈ Q̃ :M (V|u|) (x) ≤ 1
}
∩
{

x ∈ Q̃ :M (| f |) (x) ≤ δ
})

C2w
(

Q̃
)


1
σ

≥ (2C2)
− 1

σ ∈ (0, 1),

since C2 > 1 and σ > 0. So, for any µ1 ∈ (0, 1) with C2µσ
1 < 1, it follows from Lemma 2.8 that

there exist two positive constants N3 = N3(n) > 1 and δ = δ(n, σ, C2, µ1) ∈ (0, 1) such that

|{x ∈ Q :M (V|u|) (x) ≥ N3}| ≤ µ1 |Q| .
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Then Lemma 1.9 implies that

w ({x ∈ Q :M (V|u|) (x) ≥ N3}) ≤ C2µσ
1 w (Q) ,

which completes our proof by selecting µ = C2µσ
1 .

Furthermore, we can obtain the following result.

Corollary 2.10. Let D be a cube in Rn. Assume that w, µ, δ, N3 satisfy the same conditions as those
in Corollary 2.9. If

w ({x ∈ D :M (V|u|) (x) ≥ N3}) ≤ µw (D) ,

then we have

w ({x ∈ D :M (V|u|) (x) ≥ N3})

≤ 2µ
[
w ({x ∈ D :M (V|u|) (x) > 1}) + w ({x ∈ D :M (| f |) (x) > δ})

]
.

(2.22)

Proof. We denote
A = w ({x ∈ D :M (V|u|) (x) ≥ N3})

and
B = w

(
{x ∈ D :M (V|u|) (x) > 1} ∪ {x ∈ D :M (| f |) (x) > δ}

)
.

Then A, B ⊂ D and w (A) ≤ µw(D). Therefore, it follows from Lemma 2.1 that there exists a
sequence of disjoint cubes {Qk} satisfying

(1) w (A \⋃k∈N Qk) = 0,

(2) w (A ∩Qk) > µw (Qk),

(3) w
(

A ∩ Q̃k

)
≤ µw

(
Q̃k

)
if Q̃k is the predecessor (father) of Qk.

If w
(
Q̃k ∩ B

)
≤ 1

2 w
(
Q̃k
)
, where Q̃k is the predecessor of Qk, then we obtain (2.21) with Q̃

repacing by Q̃k. Furthermore, it follows from Corollary 2.9 that

w (A ∩Qk) ≤ w ({x ∈ Qk :M (V|u|) (x) ≥ N3}) ≤ µw (Qk) .

So, we get a contradiction with (2) and then know that w
(
Q̃k ∩ B

)
> 1

2 w
(
Q̃k
)
. Finally, we can

use Lemma 2.1 again to get that
w (A) ≤ 2µw (B) ,

which implies (2.22) is true. Thus, we finish the proof.

Corollary 2.11. Assume that µ ∈ (0, 1) with C2µσ < 1 and w, δ, N3 satisfy the same conditions as
those in Corollary 2.9. For any λ > 0 we have

w ({x ∈ Rn :M (V|u|) (x) ≥ λN3})
≤ 2C2µσ

[
w ({x ∈ Rn :M (V|u|) (x) > λ})

+w ({x ∈ Rn :M (| f |) (x) > λδ})
]
.

(2.23)
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Proof. Without loss of generality, we may as well assume that λ = 1. Let

Rn =
∞⋃

i=1

Qi,

where {Qi} is a sequence of disjoint same side-length cubes. Moreover, from the weak 1-1
estimate and L1 estimate (see [3, 8]) we conclude that

|{x ∈ Rn :M (V|u|) (x) ≥ N3}| ≤
C
N3
‖Vu‖L1(Rn) ≤

C
N3
‖ f ‖L1(Rn).

We may as well assume that f ∈ C∞
0 (Rn) via an elementary approximation argument. So, we

can obtain
|{x ∈ Qi :M (V|u|) (x) ≥ N3}| ≤ µ |Qi|

by selecting |Qi| large enough for i ∈N. Furthermore, from Lemma 1.9 we have

w ({x ∈ Qi :M (V|u|) (x) ≥ N3}) ≤ C2µσw (Qi) .

Thus, by Corollary 2.10 we obtain

w ({x ∈ Qi :M (V|u|) (x) ≥ N3})
≤ 2C2µσ

[
w ({x ∈ Qi :M (V|u|) (x) > 1}) + w ({x ∈ Qi :M (| f |) (x) > δ})

]
,

which implies that the desired estimate (2.23) is true. This finishes our proof.

Now we are ready to prove Theorem 1.11.

Proof. From Lemma 1.6 (3) and Corollary 2.11 we have∫
Rn
|M (V|u|) |pw(x) dx

= p
∫ ∞

0
(N3λ)p−1 w ({x ∈ Rn :M (V|u|) (x) > N3λ}) d [N3λ]

≤ 2C2 pµσ
∫ ∞

0
(N3λ)p−1 w ({x ∈ Rn :M (V|u|) (x) > λ}) d [N3λ]

+2C2 pµσ
∫ ∞

0
(N3λ)p−1 w ({x ∈ Rn :M (| f |) (x) > λδ}) d [N3λ]

≤ C3µσ
∫

Rn
|M (V|u|) |pw(x) dx + C4

∫
Rn
|M (| f |) |pw(x) dx

for any µ ∈ (0, 1) with C2µσ < 1, where C3 = C3(p, n) and C4 = C4(p, n, µ, σ). Without loss
of generality we may as well assume that f ∈ C∞

0 (Rn). Then choosing a suitable µ such that
C3µσ < 1, we obtain∫

Rn
|M (V|u|) |pw(x) dx ≤ C

∫
Rn
|M (| f |) |pw(x) dx ≤ C

∫
Rn
| f |p w(x) dx

in view of Lemma 1.6 (1). Thus, we can obtain∫
Rn
|Vu|pw(x) dx ≤ C

∫
Rn
| f |pw(x) dx

by using the fact that V|u|(x) ≤M (V|u|) (x). Thus from Theorem 1.10 we observe that∫
Rn
|D2u|pw(x) dx ≤ C

∫
Rn
| f |pw(x) dx,

which completes the proof.
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