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Abstract

Modern aircraft control systems contain the so-called rate limiter

elements which are in fact incorporating the saturation function which

is a bounded nonlinearity. In certain critical cases the so-called sector

rotation - a standard procedure in absolute stability - leads to the fact

that the sector conditions are broken outside a bounded domain. In

order to apply standard results of the absolute stability theory there

will be combined the results of the hyperstability theory with those

arising from Liapunov function theory since existence of a Liapunov

function is up to now the best way to estimate stability domains. At

the same time the stability conditions will be expressed in the language

of some frequency domain inequality as required by the conditions of

the practical problem that generated the mathematical one.
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1 A motivating problem

A genuine contemporary challenge for both engineers and mathematicians is
the problem of the so called PIO - P(ilot) I(n the loop) O(scillations) of mod-
ern combat (but also civil) aircraft. Their mechanism which is better and
better understood shows a self-sustained oscillation proneness of the feed-
back system pilot-aircraft: there exist situations when, paradoxically, the
pilot’s efforts to control the aircraft result in some kind of de-stabilizing that
generates uncontrollable self-sustained oscillations. Today the aircraft spe-
cialists consider three kinds of PIO that may be present in aircraft dynamics.
Without discussing here their significance, we just mention that our paper
deals with the theory of the so-called PIO-II: their defining conditions are
characterized by the modeling assumption that all elements of the system
are linear except the so-called rate limiters of the actuators.

A. The rate limiter is an engineering structure that has to be modelled.
The common structure is by now that of fig.1

1/R ks
1/s R

xx
.

Z

-

r(t)

Figure 1: Rate-limiter modeling

Let us consider a standard classical example arising apparently from air-
craft control [2]

ÿ + 2ζωnẏ + ω2
ny = −Kpy (1)

with 0 < ζ < 1, Kp > 0. Obviously this linear system is exponentially stable
for all Kp > 0; here Kp could be the equivalent pilot gain. But the pilot
command is usually applied through a rate limiter having the structure of
fig.1 and this leads to a system of augmented dimension

ẅ + 2ζωnẇ + ω2
nw = Kpz , z = Rξ

ξ̇ = sat (Ks (r/R− ξ)) , r = −w + v(t)

sat(e) =
e

max {1, |e|}

(2)
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The dimension augmentation limits Kp > 0 even in the linear case: ap-
plication of the Routh Hurwitz criterion for the linearized system

ẅ + 2ζωnẇ + ω2
nw = KpRξ

ξ̇ = −Ksξ −
Ks

R
(w − v(t))

(3)

will give

Kp < 2ζωn(Ks + 2ζωn +
ω2

n

Ks

) (4)

In the nonlinear case we have to remember that saturation is a nonlinear
function confined to a sector (fig.2) namely (0,1]

0 ≤
sat(e)

e
=

1

max{1, |e|}
≤ 1 (5)
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Figure 2: Sector restricted nonlinear function

For v(t) ≡ 0 we obtain a system that is at equilibrium in 0
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ẅ + 2ζωnẇ + ω2
nw = KpRξ

ξ̇ = −ϕ(σ)

σ =
Ks

R
w +Ksξ

(6)

This system corresponds to the critical case of a simple zero root in the
absolute stability problem. If the Popov frequency domain inequality is used

1 + <e (1 + ıωβ)γ(ıω) ≥ 0 (7)

where the transfer function γ(λ) reads here

γ(λ) = Ks

(

1

λ
+

Kp

λ(λ2 + 2ζωnλ+ ω2
n)

)

(8)

A tedious but straightforward computation will give the same inequality
(4) as absolute stability condition; this means that (4) is a necessary and
sufficient condition of absolute stability hence if Kp - the pilot gain in the
aircraft dynamics interpretation - is larger than the value prescribed by the
RHS of (4), self sustained oscillations will occur - the PIO-II type.

B. We shall consider now a more recent version of aircraft dynamics -
the longitudinal short period motion controlled by two actuators - the elevon
control and the canard control; we write down the model in deviations with
the notations of the field

d

dt
∆α = q

d

dt
q = Mα∆α +Mqq +Mδe∆e +Mδe∆c

d

dt
∆e = ωaψ(−kα∆α − kqq − ∆e)

d

dt
∆c = ωaψ(−kα∆α − kq∆q − ∆c)

(9)

where ψ(σ) is the saturation function as previously. The characteristic equa-
tion of the uncontrolled motion is

λ2 −Mqλ−Mα = 0 (10)
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with Mq < 0, Mα > 0: we are in the case of the unstable aircraft which
displays a saddle point at the equilibrium - one of the eigenvalues is strictly
positive.

Considering first the linearized case with ψ(σ) ≡ γσ, 0 < γ < 1 which
has the characteristic equation

Pγ(λ) ≡ (λ+ ωaγ)[λ
3 + (ωaγ −Mq)λ

2 + (ωaγA1 −Mα)λ+ ωaγA0] (11)

where we denoted: Mδ = Mδe + Mδc, A0 = Mδkα −Mα, A1 = Mδkq −Mq.
The (gain) Hurwitz condition will be

ωaγ > ξ+ =
A0 +Mα + A1Mq +

√

(A0 +Mα + A1Mq)2 − 4A1MqMα

2A1
(12)

This shows that the true stability sector (in the nonlinear case) has to be
expected at most

ξ+
ωa

<
ψ(σ)

σ
< 1

In order to see the significance of this fact, introduce a new state variable
- the elevon/canard unsymmetry

ζ = ∆e − ∆c

to obtain the new system

d

dt
∆α = q

d

dt
q = Mα∆α +Mqq + (Mδe +Mδc)∆e −Mδcζ

d

dt
∆e = ωaψ(−kα∆α − kqq − ∆e)

dζ

dt
= ωa[ψ(−kα∆α − kqq − ∆e) − ψ(−kα∆α

− kqq − ∆e + ζ)]

(13)

which has the invariant set ζ ≡ 0. If we consider our system confined to the
invariant set, it will have a reduced (-1) order
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d

dt
∆α = q

d

dt
q = Mα∆α +Mqq + (Mδe +Mδc)∆e

d

dt
∆e = ωaψ(−kα∆α − kqq − ∆e)

(14)

and will contain a single nonlinear element; the sector rotation

ϕ(σ) = −ξ+σ − ωaψ(−σ)

will give the system

d

dt
∆α = q

d

dt
q = Mα∆α +Mqq +Mδ∆e

d

dt
∆e = −ξ+(kα∆α + kqq + ∆e) − ϕ(kα∆α + kqq + ∆e)

0 <
ϕ(σ)

σ
< ωa − ξ+

(15)

One may see that the nonlinear function was confined to the sector with
0 as lower limit.

In fact since the initial nonlinear function - the saturation - had already
0 as lower sector limit, the sector of the rotated nonlinearity should have
been (−ξ+, ωa − ξ+) but we already know that (−ξ+, 0) is not a stability
sector. For this reason we have restricted ourselves to the positive sector
(0, ωa − ξ+). Unfortunately the saturation nonlinearity breaks the positive
sector for large deviations (fig.3) This implies the application of the absolute
stability methods for bounded domains of the state space.
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Figure 3: Sector rotation for saturation.

2 The mathematical problem and the main

result

We shall consider the following system

ẋ = Ax− bϕ(c∗x) (16)

with the usual notations of the absolute stability theory, where ϕ(σ) satisfies
the sector condition

ϕ ≤
ϕ(σ)

σ
≤ ϕ̄ (17)

(see also fig.2 where the notations are slightly different) and assume that there
exists some ϕ0 ∈ [ϕ, ϕ̄] such that A−ϕ0bc

∗ should be a Hurwitz matrix; this
is some kind of minimal stability since if we want system (16) to be absolutely
stable i.e. asymptotically stable for all functions satisfying (17) then we have
to assume minimally this stability for at least a single linear characteristic of
the sector.

A. In the following we shall define an auxiliary problem for system (16).
If (17) hold then ϕ(σ) verifies
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(ϕ(σ) − ϕσ)(ϕ̄σ − ϕ(σ)) ≥ 0 (18)

Moreover, if σ(t) is some differentiable function on some interval, the deriva-
tive being integrable on that interval, then we shall have

∫ t

0

(ϕσ(τ) − ϕ(σ(τ)))
dσ

dt
(τ)dτ = Ψ(σ(0)) − Ψ(σ(t))

∫ t

0

(ϕ(σ(τ)) − ϕ̄σ(τ))
dσ

dt
(τ)dτ = Ψ(σ(0)) − Ψ(σ(t))

(19)

where

Ψ(σ) =

∫ σ

0

(ϕ(λ) − ϕλ)dλ ≥ 0 , Ψ(σ) =

∫ σ

0

(ϕ̄λ− ϕ(λ))dλ ≥ 0 (20)

Consider now the linear controlled system

ẋ = Ax+ bu(t) (21)

and associate to it the following integral index

η(0, t) =

∫ t

0

F(u(τ), x(τ))dτ (22)

where F(u, x) is the following quadratic form of n + 1 variables

F(u, x) = α0(u+ ϕc∗x)(u+ ϕ̄c∗x) +
(23)

+ (α1(u+ ϕc∗x) − α2(u+ ϕ̄c∗x))(c∗Ax+ c∗bu)

and the integral index is defined for any pair of integrable vector valued
functions. If, additionally x(t) and u(t) satisfy (21) then we may integrate
by parts in (22) to obtain

η(0, t) =
1

2
(α1ϕ− α2ϕ̄)(c∗x(τ))2

∣

∣

∣

∣

t

0

+

∫ t

0

G(u(τ), x(τ))dτ (24)

where G(u, x) is the following quadratic form
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G(u, x) = α0(u
2 + (ϕ+ ϕ̄)uc∗x+ ϕϕ̄(c∗x)2) + (α1 − α2)c

∗(Ax+ bu) (25)

Following V.M. Popov [4] we associate to the system defined by (21) and
(24) the so-called system’s characteristic function χ : C × C 7→ C

χ(λ, σ) =
1

2
(α1ϕ− α2ϕ̄)(λ+ σ)γ(λ)γ(σ) + α0χ1(λ, σ) + (α1 − α2)χ2(λ, σ)

χ1(λ, σ) = 1 +
1

2
(ϕ+ ϕ̄)(γ(λ) + γ(σ)) + ϕϕ̄γ(λ)γ(σ)

χ2(λ, σ) =
1

2
(λγ(λ) + σγ(σ)) , γ(σ) = c∗(σI − A)−1b

(26)
All functions are rational since they depend on the strictly proper rational

function γ(σ) - the transfer function of the linear system defined by the
controlled system (21) with the output ν = c∗x.

We shall consider now the positivity theory [4] - a generalization of the
Yakubovich-Kalman-Popov Lemma - applied to the system defined by (21)
and (24) with the characteristic function (26). If the frequency domain in-
equality below holds

χ(−ıω, ıω) = α0(1+ (ϕ+ ϕ̄)<e γ(ıω)+ϕϕ̄|γ(ıω)|2)+β<e ıωγ(ıω) ≥ 0 (27)

for some α0 ≥ 0, β ∈ R, then there exist a scalar γ0, a n-dimensional vector
w and a n×n Hermitian matrix H such that the integral index η(0, t) should
be given the form

η(0, t) =

[

1

2
(α1ϕ− α2ϕ̄)(c∗x(τ))2 + x∗(τ)Hx(τ)

]
∣

∣

∣

∣

t

0

+

(28)

+

∫ t

0

|γ0u(τ) + w∗x(τ)|2dτ

A small comment is necessary: if (27) holds for β ≥ 0 then we may take
α1 ≥ 0, α2 = 0 and if (27) holds for β ≤ 0 then we may take α1 = 0, α2 ≥ 0.
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The form (28) will turn to be useful in the construction of the suitable
Liapunov function.

We shall make now use of the property of minimal stability in the sense
of V.M. Popov [4]. Due to the existence of ϕ0 ∈ [ϕ, ϕ̄] such that A − ϕ0bc

∗

is a Hurwitz matrix, we may chose in the system (16),(22)-(23) the control
u as

u(t) = −ϕ0c
∗x(t) + ρ(t),

where x(t) = e(A−ϕ0bc∗)tx0 and ρ(t) chosen according to [4], Chapter 5, in
function of the various combinations of the free parameters αi ≥ 0 (as they
may follow from the fulfilment of the frequency domain inequality (27) for
some α0 ≥ 0 and real β) to obtain η(0, t) ≤ 0. Therefore the matrix

P = H +
1

2
(α1ϕ− α2ϕ̄)cc∗ (29)

results nonnegative definite. If additionally, (A, b) is a controllable pair then,
as shown in (op. cit.), Chapter 4, we have even P a positive definite matrix
for all combinations of the free parameters αi ≥ 0 (again, as they may follow
from the fulfilment of the frequency domain inequality (27) for some α0 ≥ 0
and real β). This fact will turn extremely useful in the following.

B. We shall return now to the nonlinear system (16) and make firstly a
rather obvious but useful remark: let z(t) be some solution of (16) corre-
sponding to some initial condition z(0) = x0; if we define u(t) = −ϕ(c∗z(t))
using this solution and apply it to (21), the solution x(t) of (21) defined by
x0 and u(t) will coincide with z(t).

Therefore we may consider the solutions of (16) as the solutions of (21)
with the control input u(t) = −ϕ(c∗x(t)). We thus consider the integral
index (24) along the solutions of (21) with the control input defined as above.
Taking into account (19) and (23) we find

η(0, t) = α1Ψ(ν(0)) − α1Ψ(ν(t)) + α2Ψ(ν(0)) − α2Ψ(ν(t)) +
(30)

+ α0

∫ t

0

(ϕν(τ) − ϕ(ν(τ)))(ϕν(τ) − ϕ(ν(τ)))dτ

with ν = c∗x. We then equate (28) and (30) and use the notation (29) to
find the so-called basic stability equality
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x∗(t)Px(t) + α1Ψ(c∗x(t)) + α2Ψ(c∗x(t)) =

= x∗0Px0 + α1Ψ(c∗x0) + α2Ψ(c∗x0)−

−α0

∫ t

0

(ϕc∗x(τ) − ϕ(c∗x(τ)))(ϕc∗x(τ) − ϕ(c∗x(τ)))dτ−

−

∫ t

0

| − γ0ϕ(c∗x(τ)) + w∗x(τ)|2dτ

Introduce now the following state function that may be considered as a
candidate Liapunov function

V (x) = x∗Px+ α1Ψ(c∗x) + α2Ψ(c∗x) (31)

If (20) and (29) are taken into account then one can see that

V (x) = x∗Hx+ (α1 − α2)

∫ c∗x

0

ϕ(λ)dλ (32)

which is the standard Liapunov function “quadratic form plus integral of
the nonlinear function” occurring in the absolute stability theory. The basic
stability equality, which is written along the solutions of (16) becomes

V (x(t)) = V (x0) − α0

∫ t

0

(ϕc∗x(τ) − ϕ(c∗x(τ)))(ϕc∗x(τ) − ϕ(c∗x(τ)))dτ −

(33)

−

∫ t

0

| − γ0ϕ(c∗x(τ)) + w∗x(τ)|2dτ

what shows that V is at least non-increasing along the trajectories of (16).
We need now some information about the sign of V (x) itself. But V (x)

is clearly positive definite since it has the form (31) hence V (x) ≥ x∗Px due
to the fact that αi ≥ 0, Ψ(ν) ≥ 0, Ψ(ν) ≥ 0. Since P > 0 as proved we
deduce V to be positive definite, being already at least non-increasing along
the solutions of system (16). Therefore stability follows. For the asymptotic
stability we need some additional information on the RHS of (33): if, for
instance, the sector inequalities are strict, then V (x(t)) is strictly decreasing
and we may apply the theorem of Liapunov on asymptotic stability to obtain
this property. Since the inequality V (x) ≥ x∗Px with P > 0 shows the
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Liapunov function to be radially unbounded, the asymptotic stability will be
global.

We may summarize the results proved above in the following

Theorem 1. Consider system (16) with ϕ : R 7→ R subject to inequalities
(17) assumed to be strict. If there exists ϕ0 ∈ (ϕ, ϕ̄) such that A − ϕ0bc

∗

is a Hurwitz matrix and also the numbers α0 > 0 and β ∈ R such that the
frequency domain inequality (27) holds, then the equilibrium of (16) at the
origin is globally asymptotically stable for all functions satisfying (17) with
strict inequalities.

We observe, for the completeness of the results, that the sector conditions
may be allowed to be non-strict provided the frequency domain inequality
(27) is strict or system (16) has A dichotomic i.e. without eigenvalues on the
imaginary axis. Details may be found in [4].

3 Application to the case of a bounded

domain in the state space

A. The motivating application showed that it is possible for the sector con-
ditions to hold only in a bounded domain of the state space, of the form
|c∗x| ≤ ξ̄. Under these circumstances all development of the previous section
keeps its validity provided we remain in the state space domain defined by the
above inequality. Consequently we need finding invariant subsets contained
in |c∗x| ≤ ξ̄. This is the reason why we took the Liapunov approach|c∗x| ≤ ξ̄:
indeed, the easiest to recognize invariant sets of the system are those of the
form V (x) ≤ c where c > 0 is some constant. Therefore the set of interest to
our application would be

M = sup
c

{{x ∈ R
n : V (x) < c} ⊂ {x ∈ R

n : |c∗x| < σ0}} (34)

with V the Liapunov function of (32), H being the Hermitian matrix whose
existence is ensured by the frequency domain inequality (27) and which may
be determined by solving Linear Matrix Inequalities of Lurie type [1] and the
available MATLAB software. Observe that the supremum problem of (34)
also can be solved by adequate software.
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The algorithm described above solves in a satisfactory way the mathe-
matical problem issued from the practical one. The practical problem itself
requires some other additional features among which the necessity to express
the result in the language of those system parameters which may be mea-
sured and evaluated by the customer (in the aircraft case - by the so called
pilot ratings).

B. We turn to the equations of the aircraft application given by (15).
The transfer function that is associated to the linear part of (15) is

ϑ(λ) =
λ2 + A1λ+ A0

(λ+ ξ+ −Mq)(λ2 + A1ξ+ −Mα)
(35)

with the poles ω1 = ξ+ −Mq > 0, ±ıω0, ω
2
0 = A1ξ+ −Mα > 0 and A0 =

Mδkα − Mα > 0 (from the numerical data: in fact kα which is a design
parameter is always chosen as such), A1 = Mδkq −Mq > 0.

The sector of interest being now (0, ωa − ξ+) the frequency domain con-
dition (27) will be read as a standard Popov inequality

1

ωa − ξ+
+ <e(1 + ıωβ)ϑ(ıω) ≥ 0 (36)

corresponding to the critical case of a pair of purely imaginary poles.
The unique choice for β is as follows

β̄ = (
A0ω1

ω2
0

+ A1 − ω1)(A1ω1 + ω2
0 − A0)

−1 > 0

and (36) reads

1

ωa − ξ+
+
β̄ω2 + A0ω1/ω

2
0

ω2
1 + ω2

≥ 0 (37)

We may see that, in principle we may accept even infinitely large stability
sectors since the second term in (37) is strictly positive for all ω ∈ R and,
therefore, the first term given by a finite sector condition is not necessary for
the fulfilment of (37). This shows in fact that the system could bear infinite
linear and nonlinear gain without loosing its global asymptotic stability. The
problem is here the sector breaking as a consequence of the saturation type
of the nonlinear function. It is this fact that may induce instability and
requires estimate of the invariant sets enclosed in the domain where the
sector restrictions are observed.
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And we thus arrive to the problem of the best Liapunov function. A
rather general way of constructing it has been indicated above, involving
theory and practice of Linear Matrix Inequalities. But, since the system is
of low order, revisiting a classical book containing analytical methods for
Liapunov functions construction in the problem of the absolute stability [3]
might be rewarding.
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