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Abstract

We prove a theorem on the existence of solutions of a second order differential inclusion
governed by a class of nonconvex sweeping process with a mixed semicontinuous pertur-
bation.
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1 Introduction

The existence of solutions for the second order differential inclusions governed by the
sweeping process

—il(t) € NK(u(t))(u(t)) + F(t,u(t), ’ll(ﬁ)), a.e. t e [0, T],
(Pr) § ult) € K(u(t)),
u(0) = uo; (0) = vo,

where N (1)) (-) denotes the normal cone to K (u(t)), has been thoroughly studied (when
the sets K (x) are convex or nonconvex) by Castaing for the first time when F' = {0} see
[5], and later by many other authors see for example [2], [3], [6], [10] and [12]. Note that
in this literature some existence results are established for the problem (Pr) with lower
and upper semicontinuous perturbations.
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Our aim in this paper is to prove existence results for (Pr) when F' is a mixed semicon-
tinuous set-valued map and K (x) are nonconvex sets. For the first order sweeping process
with a mixed semicontinuous perturbation we refer the reader to [9], and to [13] for the
sweeping process with non regular sets and to [1] for second order differential inclusions
with mixed semicontinuous perturbations.

After some preliminaries, we present our main result in the finite dimensional space H
whenever the sets K (z) are uniformly p-prox-regular (p > 0) and the set-valued mapping
F is mixed semicontinuous, that is, F'(-,-,-) is measurable and for every ¢t € [0,7], at
each (z,y) € H x H where F(t,z,y) is convex the set-valued map F(t,-,-) is upper
semicontinuous, and whenever F(t, x,y) is not convex F(t,-,-) is lower semicontinuous on
some neighborhood of (x,y).

2 Definition and preliminary results

Let H be a real Hilbert space and let S be a nonempty closed subset of H. We denote
by d(-,S) the usual distance function associated with S, i.e., d(u,S) := infS |lu —yl||. For
ye

any x € H and r > 0 the closed ball centered at x with radius r will be denoted by
By(z,7). For x = 0 and r = 1 we will put By in place of Bg(0,1). L£([0,T]) is the
o-algebra of Lebesgue-measurable sets of [0, T] and B(H ) is the o-algebra of Borel subsets
of H. By L}([0,T]) we denote the space of all Lebesgue-Bochner integrable H-valued
mappings defined on [0, T] and by Cg ([0, T]) the Banach space of all continuous mappings
u: [0,1] — H, endowed with the sup norm

We need first to recall some notation and definitions that will be used in all the paper. Let
2 be a point in S. We recall ( see [8]) that the proximal normal cone to S at z is defined
by NE(z) := 0Fg(z), where g denotes the indicator function of S, i.e., ¥g(z) = 0 if
x € S and +o0o otherwise. Note that the proximal normal cone is also given by

N (x)={¢ € H: Ja>0st. x € Projg(z + af)},

where
Projg(u) :={y € S: d(u,S) := |Ju—yl}.

Recall now that for a given p €]0, 4+00] the subset S is uniformly p-prox-regular (see [11])
or equivalently p -proximally smooth ( see [8]) if and only if every nonzero proximal normal
to S can be realized by p-ball, this means that for all T € S and all 0 # £ € N (T) one

has )
<i,x—f> < Lieoz2,
€l 2p

for all x € S. We make the convention % = 0 for p = +00. Recall that for p = 400 the
uniform p-prox-regularity of S is equivalent to the convexity of S. The following propo-
sition summarizes some important consequences of the uniform prox-regularity needed in
the sequel. For the proof of these results we refer the reader to [11].

Proposition 2.1 Let S be a nonempty closed subset in H and x € S. The following
assertions hold:
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(1) 9%d(z,S) = NE(z) N By;

(2) let p €]0,400]. If S is uniformly p-proz-regular, then

(2.1) for all x € H with d(x,S) < p; one has Projg(x) # 0;

(2.2) the proximal subdifferential of d(-,S) coincides with its Clarke subdifferential at all
points x € H satisfying d(x,S) < p. So, in such a case, the subdiferential dd(z,S) :=
oFd(z,S) = 0°d(x, S) is a closed convex set in H;

(2.3) for all x; € S and all v; € NE (z;) with ||v;|| < p (i =1,2) one has

(1 — v, 21 — x2) > — ||y — x2|%.

As a consequence of (2.3) we get that for uniformly p-prox-regular sets, the proximal
normal cone to S coincides with all the normal cones contained in the Clarke normal cone at
all points z € S, i.e., N&'(z) = N§(z). In such a case, we put Ng(z) := NE(z) = N§ (z).
Here and above 9d(z,S) and N§ (z) denote respectively the Clarke subdifferential of
d(-,S) and the Clarke normal cone to S (see [8]).

Now, we recall some preliminaries concerning set-valued mappings. Let T' > 0. Let
C:[0,T] = H and K : H= H be two set-valued mappings. We say that C' is absolutely
continuous provided that there exists an absolutely continuous nonnegative function a :
[0,7] — R4 with a(0) = 0 such that

|d(z, C(t)) = d(y, C(s))| < ||z = yll + [a(t) — als)|

for all z,y € H and all s,t € [0,T].
We will say that K is Hausdorff-continuous (resp. Lipschitz with ratio A > 0) if for any
x € H one has

lim H(K(x), K(2')) =0

x/—x

(resp. if for any z, 2’ € H one has
H(K (z), K(2')) < M|z —2'||.)

We close this section with the following theorem in [4], which is an important closed-
ness property of the subdifferential of the distance function associated with a set-valued

mapping.

Theorem 2.1 Let p €]0,+00], 2 be an open subset in H, and K : Q = H be a Hausdorff-
continuous set-valued mapping. Assume that K(z) is uniformly p-proz-regular for all z €
Q. Then for a given 0 < § < p, the following holds:

“for anyZ € Q, T € K(Z)+ (p—0)By, Tn — T, 2, — Z with z, € Q (x, not necessarily
in K(z,)) and &, € 0d(xn, K (2,)) with &, —" € one has € € 0d(T, K (Z)).”

Here —" means the weak convergence in H.

Remark 2.1 As a direct consequence of this theorem, we have for every p €]0,+oc], for
a given 0 < § < p, and for every set-valued mapping K : Q = H with uniformly p-
proz reqular values, the set-valued mapping (z,x) — dd(x, K(z))) is upper semicontinuous
from {(z,2) e QA x H: x € K(2)+ (p—9)} to H endowed with the weak topology, which
is equivalent to the upper semicontinuity of the function (z,x) — o(dd(z, K(2))),p) on
{(z,2) e QA x H: x € K(z)+ (p—19)}, for any p € H. Here o(S,p) denotes the support
function to S defined by o(S,p) = sup,cg(s,p)-
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3 Existence results under mixed semicontin-
uous perturbation.

Our existence result is stated in a finite dimensional space H under the following assump-
tions.
(Hy) For each x € H, K(x) is a nonempty closed subset in H and uniformly p-prox-regular
for some fixed p €]0, +o0];
(H2) K is Lipschitz with ratio A > 0;
(Hs) I = sup,ep [K(2)| < +oo.

The proof of our main theorem uses existence results for the first order sweeping

process, the selection theorem proved in Tolstonogov [14] and the Kakutani fixed point
theorem for set-valued mappings. We begin by recalling them.

Proposition 3.1 (Proposition 1.1 in [7]) Let H be a finite dimensional space, T > 0
and let C : I:=1[0,T] = H be a nonempty closed valued set-valued mapping satisfying the
following assumptions.

(A1) For each t € I, C(t) is p-proz-regqular for some fized p €]0,+00];

(Az) C(t) wvaries in an absolutely continuous way, that is, there exists a nonnegative
absolutely continuous function v : I — R such that

|d(z, C(t)) = d(y, C(s))] < [lz = yll +[v(t) = v(s)|

forall z,y € H and s, t € I.
Then for any mapping h € L, ([0,T)), the differential inclusion

—u(t) € Nowy(u(t)) + h(t), ae tel0,T],
u(0) = ug € C(0)
admits one and only one absolutely continuous solution u(-) and
[a(t) + h(@)] < [o(8)] + [|A@)]
Further, let m be a nonnegative Lebesgue-integrable function defined on [0,T] and let
K={heLy(0,T]): [A@)l <m(t)ae}.

Then the solutions set {up : h € K}, where uy, is the unique absolutely continuous solution
of the above inclusion, is compact in Cg([0,T]), and the mapping h — uy, s continuous
on K when K is endowed with the weak topology w(L ([0,T]), L5 (0,T7)).

For the proof of our theorem we will also need the following theorem which is a direct
consequence of Theorem 2.1 in [14].

Theorem 3.1 Let H be a finite dimensional space and let M : [0,T]x H x H = H be a
closed valued set-valued mapping satisfying the following hypotheses.
(i) M is L([0,T]) @ B(H) ® B(H)-measurable;
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(ii) for every t € [0,1], at each (x,y) € H x H such that M (t,xz,y) is convex, M(t,-,-) is
upper semicontinuous, and whenever M (t,x,y) is not convex, M(t,-,-) is lower semicon-
tinuous on some neighborhood of (x,y);

(iii) there exists a Caratheodory function ¢ : [0,1] x H x H — Ry which is integrably
bounded and such that M (t,z,y) N Bu(0,((t,x,y)) # 0 for all (t,z,y) € [0,1] x H x H.
Then for any € > 0 and any compact set K C Cg([0,T]) there is a nonempty closed
convex valued multifunction ® : K = LY, ([0, T]) which has a strongly-weakly sequentially
closed graph such that for any v € K and ¢ € ®(u) one has

¢(t) € M(ta u(t)a ’ll(t));

o) < ¢t u(t), u(t)) + ¢,
for almost every t € [0,T).

Now we are able to prove our main result.

Theorem 3.2 Let H be a finite dimensional space, K : H = H be a set-valued mapping
satisfying assumptions (Hy), (Hz) and (Hsz). LetT > 0 and let F : [0,T] x Hx H = H be
a set-valued mapping satisfying hypotheses (i) and (ii) of Theorem 3.1 and the following
one
(iv) there exist nonnegative Lebesgue-integrable functions m,p and q defined on [0,T] such
that

F(t,z,y) C (m(t) + p(t)llzll + a(t) |yl Ba
for all (t,z,y) € [0,T] x H x H.
Then for all ug € H and vy € K(ug), there exist two Lipschitz mappings u,v : [0,T] — H
such that

c

(t) =up + fo s)ds, Vtel0,T];

—0(t) € Niuy) (v(t)) + F(t,u(t),v(t)), a.eon[0,T7];
u(t) € ( (t)), vtel0,T];

u(0) = v(0) = vo

with ||[0(t)]] < N+ 2(m(t) + p(t)(||luol| + IT) + ¢(t)l) a.e. t € [0,T].
In other words, there is a Lipschitz solution u : [0,T] — H to the Cauchy problem (Pr).

Proof. Step 1. Put I := [0,T], M(t) = m(t) + p(t)(|luo|| + IT) + q(t)l, and let us
consider the sets

t
X={ueCy(l): ut) =up —|—/ u(s)ds, Vt € Iand ||u(t)|| <1, a.e.onl},
0

t
U={veCu(l): vt) = vy +/ o(s)ds, ¥t € Tand |6(t)]| < N+ 2M (t), a.e.on T},
0

K={heLy): |[h)] < M(t), aeonl}.
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It is clear that K is a convex w(L}, (I), L3 (I))-compact subset of L} (I), and by Ascoli-
Arzeld theorem X and U are convex compact sets in Cg(I). Observe now, that for all
f € X the set valued mapping K o f is Lipschitz with ratio Al. Indeed, for all t,¢ € I

H((K o f)(t), (K o f)(t)) H(E(f(1), K(f()))

< AL = £

t . t/ .
= )\Hx0+/0 f(s)ds—zo—/o f(s)ds]|
< )\/t|f(s)|ds < Nt — 1.

By Proposition 3.1, for all (f,h) € X x K, there exists a unique solution uy to the
problem

—’llf7h(1f) S NK(f(t))(u]gh(t)) + h(t), a.e.on I;
(P) § wrn(t) € K(f(t)),Vt € I;
’Ulfﬁh(()) = Yo,

and for almost all ¢ € I, ||iy p(t)]] < M + 2M(t), ie., upn € U.

Let us consider the mapping A : X x K — U defined by A(f,h) = uyn, where uyp
is the unique solution of (P). We wish to show that A is continuous. Let (fy,hn)n be
a sequence in X x K such that (f,), converges uniformly to f € X and (h,), converges
w(LL(I),L (1)) to h € K, and since (ug, p,)n C U we may suppose that it converges
uniformly to some mapping v € U. For each n € N we have

— g, h, (1) € Nic(p, 1)) (s, 0, (1) + hn(t), a.e.on I;
(P) S g, n, (1) € K(fult)),Vt € I
uyf, h, (0) = vo.

Since uy, n, (t) € K(fn(t)) for all t € I, it follows from the Lipschitz property of K

d(us,,h (8), K(f(8)) < Allfult) = f(B)] — 0

and hence, one obtains v(t) € K(f(t)), because the set K(f(t)) is closed.
According to (P,) one has

U, b, (1) + P (t) € =Nie( g, 0)) (W0 hn (1))

and
g, h, () + ha ()] < N+ M(t) = c(t), ie., Uy, pn, () + ho(t) € c(t)By.
Therefore we get by Proposition 2.1 (1)

Ufr h (f) + hn(t) S —C(ﬁ)ad(Ufmhn (ﬁ), K(fn(t))), a.e.onl.
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Now, as (i, n, + hn)n converges weakly to © + h € L};(I), Mazur’s lemma ensures that
forae. tel
O(t) + h(t) € [0 itgn, () + he(t) : k> n}.

Fix such ¢t in [ and any p in H, then the last relation gives

(0(t) +h(t),p) < limnsup0(*0(t)3d(Ufn,hn(t)vK(fn(t)))vﬂ)

< a(=e(t)ad(v(t), K(f (1)), ),

where the second inequality follows from Remark 2.1 and Theorem 2.1. As the set
ad(v(t), K(f(t))) is closed and convex (see Proposition 2.1), we obtain

o(t) + h(t) € —c(t)0d(v(t), K(f(1))) C =N sy (v(t),
because v(t) € K(f(t)). This can be rephrased as

—’U(t) S NK(f(t))(’U(t)) + h(t), a.e.on I;
v(t) € K(f(t)),Vt € I
v(0) = vp.

In other words, v is of the form uyj; with

—Uygn(t) € Ni(ry)(ugn(t)) + h(t), a.e. onl;
urn(t) € K(f(t),Vt € I;
Uf7h(0) = 0.

We conclude that A is continuous. Hence, the mapping P : X x K — Cpy(I) defined by
P(f,h), where for all t € I

t t
P(f,h)(t) = ug +/ A(f,h)(s)ds = ug +/ usp(s)ds
0 0
is also continuous when X is endowed with the topology of uniform convergence and K is

endowed with the weak topology. Observe that for all t € I, uy(t) € K(f(¢)) and then
by (Hs), we have |lusp(t)]| <, we conclude that P(f,h) € X.

Step 2. By Theorem 3.1, there is a nonempty closed convex valued set-valued mapping
® : X = LL (1) such that for any u € X and ¢ € ®(u)

¢(t) € F(t,u(t),a(t)) and [[o()|] <m(t) +p®)l[u®)] + q@)lla@)]

for almost all ¢t € I. Since u € X, we have ||u(t)]| <1 and

t
[u@) = lluo +/O a(s)ds|| < [luoll + 1T,

hence
o)l < m(t) + p(t)(lluoll +1T) + q(t)l = M(t). (3.1)
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The relation (3.1) shows that ® has w(L}, (1), L% (I))-compact values in L}, (). Now, let
us consider the set-valued mapping ¥ : X = X defined by

U(f) ={P(f;h): he@(f)}

It is clear that ¥ has nonempty convex values since ® has nonempty convex values. Fur-
thermore, for all f € X, U(f) is compact in X. Indeed, Let (v,), be a sequence in
U(f), then, for each n, there is h, € ®(f) such that v, = P(f, hy). Since (hy)n C
®(f), by extracting a subsequence (that we do not relabel) we may suppose that (hy),
w(LL (1), Ls (I))-converges to some mapping h € ®(f), and by the continuity of P we get
vp, = P(f,hy) = v = P(f,h) € X. This shows the compactness of ¥(f).
We will prove that ¥ is upper semicontinuous, or equivalently the graph of ¥
gph(¥) = {(z,y) e ¥ x X' : y € ¥(x)} is closed. Let (n,Yyn)n be a sequence in gph(¥)
converging to (z,y) € X x X. For all n € N, y,, € ¥(zy,), so, there is hy, € ®(z,) such
that y, = P(apn,hy). since (h,), C K, by extracting a subsequence (that we do not
relabel) we may suppose that (hy,), w(Lk (1), L5 (I))-converges to some mapping h € K.
As the sequence (), converges uniformly to z € X and since gph(®) is strongly-weakly
sequentially closed we conclude that A € ®(z). On the other hand, by the continuity of
the mapping P we get

y= nEI-lr-loo Yn = ngrfoo P(xp, hyn) = P(x,h).
Hence (z,y) € gph(¥). This says that ¥ is upper semicontinuous. An application of
Kakutani Theorem gives a fixed point of ¥, that is, there is f € X such that f € U(f),
which means that there is h € ®(f) such that f = P(f, h). Consequently

ft) =g —|—/0 usn(s)ds and h(t) € F(t, f(t),urn(t))
with
7’[1,f_’h(t) S NK(f(t))(ufyh(t)) + h(t), a.e.on I;
urn(t) € K(f(t)),Vt € I;
usn(0) = vo,
or, by putting u = f
—ii(t) € Ng(ueey) ((t)) + F(t,u(t),u(t)), a.e.onl;
u(t) € K(u(t)),vt € I,
u(0) = ug; 4(0) = vo,

with, for almost all ¢ € I, ||i(t)|| < Al 4+ 2M(t). This finish the proof of our theorem. W
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