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1 Introduction

The existence of solutions for the second order differential inclusions governed by the
sweeping process

(PF )











−ü(t) ∈ NK(u(t))(u̇(t)) + F (t, u(t), u̇(t)), a.e. t ∈ [0, T ],

u̇(t) ∈ K(u(t)),

u(0) = u0; u̇(0) = v0,

where NK(u(t))(·) denotes the normal cone to K(u(t)), has been thoroughly studied (when
the sets K(x) are convex or nonconvex) by Castaing for the first time when F ≡ {0} see
[5], and later by many other authors see for example [2], [3], [6], [10] and [12]. Note that
in this literature some existence results are established for the problem (PF ) with lower
and upper semicontinuous perturbations.
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Our aim in this paper is to prove existence results for (PF ) when F is a mixed semicon-
tinuous set-valued map and K(x) are nonconvex sets. For the first order sweeping process
with a mixed semicontinuous perturbation we refer the reader to [9], and to [13] for the
sweeping process with non regular sets and to [1] for second order differential inclusions
with mixed semicontinuous perturbations.

After some preliminaries, we present our main result in the finite dimensional space H
whenever the sets K(x) are uniformly ρ-prox-regular (ρ > 0) and the set-valued mapping
F is mixed semicontinuous, that is, F (·, ·, ·) is measurable and for every t ∈ [0, T ], at
each (x, y) ∈ H × H where F (t, x, y) is convex the set-valued map F (t, ·, ·) is upper
semicontinuous, and whenever F (t, x, y) is not convex F (t, ·, ·) is lower semicontinuous on
some neighborhood of (x, y).

2 Definition and preliminary results

Let H be a real Hilbert space and let S be a nonempty closed subset of H . We denote
by d(·, S) the usual distance function associated with S, i.e., d(u, S) := inf

y∈S
‖u− y‖. For

any x ∈ H and r ≥ 0 the closed ball centered at x with radius r will be denoted by
BH(x, r). For x = 0 and r = 1 we will put BH in place of BH(0, 1). L([0, T ]) is the
σ-algebra of Lebesgue-measurable sets of [0, T ] and B(H) is the σ-algebra of Borel subsets
of H . By L1

H([0, T ]) we denote the space of all Lebesgue-Bochner integrable H-valued
mappings defined on [0, T ] and by CH([0, T ]) the Banach space of all continuous mappings
u : [0, 1] → H , endowed with the sup norm
We need first to recall some notation and definitions that will be used in all the paper. Let
x be a point in S. We recall ( see [8]) that the proximal normal cone to S at x is defined
by NP

S (x) := ∂PψS(x), where ψS denotes the indicator function of S, i.e., ψS(x) = 0 if
x ∈ S and +∞ otherwise. Note that the proximal normal cone is also given by

NP
S (x) = {ξ ∈ H : ∃α > 0 s.t. x ∈ ProjS(x+ αξ)},

where
ProjS(u) := {y ∈ S : d(u, S) := ‖u− y‖}.

Recall now that for a given ρ ∈]0,+∞] the subset S is uniformly ρ-prox-regular (see [11])
or equivalently ρ -proximally smooth ( see [8]) if and only if every nonzero proximal normal
to S can be realized by ρ-ball, this means that for all x ∈ S and all 0 6= ξ ∈ NP

S (x) one
has

〈

ξ

‖ξ‖
, x− x

〉

≤
1

2ρ
‖x− x‖2

,

for all x ∈ S. We make the convention 1
ρ

= 0 for ρ = +∞. Recall that for ρ = +∞ the
uniform ρ-prox-regularity of S is equivalent to the convexity of S. The following propo-
sition summarizes some important consequences of the uniform prox-regularity needed in
the sequel. For the proof of these results we refer the reader to [11].

Proposition 2.1 Let S be a nonempty closed subset in H and x ∈ S. The following
assertions hold:
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(1) ∂Pd(x, S) = NP
S (x) ∩ BH ;

(2) let ρ ∈]0,+∞]. If S is uniformly ρ-prox-regular, then
(2.1) for all x ∈ H with d(x, S) < ρ; one has ProjS(x) 6= ∅;
(2.2) the proximal subdifferential of d(·, S) coincides with its Clarke subdifferential at all
points x ∈ H satisfying d(x, S) < ρ. So, in such a case, the subdiferential ∂d(x, S) :=
∂Pd(x, S) = ∂Cd(x, S) is a closed convex set in H;
(2.3) for all xi ∈ S and all vi ∈ NP

S (xi) with ‖vi‖ ≤ ρ (i = 1, 2) one has

〈v1 − v2, x1 − x2〉 ≥ −‖x1 − x2‖
2
.

As a consequence of (2.3) we get that for uniformly ρ-prox-regular sets, the proximal
normal cone to S coincides with all the normal cones contained in the Clarke normal cone at
all points x ∈ S, i.e., NP

S (x) = NC
S (x). In such a case, we put NS(x) := NP

S (x) = NC
S (x).

Here and above ∂Cd(x, S) and NC
S (x) denote respectively the Clarke subdifferential of

d(·, S) and the Clarke normal cone to S (see [8]).
Now, we recall some preliminaries concerning set-valued mappings. Let T > 0. Let

C : [0, T ] ⇒ H and K : H ⇒ H be two set-valued mappings. We say that C is absolutely
continuous provided that there exists an absolutely continuous nonnegative function a :
[0, T ] → R+ with a(0) = 0 such that

|d(x,C(t)) − d(y, C(s))| ≤ ‖x− y‖ + |a(t) − a(s)|

for all x, y ∈ H and all s, t ∈ [0, T ].
We will say that K is Hausdorff-continuous (resp. Lipschitz with ratio λ > 0) if for any
x ∈ H one has

lim
x′→x

H(K(x),K(x′)) = 0

(resp. if for any x, x′ ∈ H one has

H(K(x),K(x′)) ≤ λ‖x− x′‖.)

We close this section with the following theorem in [4], which is an important closed-
ness property of the subdifferential of the distance function associated with a set-valued
mapping.

Theorem 2.1 Let ρ ∈]0,+∞], Ω be an open subset in H, and K : Ω ⇒ H be a Hausdorff-
continuous set-valued mapping. Assume that K(z) is uniformly ρ-prox-regular for all z ∈
Ω. Then for a given 0 < δ < ρ, the following holds:
”for any z ∈ Ω, x ∈ K(z) + (ρ− δ)BH , xn → x, zn → z with zn ∈ Ω (xn not necessarily
in K(zn)) and ξn ∈ ∂d(xn,K(zn)) with ξn →w ξ one has ξ ∈ ∂d(x,K(z)).”
Here →w means the weak convergence in H.

Remark 2.1 As a direct consequence of this theorem, we have for every ρ ∈]0,+∞], for
a given 0 < δ < ρ, and for every set-valued mapping K : Ω ⇒ H with uniformly ρ-
prox regular values, the set-valued mapping (z, x) 7→ ∂d(x,K(z))) is upper semicontinuous
from {(z, x) ∈ Ω ×H : x ∈ K(z) + (ρ− δ)} to H endowed with the weak topology, which
is equivalent to the upper semicontinuity of the function (z, x) 7→ σ(∂d(x,K(z))), p) on
{(z, x) ∈ Ω ×H : x ∈ K(z) + (ρ − δ)}, for any p ∈ H. Here σ(S, p) denotes the support
function to S defined by σ(S, p) = sups∈S〈s, p〉.
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3 Existence results under mixed semicontin-

uous perturbation.

Our existence result is stated in a finite dimensional space H under the following assump-
tions.
(H1) For each x ∈ H , K(x) is a nonempty closed subset in H and uniformly ρ-prox-regular
for some fixed ρ ∈]0,+∞];

(H2) K is Lipschitz with ratio λ > 0;

(H3) l = supx∈H |K(x)| < +∞.

The proof of our main theorem uses existence results for the first order sweeping
process, the selection theorem proved in Tolstonogov [14] and the Kakutani fixed point
theorem for set-valued mappings. We begin by recalling them.

Proposition 3.1 (Proposition 1.1 in [7]) Let H be a finite dimensional space, T > 0
and let C : I := [0, T ] ⇒ H be a nonempty closed valued set-valued mapping satisfying the
following assumptions.
(A1) For each t ∈ I, C(t) is ρ-prox-regular for some fixed ρ ∈]0,+∞];
(A2) C(t) varies in an absolutely continuous way, that is, there exists a nonnegative
absolutely continuous function v : I → R such that

|d(x,C(t)) − d(y, C(s))| ≤ ‖x− y‖ + |v(t) − v(s)|

for all x, y ∈ H and s, t ∈ I.
Then for any mapping h ∈ L1

H([0, T ]), the differential inclusion

{

−u̇(t) ∈ NC(t)(u(t)) + h(t), a.e. t ∈ [0, T ],

u(0) = u0 ∈ C(0)

admits one and only one absolutely continuous solution u(·) and

‖u̇(t) + h(t)‖ ≤ |v̇(t)| + ‖h(t)‖.

Further, let m be a nonnegative Lebesgue-integrable function defined on [0, T ] and let

K = {h ∈ L1
H([0, T ]) : ‖h(t)‖ ≤ m(t) a.e}.

Then the solutions set {uh : h ∈ K}, where uh is the unique absolutely continuous solution
of the above inclusion, is compact in CH([0, T ]), and the mapping h 7→ uh is continuous
on K when K is endowed with the weak topology w(L1

H([0, T ]),L∞

H ([0, T ])).

For the proof of our theorem we will also need the following theorem which is a direct
consequence of Theorem 2.1 in [14].

Theorem 3.1 Let H be a finite dimensional space and let M : [0, T ]×H ×H ⇒ H be a
closed valued set-valued mapping satisfying the following hypotheses.
(i) M is L([0, T ]) ⊗ B(H) ⊗ B(H)-measurable;

EJQTDE, 2008 No. 37, p. 4



(ii) for every t ∈ [0, 1], at each (x, y) ∈ H ×H such that M(t, x, y) is convex, M(t, ·, ·) is
upper semicontinuous, and whenever M(t, x, y) is not convex, M(t, ·, ·) is lower semicon-
tinuous on some neighborhood of (x, y);
(iii) there exists a Caratheodory function ζ : [0, 1] × H × H → R+ which is integrably
bounded and such that M(t, x, y)

⋂

BH(0, ζ(t, x, y)) 6= ∅ for all (t, x, y) ∈ [0, 1] ×H ×H.
Then for any ε > 0 and any compact set K ⊂ CH([0, T ]) there is a nonempty closed
convex valued multifunction Φ : K ⇒ L1

H([0, T ]) which has a strongly-weakly sequentially
closed graph such that for any u ∈ K and φ ∈ Φ(u) one has

φ(t) ∈M(t, u(t), u̇(t));

‖φ(t)‖ ≤ ζ(t, u(t), u̇(t)) + ε,

for almost every t ∈ [0, T ].

Now we are able to prove our main result.

Theorem 3.2 Let H be a finite dimensional space, K : H ⇒ H be a set-valued mapping
satisfying assumptions (H1), (H2) and (H3). Let T > 0 and let F : [0, T ]×H×H ⇒ H be
a set-valued mapping satisfying hypotheses (i) and (ii) of Theorem 3.1 and the following
one
(iv) there exist nonnegative Lebesgue-integrable functions m, p and q defined on [0, T ] such
that

F (t, x, y) ⊂ (m(t) + p(t)‖x‖ + q(t)‖y‖)BH

for all (t, x, y) ∈ [0, T ]×H ×H.
Then for all u0 ∈ H and v0 ∈ K(u0), there exist two Lipschitz mappings u, v : [0, T ] → H

such that



















u(t) = u0 +
∫ t

0 v(s)ds, ∀t ∈ [0, T ];

−v̇(t) ∈ NK(u(t))(v(t)) + F (t, u(t), v(t)), a.e on [0, T ];

v(t) ∈ K(u(t)), ∀t ∈ [0, T ];

u(0) = u0; v(0) = v0

with ‖v̇(t)‖ ≤ λl + 2(m(t) + p(t)(‖u0‖ + lT ) + q(t)l) a.e. t ∈ [0, T ].
In other words, there is a Lipschitz solution u : [0, T ] → H to the Cauchy problem (PF ).

Proof. Step 1. Put I := [0, T ], M(t) = m(t) + p(t)(‖u0‖ + lT ) + q(t)l, and let us
consider the sets

X = {u ∈ CH(I) : u(t) = u0 +

∫ t

0

u̇(s)ds, ∀t ∈ I and ‖u̇(t)‖ ≤ l, a.e.on I},

U = {v ∈ CH(I) : v(t) = v0 +

∫ t

0

v̇(s)ds, ∀t ∈ I and ‖v̇(t)‖ ≤ λl + 2M(t), a.e.on I},

K = {h ∈ L1
H(I) : ‖h(t)‖ ≤M(t), a.e.on I}.
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It is clear that K is a convex w(L1
H(I),L∞

H (I))-compact subset of L1
H(I), and by Ascoli-

Arzelà theorem X and U are convex compact sets in CH(I). Observe now, that for all
f ∈ X the set valued mapping K ◦ f is Lipschitz with ratio λl. Indeed, for all t, t′ ∈ I

H((K ◦ f)(t), (K ◦ f)(t′)) = H(K(f(t)),K(f(t′)))

≤ λ‖f(t) − f(t′)‖

= λ‖x0 +

∫ t

0

ḟ(s)ds− x0 −

∫ t′

0

ḟ(s)ds‖

≤ λ

∫ t

t′
|ḟ(s)|ds ≤ λl|t− t′|.

By Proposition 3.1, for all (f, h) ∈ X × K, there exists a unique solution uf,h to the
problem

(P )











−u̇f,h(t) ∈ NK(f(t))(uf,h(t)) + h(t), a.e. on I;

uf,h(t) ∈ K(f(t)), ∀t ∈ I;

uf,h(0) = v0,

and for almost all t ∈ I, ‖u̇f,h(t)‖ ≤ λl + 2M(t), i.e., uf,h ∈ U .

Let us consider the mapping A : X × K → U defined by A(f, h) = uf,h, where uf,h

is the unique solution of (P ). We wish to show that A is continuous. Let (fn, hn)n be
a sequence in X × K such that (fn)n converges uniformly to f ∈ X and (hn)n converges
w(L1

H(I),L∞

H (I)) to h ∈ K, and since (ufn,hn
)n ⊂ U we may suppose that it converges

uniformly to some mapping v ∈ U . For each n ∈ N we have

(Pn)











−u̇fn,hn
(t) ∈ NK(fn(t))(ufn,hn

(t)) + hn(t), a.e. on I;

ufn,hn
(t) ∈ K(fn(t)), ∀t ∈ I;

ufn,hn
(0) = v0.

Since ufn,hn
(t) ∈ K(fn(t)) for all t ∈ I, it follows from the Lipschitz property of K

d(ufn,hn
(t),K(f(t))) ≤ λ‖fn(t) − f(t)‖ → 0

and hence, one obtains v(t) ∈ K(f(t)), because the set K(f(t)) is closed.
According to (Pn) one has

u̇fn,hn
(t) + hn(t) ∈ −NK(fn(t))(ufn,hn

(t)),

and

‖u̇fn,hn
(t) + hn(t)‖ ≤ λl +M(t) := c(t), i.e., u̇fn,hn

(t) + hn(t) ∈ c(t)BH .

Therefore we get by Proposition 2.1 (1)

u̇fn,hn
(t) + hn(t) ∈ −c(t)∂d(ufn,hn

(t),K(fn(t))), a.e. on I.
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Now, as (u̇fn,hn
+ hn)n converges weakly to v̇ + h ∈ L1

H(I), Mazur’s lemma ensures that
for a.e. t ∈ I

v̇(t) + h(t) ∈
⋂

n

co{u̇fk,hk
(t) + hk(t) : k ≥ n}.

Fix such t in I and any µ in H , then the last relation gives

〈v̇(t) + h(t), µ〉 ≤ lim sup
n

σ(−c(t)∂d(ufn,hn
(t),K(fn(t))), µ)

≤ σ(−c(t)∂d(v(t),K(f(t))), µ),

where the second inequality follows from Remark 2.1 and Theorem 2.1. As the set
∂d(v(t),K(f(t))) is closed and convex (see Proposition 2.1), we obtain

v̇(t) + h(t) ∈ −c(t)∂d(v(t),K(f(t))) ⊂ −NK(f(t))(v(t)),

because v(t) ∈ K(f(t)). This can be rephrased as










−v̇(t) ∈ NK(f(t))(v(t)) + h(t), a.e. on I;

v(t) ∈ K(f(t)), ∀t ∈ I;

v(0) = v0.

In other words, v is of the form uf,h with











−u̇f,h(t) ∈ NK(f(t))(uf,h(t)) + h(t), a.e. on I;

uf,h(t) ∈ K(f(t)), ∀t ∈ I;

uf,h(0) = v0.

We conclude that A is continuous. Hence, the mapping P : X × K → CH(I) defined by
P (f, h), where for all t ∈ I

P (f, h)(t) = u0 +

∫ t

0

A(f, h)(s)ds = u0 +

∫ t

0

uf,h(s)ds

is also continuous when X is endowed with the topology of uniform convergence and K is
endowed with the weak topology. Observe that for all t ∈ I, uf,h(t) ∈ K(f(t)) and then
by (H3), we have ‖uf,h(t)‖ ≤ l, we conclude that P (f, h) ∈ X .

Step 2. By Theorem 3.1, there is a nonempty closed convex valued set-valued mapping
Φ : X ⇒ L1

H(I) such that for any u ∈ X and φ ∈ Φ(u)

φ(t) ∈ F (t, u(t), u̇(t)) and ‖φ(t)‖ ≤ m(t) + p(t)‖u(t)‖ + q(t)‖u̇(t)‖

for almost all t ∈ I. Since u ∈ X , we have ‖u̇(t)‖ ≤ l and

‖u(t)‖ = ‖u0 +

∫ t

0

u̇(s)ds‖ ≤ ‖u0‖ + lT,

hence
‖φ(t)‖ ≤ m(t) + p(t)(‖u0‖ + lT ) + q(t)l = M(t). (3.1)
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The relation (3.1) shows that Φ has w(L1
H(I),L∞

H (I))-compact values in L1
H(I). Now, let

us consider the set-valued mapping Ψ : X ⇒ X defined by

Ψ(f) = {P (f, h) : h ∈ Φ(f)}.

It is clear that Ψ has nonempty convex values since Φ has nonempty convex values. Fur-
thermore, for all f ∈ X , Ψ(f) is compact in X . Indeed, Let (vn)n be a sequence in
Ψ(f), then, for each n, there is hn ∈ Φ(f) such that vn = P (f, hn). Since (hn)n ⊂
Φ(f), by extracting a subsequence (that we do not relabel) we may suppose that (hn)n

w(L1
H(I),L∞

H (I))-converges to some mapping h ∈ Φ(f), and by the continuity of P we get
vn = P (f, hn) → v = P (f, h) ∈ X . This shows the compactness of Ψ(f).
We will prove that Ψ is upper semicontinuous, or equivalently the graph of Ψ
gph(Ψ) = {(x, y) ∈ X × X : y ∈ Ψ(x)} is closed. Let (xn, yn)n be a sequence in gph(Ψ)
converging to (x, y) ∈ X × X . For all n ∈ N, yn ∈ Ψ(xn), so, there is hn ∈ Φ(xn) such
that yn = P (xn, hn). since (hn)n ⊂ K, by extracting a subsequence (that we do not
relabel) we may suppose that (hn)n w(L1

H(I),L∞

H (I))-converges to some mapping h ∈ K.
As the sequence (xn)n converges uniformly to x ∈ X and since gph(Φ) is strongly-weakly
sequentially closed we conclude that h ∈ Φ(x). On the other hand, by the continuity of
the mapping P we get

y = lim
n→+∞

yn = lim
n→+∞

P (xn, hn) = P (x, h).

Hence (x, y) ∈ gph(Ψ). This says that Ψ is upper semicontinuous. An application of
Kakutani Theorem gives a fixed point of Ψ, that is, there is f ∈ X such that f ∈ Ψ(f),
which means that there is h ∈ Φ(f) such that f = P (f, h). Consequently

f(t) = u0 +

∫ t

0

uf,h(s)ds and h(t) ∈ F (t, f(t), uf,h(t))

with










−u̇f,h(t) ∈ NK(f(t))(uf,h(t)) + h(t), a.e. on I;

uf,h(t) ∈ K(f(t)), ∀t ∈ I;

uf,h(0) = v0,

or, by putting u = f










−ü(t) ∈ NK(u(t))(u̇(t)) + F (t, u(t), u̇(t)), a.e. on I;

u̇(t) ∈ K(u(t)), ∀t ∈ I;

u(0) = u0; u̇(0) = v0,

with, for almost all t ∈ I, ‖ü(t)‖ ≤ λl + 2M(t). This finish the proof of our theorem. �
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