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Abstract. In the present paper, we obtain an existence result for a class of mixed bound-
ary value problems for second-order differential equations. A critical point theorem is
used, in order to prove the existence of a precise open interval of positive eigenvalues
λ, for which the considered problem admits at least one non-trivial classical solution
uλ. It is proved that the norm of uλ tends to zero as λ→ 0.
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1 Introduction

The aim of this paper is to study the following mixed boundary value problem{
−(pu′)′ + qu = λ f (x, u) + g(u) in ]a, b[ ,

u(a) = u′(b) = 0,
(1.1)

where p ∈ C1([a, b]) and q ∈ C0([a, b]) are positive functions, λ is a positive parameter,
f : [a, b]×R→ R is a continuous function such that

(f1) | f (x, t)| ≤ a1 + a2|t|r−1, a.e. x ∈ [a, b], t ∈ R,

where a1, a2 ≥ 0 and r ∈ ]1,+∞[ , and g : R → R is a Lipschitz continuous function with the
Lipschitz constant L > 0, i.e.,

|g(t1)− g(t2)| ≤ L|t1 − t2|

for every t1, t2 ∈ R, and g(0) = 0.
Our goal here is to obtain some sufficient conditions which imply that the problem (1.1)

has at least one classical solution (see Theorem 3.1). We use the variational method and a
critical point theorem.

Motivated by the fact that such kind of problems are used to describe a large class of
physical phenomena, many authors looked for existence and multiplicity of solutions for
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second-order ordinary differential nonlinear equations, with mixed conditions at the ends.
We cite the papers [1–3, 6–10, 14]. For instance, in [7], Bonanno and Tornatore established the
existence of infinitely many weak solutions for the mixed boundary value problem{

−(pu′)′ + qu = λ f (x, u) in ]a, b[ ,

u(a) = u′(b) = 0,

where p, q ∈ L∞([a, b]) are such that

p0 := ess inf
x∈[a,b]

p(x) > 0, q0 := ess inf
x∈[a,b]

q(x) ≥ 0,

f : [a, b]×R→ R is a Carathéodory function and λ is a positive parameter.
We also refer the reader to the paper [11] in which, by means of an abstract critical points

result of Ricceri [13], existence of at least three solutions for the following two-point boundary
value problem {

u′′ + (λ f (t, u) + g(u))h(t, u′) = µp(t, u)h(t, u′) in ]a, b[ ,

u(a) = u(b) = 0,

where λ and µ are positive parameters, f : [a, b]×R→ R is continuous, g : R→ R is Lipschitz
continuous with g(0) = 0, h : [a, b]×R→ R is bounded, continuous, with m := inf h > 0, and
p : [a, b]×R→ R is L1-Carathéodory, are ensured.

The paper is organized as follows. In Section 2 we introduce our abstract framework and
we give some notations. In Section 3 we prove the main result (Theorem 3.1), while Section 4
is devoted to some consequences and remarks on the results of the paper. Here we give an
application of the results (Example 4.7).

2 Preliminaries

In order to prove our main result, that is Theorem 3.1, we report here the result obtained in
[5] (see [5, Theorem 3.1 and Remark 3.3]).

Theorem 2.1. Let X be a reflexive real Banach space, let Φ, Ψ : X → R be two Gâteaux differentiable
functionals such that Φ is strongly continuous, sequentially weakly lower semicontinuous and coercive
in X and Ψ is sequentially weakly upper semicontinuous in X. Let Iλ be the functional defined as
Iλ := Φ− λΨ, λ ∈ R, and for any r > infX Φ let ϕ be the function defined as

ϕ(r) := inf
u∈Φ−1(]−∞,r[)

(
sup

v∈Φ−1(]−∞,r[)
Ψ(v)

)
−Ψ(u)

r−Φ(u)
. (2.1)

Then, for any r > infX Φ and any λ ∈ ]0, 1/ϕ(r)[, the restriction of the functional Iλ to Φ−1(]−∞, r[)
admits a global minimum, which is a critical point (precisely a local minimum) of Iλ in X.

Now, let f : [a, b]×R→ R be a continuous function and g : R→ R be a Lipschitz contin-
uous function with the Lipschitz constant L > 0, i.e.,

|g(t1)− g(t2)| ≤ L|t1 − t2|
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for every t1, t2 ∈ R, and g(0) = 0.
Put

F(x, t) :=
∫ t

0
f (x, ξ)dξ, G(t) := −

∫ t

0
g(ξ)dξ

for all x ∈ [a, b] and t ∈ R. Denote

X :=
{

u ∈W1,2([a, b]) : u(a) = 0
}

;

the usual norm in X is defined by

‖u‖X :=
(∫ b

a
(u(x))2dx +

∫ b

a
(u′(x))2dx

)1/2

.

For every u, v ∈ X, we define

〈u, v〉 :=
∫ b

a
p(x)u′(x)v′(x)dx +

∫ b

a
q(x)u(x)v(x)dx. (2.2)

Clearly, (2.2) defines an inner product on X whose corresponding norm is

‖u‖ :=
(∫ b

a
p(x)(u′(x))2dx +

∫ b

a
q(x)(u(x))2dx

)1/2

.

Then, it is easy to see that the norm ‖ · ‖ on X is equivalent to ‖ · ‖X. In fact, put

p0 := min
x∈[a,b]

p(x) > 0, q0 := min
x∈[a,b]

q(x) > 0, m := min{p0, q0} > 0,

and
p1 := max

x∈[a,b]
p(x), q1 := max

x∈[a,b]
q(x), M := max{p1, q1}.

Then, we have
m1/2‖u‖X ≤ ‖u‖ ≤ M1/2‖u‖X, ∀u ∈ X.

In the following, we will use ‖ · ‖ instead of ‖ · ‖X on X. Note that X is a reflexive real Banach
space.

By standard regularity results, since f is a continuous function, p ∈ C1([a, b]) and q ∈
C0([a, b]), then weak solutions of problem (1.1) belong to C2([a, b]), thus they are classical
solutions.

It is well known that the embedding X ↪→ C0([a, b]) is compact and

‖u‖∞ ≤
√

b− a
p0
‖u‖ (2.3)

for all u ∈ X (see, e.g., [15]).
Fixing r ∈ [1,+∞[ , from the Sobolev embedding theorem, there exists a positive constant

cr such that
‖u‖Lr([a,b]) ≤ cr‖u‖X ≤

cr√
m
‖u‖, ∀u ∈ X, (2.4)

and, in particular, the embedding X ↪→ Lr([a, b]) is compact.
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Suppose that the Lipschitz constant L > 0 of the function g satisfies

L < max
{

q0,
p0

(b− a)2

}
. (2.5)

Consider the energy functional Iλ : X → R associated to (1.1) defined as follows

Iλ(u) := Φ(u)− λΨ(u), ∀u ∈ X,

where

Φ(u) :=
1
2
‖u‖2 +

∫ b

a
G(u(x))dx

and

Ψ(u) :=
∫ b

a
F(x, u(x))dx.

Lemma 2.2. Let the functional Φ be defined as above. Then we have the following estimates for every
u ∈ X:

q0 − L
2q0

‖u‖2 ≤ Φ(u) ≤ q0 + L
2q0

‖u‖2, (2.6)

p0 − L(b− a)2

2p0
‖u‖2 ≤ Φ(u) ≤ p0 + L(b− a)2

2p0
‖u‖2. (2.7)

Proof. Since g is Lipschitz continuous and satisfies g(0) = 0, we have

|g(t)| ≤ L|t|, ∀t ∈ R,

and so,

|G(t)| ≤ L
∫ t

0
|ξ|dξ =

L
2

t2, ∀t ∈ R.

Therefore, condition q0 > 0 implies that∣∣∣∣∫ b

a
G(u(x))dx

∣∣∣∣ ≤ L
2

∫ b

a
(u(x))2dx

≤ L
2q0

∫ b

a
q(x)(u(x))2dx

≤ L
2q0
‖u‖2,

for every u ∈ X, and thus (2.6) follows.
On the other hand, the inequality (2.3) yields∣∣∣∣∫ b

a
G(u(x))dx

∣∣∣∣ ≤ L
2

∫ b

a
(u(x))2dx

≤ L(b− a)2

2p0
‖u‖2,

for every u ∈ X. Therefore, we deduce (2.7). The proof is complete.
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By the condition (2.5) and Lemma 2.2 we deduce that Φ is coercive.
By standard arguments, we have that Φ is Gâteaux differentiable and sequentially weakly

lower semicontinuous and its Gâteaux derivative is the functional Φ′(u) ∈ X∗, given by

Φ′(u)(v) =
∫ b

a
p(x)u′(x)v′(x)dx +

∫ b

a
q(x)u(x)v(x)dx−

∫ b

a
g(u(x))v(x)dx

for every v ∈ X. Furthermore, the differential Φ′ : X → X∗ is a Lipschitzian operator. Indeed,
for any u, v ∈ X, there holds

‖Φ′(u)−Φ′(v)‖X∗ = sup
‖w‖≤1

|〈Φ′(u)−Φ′(v), w〉|

≤ sup
‖w‖≤1

|〈u− v, w〉|+ sup
‖w‖≤1

∫ b

a
|g(u(x))− g(v(x))| |w(x)|dx

≤ sup
‖w‖≤1

‖u− v‖ ‖w‖

+ sup
‖w‖≤1

(∫ b

a
|g(u(x))− g(v(x))|2

)1/2 (∫ b

a
|w(x)|2

)1/2

.

Recalling that g is Lipschitz continuous and the embedding X ↪→ L2([a, b]) is compact, the
claim is true. In particular, we derive that Φ is continuously differentiable.

On the other hand, the fact that X is compactly embedded into C0([a, b]) implies that the
functional Ψ is well defined, continuously Gâteaux differentiable and with compact derivative,
whose Gâteaux derivative is given by

Ψ′(u)(v) =
∫ b

a
f (x, u(x))v(x)dx

for every v ∈ X. Hence Ψ is sequentially weakly (upper) continuous (see [16, Corollary 41.9]).
Fixing the real parameter λ, a function u : [a, b]→ R is said to be a weak solution of problem

(1.1) if u ∈ X and∫ b

a
p(x)u′(x)v′(x)dx +

∫ b

a
q(x)u(x)v(x)dx− λ

∫ b

a
f (x, u(x))v(x)dx−

∫ b

a
g(u(x))v(x)dx = 0

for all v ∈ X.
Hence, the critical points of Iλ are exactly the weak (classical) solutions of (1.1).
In conclusion, we cite a recent monograph by Kristály, Rădulescu and Varga [12] as a

general reference on variational methods adopted here.

3 Main results

Put

α :=


2p0

p0 − L(b− a)2 , if q0 <
p0

(b− a)2 ,

2q0

q0 − L
, if q0 ≥

p0

(b− a)2 .

The main result in this paper is the following.
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Theorem 3.1. Let f : [a, b]×R→ R be a continuous function satisfying condition (f1). In addition,
if f (x, 0) = 0 for a.e. x ∈ [a, b], assume also that

(f2) there exist a non-empty open set D ⊆ ]a, b[ and a set B ⊆ D of positive Lebesgue measure such
that

lim sup
t→0+

infx∈B F(x, t)
t2 = +∞, and lim inf

t→0+

infx∈D F(x, t)
t2 > −∞.

Then, there exists a positive number λ? given by

λ? := r sup
γ>0

(
γ

ra1c1
(

α
m

)1/2
+ a2cr

r
(

α
m

)r/2
γr−1

)
,

such that, for every λ ∈ ]0, λ?[ , problem (1.1) admits at least one non-trivial classical solution uλ ∈ X.
Moreover,

lim
λ→0+

‖uλ‖ = 0,

and the function λ 7→ Iλ(uλ) is negative and strictly decreasing in ]0, λ?[.

Proof. We prove the result for the case q0 < p0/(b− a)2. The proof for the case q0 ≥ p0/(b− a)2

is similar.
Fix λ ∈ ]0, λ?[ . Our aim is to apply Theorem 2.1 with the Sobolev space X and the

functionals Φ and Ψ introduced in Section 2. As given in Section 2, Φ and Ψ satisfy the
regularity assumptions of Theorem 2.1. Clearly, infu∈X Φ(u) = 0. Owing to (f1), one has that

F(x, ξ) ≤ a1|ξ|+
a2

r
|ξ|r, (3.1)

for any (x, ξ) ∈ [a, b]×R.
Since 0 < λ < λ?, there exists γ̄ > 0 such that

λ <
rγ̄

ra1c1

(
2p0

m(p0−L(b−a)2)

)1/2
+ a2cr

r

(
2p0

m(p0−L(b−a)2)

)r/2
γ̄r−1

=: λ?
γ̄. (3.2)

Now, set r ∈ ]0,+∞[ and consider the function

χ(ρ) :=

sup
v∈Φ−1(]−∞,ρ[)

Ψ(v)

ρ
.

Taking into account (3.1) it follows that

Ψ(v) =
∫ b

a
F(x, v(x))dx ≤ a1‖v‖L1([a,b]) +

a2

r
‖v‖r

Lr([a,b]).

Then, due to (2.7), we get

‖u‖ <
(

2p0ρ

p0 − L(b− a)2

)1/2

, (3.3)

for every u ∈ X such that Φ(u) < ρ.
Now, from (2.4) and by using (3.3), one has

Ψ(v) < a1c1

(
2p0

m(p0 − L(b− a)2)

)1/2

ρ1/2 + a2
cr

r
r

(
2p0

m(p0 − L(b− a)2)

)r/2

ρr/2,
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for every v ∈ X such that Φ(v) < ρ. Hence

sup
v∈Φ−1(]−∞,ρ[)

Ψ(v) ≤ a1c1

(
2p0

m(p0 − L(b− a)2)

)1/2

ρ1/2 + a2
cr

r
r

(
2p0

m(p0 − L(b− a)2)

)r/2

ρr/2.

Then

χ(ρ) ≤ a1c1

(
2p0

m(p0 − L(b− a)2)

)1/2

ρ−1/2 + a2
cr

r
r

(
2p0

m(p0 − L(b− a)2)

)r/2

ρr/2−1.

In particular, we deduce that

χ(γ̄2) ≤ a1c1

(
2p0

m(p0 − L(b− a)2)

)1/2

γ̄−1 + a2
cr

r
r

(
2p0

m(p0 − L(b− a)2)

)r/2

γ̄r−2. (3.4)

At this point, observe that

ϕ(γ̄2) = inf
u∈Φ−1(]−∞,γ̄2[)

(
sup

v∈Φ−1(]−∞,γ̄2[)

Ψ(v)

)
−Ψ(u)

γ̄2 −Φ(u)
≤ χ(γ̄2),

taking into account that 0X ∈ Φ−1(]−∞, γ̄2[) and Φ(0X) = Ψ(0X) = 0.
In conclusion, bearing in mind (3.2), the above inequality together with (3.4) yields

ϕ(γ̄2) ≤ χ(γ̄2)

≤ a1c1

(
2p0

m(p0 − L(b− a)2)

)1/2

γ̄−1 + a2
cr

r
r

(
2p0

m(p0 − L(b− a)2)

)r/2

γ̄r−2

<
1
λ

.

In other words,

λ ∈

0,
rγ̄

ra1c1

(
2p0

m(p0−L(b−a)2)

)1/2
+ a2cr

r

(
2p0

m(p0−L(b−a)2)

)r/2
γ̄r−1


⊆ ]0, 1/ϕ(γ̄2)[.

By Theorem 2.1, there exists a function uλ ∈ Φ−1(]−∞, γ̄2[) such that

I′λ(uλ) = Φ′(uλ)− λΨ′(uλ) = 0,

and, in particular, uλ is a global minimum of the restriction of Iλ to Φ−1(]−∞, γ̄2[).
Now, we have to show that for any λ ∈ ]0, λ?[ the solution uλ is not the trivial zero

function. If f (·, 0) 6= 0, then it easily follows that uλ 6≡ 0 in X, since the trivial function does
not solve problem (1.1).

Let us consider the case when f (·, 0) = 0 and let us fix λ ∈ ]0, λ?[ . We will prove that the
function uλ cannot be trivial in X. To this end, let us show that

lim sup
‖u‖→0+

Ψ(u)
Φ(u)

= +∞. (3.5)
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For this, due to (f2), we can fix a sequence {ξn} ⊂ R+ converging to zero and two constants
σ and κ (with σ > 0) such that

lim
n→+∞

infx∈B F(x, ξn)

ξ2
n

= +∞,

and
inf
x∈D

F(x, ξ) ≥ κξ2,

for every ξ ∈ [0, σ].
Now, fix a set C ⊂ B of positive measure and a function v ∈ C∞

0 ([a, b]) ⊂ X such that:

i) v(x) ∈ [0, 1], for every x ∈ [a, b];

ii) v(x) = 1, for every x ∈ C;

iii) v(x) = 0, for every x ∈ ]a, b[ \D.

Finally, fix M > 0 and consider a real positive number η with

M <
2p0

p0 + L(b− a)2

η meas(C) + κ
∫

D\C v(x)2 dx

‖v‖2 .

Then, there is ν ∈N such that ξn < σ and

inf
x∈B

F(x, ξn) ≥ ηξ2
n,

for every n > ν.
Now, for every n > ν, by the properties of the function v (that is, 0 ≤ ξnv(x) < σ for n

sufficiently large), one has

Ψ(ξnv)
Φ(ξnv)

=

∫
C F(x, ξn) dx +

∫
D\C F(x, ξnv(x)) dx

Φ(ξnv)

≥ 2p0

p0 + L(b− a)2

η meas(C) + κ
∫

D\C v(x)2 dx

‖v‖2 > M.

Since M could be taken arbitrarily large, it follows that

lim
n→+∞

Ψ(ξnv)
Φ(ξnv)

= +∞,

from which (3.5) clearly follows. Hence, there exists a sequence {wn} ⊂ X strongly converging
to zero, such that, for every n sufficiently large, wn ∈ Φ−1(]−∞, γ̄2[), and

Iλ(wn) = Φ(wn)− λΨ(wn) < 0.

Since uλ is a global minimum of the restriction of Iλ to Φ−1(]−∞, γ̄2[), we conclude that

Iλ(uλ) < 0 = Iλ(0X), (3.6)

so that uλ is not trivial in X.
Moreover, from (3.6) we easily see that the map

]0, λ?[ 3 λ 7→ Iλ(uλ)
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is negative.
Now, we claim that

lim
λ→0+

‖uλ‖ = 0.

Indeed, bearing in mind that Φ is a coercive functional and that uλ ∈ Φ−1(] −∞, γ̄2[), for
every λ ∈ ]0, λ?

γ̄[, we obtain

‖uλ‖ <
(

2p0

p0 − L(b− a)2

)1/2

γ̄.

As a consequence, using the growth condition (f1) together with the property (2.4), it follows
that∣∣∣∣∫ b

a
f (x, uλ(x))uλ(x) dx

∣∣∣∣ ≤ a1‖uλ‖L1([a,b]) + a2‖uλ‖r
Lr([a,b])

≤ a1c1

m1/2 ‖uλ‖+
a2cr

r

mr/2 ‖uλ‖r (3.7)

< a1c1

(
2p0

m(p0 − L(b− a)2)

)1/2

+ a2cr
r

(
2p0

m(p0 − L(b− a)2)

)r/2

=: Mγ̄,

for every λ ∈ ]0, λ?
γ̄[ .

Since uλ is a critical point of Iλ, then I′λ(uλ)(v) = 0, for any v ∈ X and every λ ∈ ]0, λ?
γ̄[ .

In particular, I′λ(uλ)(uλ) = 0, that is

Φ′(uλ)(uλ) = λ
∫ b

a
f (x, uλ(x))uλ(x) dx, (3.8)

for every λ ∈ ]0, λ?
γ̄[ . Hence, from (2.3), (3.7) and (3.8), it follows that

0 ≤ p0 − L(b− a)2

2p0
‖uλ‖2 ≤ Φ′(uλ)(uλ) < λMγ̄,

for every λ ∈ ]0, λ?
γ̄[ . Letting λ→ 0+, we get limλ→0+ ‖uλ‖ = 0, as claimed.

Finally, we have to show that the map λ 7→ Iλ(uλ) is strictly decreasing in ]0, λ?[ . For this,
we observe that for any u ∈ X, one has

Iλ(u) = λ

(
Φ(u)

λ
−Ψ(u)

)
. (3.9)

Now, let us fix 0 < λ1 < λ2 < λ?
γ̄ and let uλi be the global minimum of the functional Iλi

restricted to Φ−1(]−∞, γ̄2[) for i = 1, 2. Also, let

mλi :=
(

Φ(uλi)

λi
−Ψ(uλi)

)
= inf

v∈Φ−1(]−∞,γ̄2[)

(
Φ(v)

λi
−Ψ(v)

)
,

for every i = 1, 2.
Clearly, the negativity of the map λ 7→ Iλ(uλ) in ]0, λ?[ together with (3.9) and the positiv-

ity of λ imply that
mλi < 0, for i = 1, 2. (3.10)
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Moreover,
mλ2 ≤ mλ1 , (3.11)

thanks to 0 < λ1 < λ2 and Φ ≥ 0 by Lemma 2.2. Then, by (3.9)–(3.11) and again by the fact
that 0 < λ1 < λ2, we get that

Iλ2(uλ2) = λ2mλ2 ≤ λ2mλ1 < λ1mλ1 = Iλ1(uλ1),

so that the map λ 7→ Iλ(uλ) is strictly decreasing in ]0, λ?[ , which completes the proof.

Remark 3.2. Theorem 3.1 can be also obtained applying Theorem 2.3 of [4], which directly
ensures that the local minimum is non-zero.

4 Additional results and comments

In this section we give some consequences, remarks and an example.

Remark 4.1. By direct computation, it follows that the parameter λ? in Theorem 3.1 can be
expressed as

λ? =



+∞, if 1 < r < 2,
2m

αa2c2
2

, if r = 2,

rγ̃max

ra1c1
(

α
m

)1/2
+ a2cr

r
(

α
m

)r/2
γ̃r−1

max

, if 2 < r < +∞,

where

γ̃max :=
(m

α

)1/2
(

ra1c1

a2cr
r(r− 2)

)1/(r−1)

.

Remark 4.2. From the above expressions, it follows that if the term f is sublinear at infinity
(i.e., r ∈ ]1, 2[ in (f1)), Theorem 3.1 ensures that, for all λ > 0, problem (1.1) admits at least
one nontrivial classical solution.

Remark 4.3. We observe that if f (x, 0) = 0 for a.e. x ∈ [a, b], Theorem 3.1 is a bifurcation
result. Indeed, in this setting, it follows that the trivial solution solves problem (1.1) for every
parameter λ. Hence, λ = 0 is a bifurcation point for problem (1.1), in the sense that the pair
(0, 0) belongs to the closure of the set{

(uλ, λ) ∈ X×]0,+∞[ : uλ is a nontrivial classical solution of (1.1)
}

in the space X×R.
Indeed, by Theorem 3.1 we have that

‖uλ‖ → 0 as λ→ 0+.

Hence, there exist two sequences {uj}j∈N in X and {λj}j∈N in R+ (here uj := uλj ) such that

λj → 0+ and ‖uj‖ → 0,

as j→ +∞.
Moreover, for any λ1, λ2 ∈ ]0, λ?[ , with λ1 6= λ2, the solutions uλ1 and uλ2 given by

Theorem 3.1 are different, thanks to the fact that the map

]0, λ?[ 3 λ 7→ Iλ(uλ)

is strictly decreasing.
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The next result is an immediate consequence of Remark 4.1.

Corollary 4.4. Let f : [a, b]×R → R be a continuous function with f (x, 0) = 0 for a.e. x ∈ [a, b],
satisfying the following subcritical growth condition

| f (x, t)| ≤ a1 + a2|t|r−1, a.e. x ∈ [a, b], t ∈ R, (4.1)

where a1, a2 ≥ 0 and r ∈ ]2,+∞[ . Further, assume that there exists a non-empty open set B ⊆ ]a, b[
such that

lim
t→0+

infx∈B F(x, t)
t2 = +∞. (4.2)

Then, there exists a positive number λ? given by

λ? :=
m(r− 2)

αa1c1(r− 1)

(
ra1c1

a2cr
r(r− 2)

)1/(r−1)

,

such that, for every λ ∈ ]0, λ?[, problem (1.1) admits at least one nontrivial classical solution uλ ∈ X.
Moreover,

lim
λ→0+

‖uλ‖ = 0,

and the function λ→ Iλ(uλ) is negative and strictly decreasing in ]0, λ?[ .

We state an example on the following special case of our results.

Theorem 4.5. Let f : R→ R be a continuous function such that f (0) = 0, and

lim
t→0+

f (t)
t

= +∞, lim
|t|→+∞

f (t)
|t|s = 0,

for some 0 ≤ s < +∞. Then, there exists λ? > 0 such that, for every λ ∈ ]0, λ?[, the following
autonomous mixed problem{

−(pu′)′ + qu = λ f (u) + g(u) in ]a, b[ ,

u(a) = u′(b) = 0,

admits at least one nontrivial classical solution uλ ∈ X. Moreover,

lim
λ→0+

‖uλ‖ = 0,

and the mapping

λ 7→ Φ(uλ)− λ
∫ b

a

(∫ uλ(x)

0
f (x, t)dt

)
dx

is negative and strictly decreasing in ]0, λ?[ .

Proof. The conclusion follows immediately from Theorem 3.1. Indeed, if

lim
t→0+

f (t)
t

= +∞,

then, we have

lim
t→0+

F(t)
t2 = +∞,

and condition (f2) holds true. Moreover, hypothesis

lim
|t|→+∞

f (t)
|t|s = 0,

where 0 ≤ s < +∞, implies the growth condition (f1).
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Remark 4.6. We observe that if f is a non-negative function, our results guarantee that the
attained solution is non-negative. To this end, let u0 be a solution of problem (1.1). Arguing by
contradiction, assume that the set A := {x ∈ [a, b] : u0(x) < 0} is non-empty and of positive
Lebesgue measure. Put v̄(x) := min{0, u0(x)} for all x ∈ [a, b]. Clearly, v̄ ∈ X and, taking into
account that u0 is a weak solution and by choosing v = v̄, one has∫ b

a
p(x)u′0(x)v̄′(x)dx +

∫ b

a
q(x)u0(x)v̄(x)dx− λ

∫ b

a
f (x, u0(x))v̄(x)dx−

∫ b

a
g(u0(x))v̄(x)dx = 0,

that is, ∫
A

p(x)|u′0(x)|2dx +
∫

A
q(x)|u0(x)|2dx−

∫
A

g(u0(x))u0(x)dx ≤ 0.

On the other hand, if q0 < p0/(b− a)2, then

p0 − L(m(A))2

p0
‖u0‖2

W1,2(A) ≤
∫

A
p(x)|u′0(x)|2dx +

∫
A

q(x)|u0(x)|2dx−
∫

A
g(u0(x))u0(x)dx,

where m(A) is the Lebesgue measure of the set A, and if q0 ≥ p0/(b− a)2, then

q0 − L
q0
‖u0‖2

W1,2(A) ≤
∫

A
p(x)|u′0(x)|2dx +

∫
A

q(x)|u0(x)|2dx−
∫

A
g(u0(x))u0(x)dx.

Hence, u0 ≡ 0 on A which is absurd. So, it follows that u0 is non-negative.

The next example deals with a nonlinearity f has vanishes at zero. The existence of one
nontrivial solution for the mixed problem involving the map f is achieved by using Corol-
lary 4.4.

Example 4.7. Consider the following problem{
−(2exu′)′ + u(ex − 1) = λ f (x, u) in ]0, 1[ ,

u(0) = u′(1) = 0,
(4.3)

where f (x, u) := α(x)|u|h−2u + β(x)|u|l−2u and α, β : [0, 1] → R are two continuous positive
and bounded functions, and 1 < h < 2 < l. Then, for every λ ∈ ]0, λ?[, where

λ? :=
l − 2

8(l − 1)max{‖α‖∞, ‖β‖∞}

(
lc1

cl
l(l − 2)

)1/(l−1)

,

problem (4.3) admits at least one nontrivial classical solution

uλ ∈ Y :=
{

u ∈W1,2([0, 1]) : u(0) = 0
}

.

Moreover, by

‖uλ‖ :=
(∫ 1

0
2ex(u′λ(x))2dx +

∫ 1

0
ex(uλ(x))2dx

)1/2

,

we have
lim

λ→0+
‖uλ‖ = 0,

and the function

λ 7→ 1
2
‖uλ‖2 +

∫ 1

0
uλ(x)dx− λ

∫ 1

0

(∫ uλ(x)

0
f (x, t)dt

)
dx
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is negative and strictly decreasing in ]0, λ?[ .
To prove this, we can apply Corollary 4.4 with

f (x, t) := α(x)|t|h−2t + β(x)|t|l−2t,

p(x) := 2ex, q(x) := ex, g(t) := t,

for every (x, t) ∈ [0, 1]×R. In fact, f (x, 0) = 0 for a.e. x ∈ [0, 1] and it is easy to verify that

| f (x, t)| ≤ 2 max{‖α‖∞, ‖β‖∞}
(

1 + |t|l−1
)

, a.e. x ∈ [0, 1], t ∈ R.

Then, condition (4.1) holds. Moreover, a direct computation shows that

lim
t→0+

infx∈B F(x, t)
t2 ≥ infx∈B α(x)

h

(
lim

t→0+

1
t2−h

)
= +∞,

where B ⊆ ]0, 1[ is an arbitrary non-empty open set. Hence, assumption (4.2) is verified and
the conclusion follows.

Remark 4.8. We point out that the energy functional Iλ associated to problem (4.3) is un-
bounded from below. Indeed, fix u ∈ X \ {0} and let τ ∈ R. We have

Iλ(τu) = Φ(τu)− λ
∫ 1

0

(∫ τu(x)

0
f (x, t)dt

)
dx

≤ 3
4
‖u‖2 − λ

τh infx∈[0,1] α(x)
h

‖u‖h
Lh([0,1]) − λ

τl infx∈[0,1] β(x)
l

‖u‖l
Ll([0,1]) → −∞,

as τ → +∞, bearing in mind that h < 2 < l.
Hence, since the functional Iλ is not coercive, the classical direct method result cannot be

applied to the case treated in Example 4.7.

Remark 4.9. We note that, applying Theorem 2.1, we have the relevant result of Theorem 3.1
for the following mixed boundary value problem with a complete equation{

−( p̄u′)′ + n̄u′ + q̄u = λ f (x, u) + g(u) in ]a, b[ ,

u(a) = u′(b) = 0,
(4.4)

where p̄ ∈ C1([a, b]) and q̄, n̄ ∈ C0([a, b]) such that p̄ and q̄ are positive functions, λ is a
positive parameter, f : [a, b]×R→ R is a continuous function such that

| f (x, t)| ≤ eR(x)
(

a1 + a2|t|r−1
)

, a.e. x ∈ [a, b], t ∈ R,

where a1, a2 ≥ 0 and r ∈ ]1,+∞[ and R is a primitive of n̄/ p̄, while g : R → R is a Lipschitz
continuous function with the Lipschitz constant L > 0 satisfying

L < max

{
min

x∈[a,b]
e−R(x)q̄(x),

minx∈[a,b] e−R(x) p̄(x)
(b− a)2

}
,

and g(0) = 0.
In fact, since the solutions of problem (4.4) are solutions of the problem{

−(e−R p̄u′)′ + e−Rq̄u = (λ f (x, u) + g(u)) e−R in ]a, b[ ,

u(a) = u′(b) = 0,

we can state and prove a result for problem (4.4) similar to Theorem 3.1.
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