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Abstract. In this paper, we apply Schauder’s fixed point theorem, the upper and lower
solution method, and topological degree theory to establish the existence of unbounded
solutions for the following fourth order three-point boundary value problem on a half-
line

x"(t) +q(t) F(t, x(t),x'(t), X" (t), X" (t)) =0, t € (0,+00),
X"0)=A, x(n)=B1, ¥(n)=By  x"(+00)=C,

where 1 € (0, +c0), but fixed, and f: [0, +c0) X R* — R satisfies Nagumo’s condition.
We present easily verifiable sufficient conditions for the existence of at least one solu-
tion, and at least three solutions of this problem. We also give two examples to illustrate
the importance of our results.

Keywords: three-point boundary value problem, lower and upper solutions, half-line,
Schauder’s fixed point theorem, topological degree theory.
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1 Introduction

In this paper, we develop an existence theory for fourth order ordinary differential equations
together with boundary conditions on a half-line

x"() +q(t)f (8, x(8), x'(8), x" (), x"(t)) =0, € (0,+00),
x"(0) = A, x(17) = By, x'(n) = By, lim x"'(t) = "' (4+00) = C,

t—+too

(1.1)

where 77 € (0, +0o0), but fixed, g: (0, +0) — (0, +0), f: [0,+00) x R* — R are continuous,
and A, B, B, € R, C > 0. By using the upper and lower solution method, we present easily
verifiable sufficient conditions for the existence of unbounded solutions of (1.1).
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The upper and lower solution method has been successfully used to provide existence re-
sults for two-point and multi-point boundary value problems (in short BVPs) for second-order
and higher-order ordinary differential equations, see [6,9,10,14,19,20,26,27] and references
therein. All of these works deal with problems on finite intervals. In recent years the study of
BVPs on [0, +c0) has attracted several researchers, for instance see [3,5,11,12,15,16,24,25,28]
and references therein. In these works authors have applied either some fixed point theo-
rem or a monotone iterative technique to establish the existence of bounded or unbounded
solutions.

Fourth-order differential equations appear in mathematical modeling of physical, biolog-
ical, and chemical phenomena such as viscoelastic and inelastic flows, deformation of beams
and plate deflection problems [2,7,8,13,18,29]. On a finite interval fourth-order differential
equations together with two-point boundary conditions have been studied in [1,17, 21, 22],
and with multi-point conditions in [6,19,23,27]. It seems that [12] is the only paper which
considers a particular fourth-order differential equation on [0, +oc0) (with entirely different
technique and boundary conditions than ours). Thus, to fill a gap in this paper we present an
existence theory of unbounded solutions for the BVP (1.1).

The plan of our paper is as follows: in Section 2, we give some definitions and lemmas
which we need to prove the main results. This includes the construction of Green’s function
for a related fourth order boundary value problem with nonhomogeneous three-point bound-
ary conditions, definitions of upper and lower solutions of (1.1), and Nagumo’s condition. In
Section 3, we present two main results. In our first result we use Schauder’s fixed point theo-
rem to establish the existence of at least one solution of (1.1) which lies between the assumed
pair of upper and lower solutions. In our second result we assume the existence of two pairs
of upper and lower solutions and employ the degree theory to prove the existence of at least
three solutions of (1.1). We demonstrate the importance of our results through two illustrative
examples.

2 Preliminaries

We begin with constructing Green’s function for the linear boundary value problem

x"(t) +o(t) =0, t € (0,+0),

2 / " (21)
x"(0) = A, x(n) = By, x'(n) = By, x"(400) = C.

Lemma 2.1. Let v € C[0,+o0) and [, v(t)dt < -oco. Then the solution x € C3[0,400) N
C*(0, +00) of the problem (2.1) can be expressed as

2 00
w(0) =Bt (B = ) (=) + 5B =)+ 0 =)+ [ Gl s)ots)as

where

2 e
— /i <
5(2 17t—|—2>, s < min{y,t};
i+ﬁ_ﬂts+ﬂ725_£ t<s<wy
G(t,s) = 62 22 , 23 63 o (2.2)
L
2 2 2 Te T3 M=V
B 2
i % + %, max{n,t} <s
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Proof. Since v € C[0, +o0) and fo t) dt < 400, we can integrate (2.1) from ¢ to 400, and use
1" (400) = C, to get
/// C +/

Integrating the above equation on [0, t], applying Fubini’s theorem, and using x”(0) = A, we
obtain

t o
x"(t) = A+Ct+/ sv(s)ds—l—/ to(s) ds
0 t

Again integrating the above equation on [0, {], we find

x'(t) = (0)+At+—t2+/ <st—> ds+/°° e (2.3)

Since x'(17) = By, it follows that

x'(0) = <B2—A17— C2772) —/077 (s;y— S;) v(s)ds—/ﬂOQ 77220(s)ds.

Hence from (2.3), we have

2
x'(t) = (BZ — An — Cg) + At + Et2

2
t 2 2
—|—/ s(t—iy)v(s)ds—i—/t]7 <t2—|—52—517> v(s)ds (2.4)
+/ v(s)ds, if t<y

and

2
X' (t) = <B2 — A — Cg) + At + %tz

f 2 2
+ /017 s(t —n)v(s)ds —k/}7 <st - % - ;72> ov(s)ds (2.5)
+ /oo %(t‘2 —n*)o(s)ds, if n<t.
t

When ¢t < 5 we integrate (2.4) from t to 1, and when n < t we integrate (2.5) from 7 to ¢, to
obtain

x(t) = By + (Bz — Ay — C;72> (t—mn)+ ?(t2 — %)+ %(t?’ —7%)

4 t 2 3 2 2 3
s (t—m+ ) ds+/ <t +”—nts+’7s—s>v(s>ds
A 2 6
173
+/ <—+3)v(s)ds, t<u;

i t2 172 Stz Szt 1721, 53 173
/O s (2—771‘+Z> o(s)ds + ; <2_2_2+6+3> v(s)ds

o 3 2 3
+ (t—ﬂt+17) v(s)ds, n<t
¢
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which is the same as

)= B+ (B Ay = ) =)+ 5 =)+ £0 )

+ /oo G(t,s)v(s)ds, Vt € [0, +o0).
0

This completes the proof of the lemma. O

Let

_ 3 Cim SO i X2 e
X_{xec 0 +e0): Hm 7=, Mim 9= Him 9 and Tim 27(F) exist

with the norm ||x|| = max {||x||1, ||x]|2, ||x]|3, [|x|la} , where

(1) (1)
= sup FOL ey = ey KOL
te[0,4-00) 1+# te[0,4-00) 1+
x" (¢
o= sup L= sup o).
te[0,+00) te[0,4-)

Then by standard arguments, it follows that (X, ||.||) is a Banach space. In what follows, we
shall need the following modified version of the Arzela—Ascoli lemma [4,24].

Lemma 2.2. Let M C X. Then M is relatively compact if the following conditions hold:

(i) M is bounded in X;

(ii) functions in {y : y = 5, xEM},{z:z:li—;z, xGM},{u:u:f‘T”t, x € M} and
{w:w=x"'(t), x € M} are locally equi-continuous on [0, +00);

/"

x € M}, {u:u=>;, x € M} and

(iii) functionsin {y 1y = 15, x € M}, {z:z = 1%21 .y

{w:w=x"(t), x € M} are equi-convergent at +oo.
Definition 2.3. A function « € X N C*(0, +0) is called a lower solution of (1.1) if

o"'(t) +q()f (8 a(t), o' (t),a” (1), 2 (t)) 20, € (0,+00), (2.6)
a"(0) < A, a(7) < By, o' () = By, &' (+00) < C. (2.7)

Similarly, a function B € X N C3(0, +0) is called an upper solution of (1.1) if

B (t) +a(t)f(t,B(t), B'(t), B"(t), B"(£)) <0,  t€(0,+00), (2.8)
p'(0)=A,  B(n) =B,  P(n) =By  B"(+00) =C. (2.9)

Also, we say a(p) is a strict lower solution (strict upper solution) for problem (1.1) if the above
inequalities are strict.

Remark 2.4. If
o (t) < p(t) forallt e (0,+o0), (2.10)

then by integrating (2.10) and using the continuity of a(t) and B(t), and the fact that &’ () =
By = B/(n), it follows that B/(t) < a/(t) forall t € [0,%) and a'(t) < B/(t) forall t € [, +00). A
further integration then yields a(t) < B(t) for all ¢ € [0, +o0).
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Definition 2.5. Let a, p € X NC*(0, +o0) be a pair of lower and upper solutions of (1.1) satisfy-
ing &’ (t) < B"(t), t € [0,+00). A continuous function f: [0, +o0) x R* — R is said to satisfy
Nagumo’s condition with respect to the pair of functions «, B, if there exist a nonnegative
function ¢ € C[0, +o0) and a positive function & € C[0, +o0) such that

(&2 u,0)] < @(8)h([w]) (2.11)

for all (t,y,z,u,w) € [0,7) x [a(t), B(£)] x [B'(t), &’ ()] x [a"(£), B"(t)] x R and (t,y,2z,u,w) €
[, +00) x [a(t), B(£)] > [a/(£), B ()] > [ (£), B"(t)] X R, and

® s
/O ey 5=+ 2.12)

3 Main results

The following result provides sufficient conditions for the existence of at least one solution
of the problem (1.1).

Theorem 3.1. Assume that w, B are lower and upper solutions of (1.1) satisfying o' (t) < B"(t),
t € [0,400), and suppose that f: [0,+00) x R* — R is continuous satisfying Nagumo’s condition
with respect to the pair of functions «, B. Further, assume that

f(ta(t),z,uw) < f(ty z,uw) < f(tB(t),z,u w) (3.1)

and

flty,a'(t),u,w) < f(ty,z,u,w) < f(ty,B(t),u,w) (32)

for (ty,zu,w) € [0,0) x [a(t), B(D] x [B/(5), &' ()] x [ (1), B"(H)] x R and (t,y,z,u,0) €
[, +00) x [a(£), B()] x [o(8), B ()] x [a"(£), B"(£)] x R. If

/ max{s, 1}q(s)ds < +oo, / max{s, 1}¢(s)q(s)ds < 400 (3.3)
0 0
and there exists a constant vy > 1 such that

m= sup (1+1t)7q(t)p(t) < +oo, (34)
te[0,4-c0)

where ¢(t) is the function in Nagumo's condition of f, then (1.1) has at least one solution x € X N
C*(0, 4o00) satisfying

at) < x(t) < B(t), t € [0, 400),

By <) <u(t), telom), «H<KO<PE), tely+oo),
m<x%ﬂ<ﬁa» B <N, teo,+o);

here, N is a constant depending on «, B, h and C.

Proof. We can choose an

erax{ sup |a"'(t)], sup |B"(¢), C} (3.5)
te[0,4-c0) te[0,400)
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and an N > r such that

N s :B//(t) . D‘U(t> Y
—d m up — nf + m Blls, ||« . 3.6
/r ]’l(S) s> <t€[sO, ) (1—|—t)'¥ te[%), ) (1+t)'y y—1 ax{|| H3 H ||3} (3.6)

We define the following auxiliary functions

f(t, Bz u,w),  y>p(t);
folty,z,u,w) = f(t,y,z,u,w), a(t) <y < B(t);
f(ta,z,u,w),  y<a(t),

folty, B uw), z<p(t);
t E [0’ T])’ fO(t,}/,ZI u/w)/ ‘B,(t) S Z S DC/(t),
folt,y, o/, u,w),  z>a(t),
fl(tlylzlulw) - .
folt,y, B u,w),  z>PB(t);
€n4o), {folbyzuw), &) <z<P(t)
folt,y, o/ u,w),  z<a(t),
and
" ") —u
filtryz Bl w) + gty w0
fity 2 w) = Atz uw), W) <u<p); (B
filty,z,&", w*) + % u<a(t),
where
—N, w < —N.

Now we consider the modified problem

x"(E) +q()f7 (8 x (), x'(8), x"(8), X" (£)) =0, t € (0,+00),

3.8
O = A, x) =By, X =By  x"(+e)=C. 9

As an application of Schauder’s fixed point theorem first we will prove that (3.8) has at least
one solution x. To show this, for x € X, we define two operators as follows

(Tix)(t) = /Ooo G(t,s)q(s)f* (s, x(s),x'(s),x"(s),x""(s)) ds, t €10, 400)

and
_ Cr? A
(Tx)(t) = B1-|(; <Bz—A17— 2) (t—77)—|—§(t2—172) 69)
+ 2 (E=n) + (Ti)(t),  te[0,+e).

Now we shall prove that T: X — X is completely continuous. We divide the proof in the
following three parts.
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(1) T: X — X is well defined. For each x € X, in view of (2.11), (3.3) and (3.7) as in [5], we

have

< [7a(o)(Hog(s) + 1) ds

a1 (5 x(5), 2 (5), 2 (9), 6 (5)) s

< /000 max{1,s}q(s)(Ho¢p(s) +1)ds < 4oo,

where Hy = maxg<<|x|, #(t). For x € X, we find from (3.10) that

/1 " sq(s) (Hop(s) + 1) ds < /O " max{s, 1}q(s) (Hod(s) + 1)) ds < oo,

which implies

lim_tq(t)(Hog(t) +1) = 0.

t—+oo

Since

/tooq(s)(Hoqb(s) +1)ds < /toosq(s)(Hoqb(s) S 1))ds < 400, E>1,

it also follows that

[e]

lim q(s)(Hop(s) +1)ds = 0.

t—+o00 Jt

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

Thus by Lebesgue’s dominated convergence theorem, 1'Hépital’s rule, (3.12) and (3.14), we

find
(Tix)(1)
totoo 143
76|
< tim [ SEE0(6) (Hop(s) +1) ds

+ [ (Hop(s) + 1) ds
s § t ’
=ggo;w‘;52%mxmmw+m%+ggf @§;+gﬂwxmww+n
o rG=D L (E-n )
+ dim [ 2og(s) (Hopls) + 1) ds — lim <2232 ()(Hog (1) + 1)
. (P =5 %)
=;g;/6t ) (Ho(s) +1)ds + lim “——Z—224(t) (Hog(t) +1)

o ¢ |
+tgrfoo t 6t ( )(HO(P( ) )ds_tEToo 6t

— lim / )(Ho¢(s) +1)ds = 0,

6 t—4o00
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which implies that lim;_, (Tl +1§ ) —0. Therefore, it follows that

(Tx)(t) _ lim B1+(BZ—A17——)(t—q)+§(t2_,72)+%(t3_773)

e 1T+ 8 o 1+
(Tax)(t)
lim
t T 1+
_C
6

By Lebesgue’s dominated convergence theorem, I’'Hopital’s rule, (3.12) and (3.14), we have

m T < | [ R0 s 1.

i 1482 1412
[ B 4(5)(Hop(s) + 1) ds
+/ é1+t2 (s)(Hog(s) + 1) ds
= lim fnt sq(s)(Hop(s) +1) ds + (t;t— £ Pya(t) (Hop(t) +1)
AL CILE DRSS GRUTGILEORS)
T2 tEE‘oo/ )(Hog(s) + 1) ds = 0,

which implies that lim;_, (Tii)ﬂ(t) = 0. Therefore, it follows that

(Tx)'(t) _ |, (By — Ay — *)+Al‘+ St 4 lim (Tix)'(t) _ C

t—>r—Foo 1+£2 t—1>r-{loo 1412 totoo 14 2 2

Again, using Lebesgue’s dominated convergence theorem, 1'Hopital’s rule, (3.12) and (3.14),
we obtain

T ©|_
e 1+f | toie

1—1{-t </t SQ(S)]C*(S,X(s),x’(s)/x’/(s) ///( ))ds

[Tt (5300, (9),26),2(5)) s
( / 50(5) (Hog(9) + 1)ds + [ 19(5)q(5) (Hog(s) + 1) s )

= lim q(s)(Hop(s) +1)ds =0,

t—+o0 Jt

< lim
toteo 1+ £

which implies that lim;_, (Tllxil/;(t) = 0. Hence, we find

" 1"
(Tx)"(t) ~ lim A+ Ct + fim (Tyx)" () _c
N t—+oo 14t to+oo 14t

Now from (3.12), we have

lim [ g()f* (5,1(3), ¥ (5),3"(5), 4" (5)) ds

t—+o00 Jt

[e e}

< lim q(s)(Hop(s) +1)ds =0,

t—+o0 Jt
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and hence,

[ee]

lim (Tx)"(t) = lim C+ q(s)f*(s,x(s),x’(s),x”(s),x’”(s))ds =C.

t—+o0 t—>+o00

Consequently, it follows that Tx € X.
(2) T: X — X is continuous. For any convergent sequence x, — x in X, we have

xn(t) = x(t), x,(t) = x'(t), x,(t) = x"(t), x,(t) = x"(t), n— +oo, t €[0,+00).
Thus the continuity of f* implies that
(s, 2n(5), 23 (5), x5 (), 23 (5)) = £7 (5, x(s), %' (5), x"(s),x""(s))| = 0, 1= F00, 5 € [0, +00).

Since x},/(t) — x"'(t), we have sup ||x,|[4 < +oco. Let
nelN

Hy = max h(t).

0<t<max{||x[ls, sup, c [[xnll4}

Then we obtain

/Ooo sq(s)] (s, xu(s), x,(s), x5 (s), x"'(s)) = (5, x(s), ¥’ (5), x" (), x""(5)) | ds

- (3.15)
< 2/0 sq(s) (Hip(s) +1) ds < +oo.

Therefore from Lebesgue’s dominated convergence theorem and (3.15) for 7 < t it follows
that

|Txn(t) — Tx(t)|  |Tixa(t) — Tox(t)|

1418 B 1+#
= /0 Cl;(f_':g)f/(S)(f*(S,xn(S),xZ(S)IXZ(S)/XZ’(S))—f*(S,x(S)fx’(S),x"(S),x”’(S)))dS
/ 2 1+t3 ()£ (s, xu(s), 23,(), %, (5), 2" (5)) — 7 (s, x(5), x'(s), x"(5), x""(s)) | ds
tg( sty 1t
+/ . 71L+t;r = )q(s)

X |(f*(s,xn(8), x3,(5), 23, (8), X" (s)) — f*(s,x(s5), X' (5), x" (), %" (5))| ds
+/t serary) th;r 3)q(s)

X |f7(s,xu(s), x5 (), x5(5), %, (5)) — f*(s,x(5), X'(s), x"(5), x""(5)) | ds

o 2
S/O ST O)f (s 2u(s), 2 (), 23 (5), 23 (5)) — £ (5, x(5), x'(s), 6" (), 2™ (5)) | ds

< /0 sq(s)|f" (s, xn(s), x5, (5), x5/ (5), ' (5)) — 7 (5, x(s), x'(5), x" (5), x"" (5) )| ds
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and for t <17

| Txn(t) — Tx(t)] _ | Ty, () — Tyx(t)|
1+ t3 1413
G(t,s)

0 1+t3 05) (5 %0(5), 2,9, %5(8), 641 (8)) = (5, 6(6), 4/ (5), 7 (5),37" () ds
< [ SIS (5 1a(5), (5 29,1 (6)) = (5, 3(8), € (5), (5,2 (9)

s(Erstpnt+l +)
_|_/t 6 21+t3 2 6 6](5)

X |(f* (s, 2n(s), 2,(s), %, (5), 3 (5)) = £ (s, x(5), x'(5), x" (s), " (s)) | ds

2 2 2
o i B DY
" 1+

X (s, xu(s), 1), 234 (5), % (5)) = f7 (s, x(5), % (s), x" (), x"(s)) | ds

0 7i2
S/O s O (5,xn(s), 3, (8), i (), 1 (5)) = f7(s,x(5), ¥/ (), ¥ (5), " (s)) | ds
2 oo
< 71;/0 sq(s)1f* (s, xu(s), %, (5), x5 (5), %" (s)) = f* (s, x(s), x'(5), x"(5), x"(s)) | ds.
Combining the above inequalities, we obtain

| Tx, — Tx||1
< max {1, 78} [ sq17" (536, %, (5),14(5), 61 (9) = (5,x(5), (), (5),5"/(5) | s,

which approaches zero as n — co. Similarly, from Lebesgue’s dominated convergence theorem
and (3.15) for 1 < t, we find

[(Tx)'(8) = (Tx)" ()| _ [(Toxn)'(£) = (Tax)'(#)]

1+12 1+12
< [ tz) (1550150, 6 5190) = (3301000
t_ s
e
(5 00(5) 2 51, ), 3 (5)) = (5, (5), ¢ (5), (), (5 s
) 1
+/ 1+ t2

X 15200 (5), (), 14 (5), 34 (5)) — £ (5, %(5), (), 27 (s), 27" ())] s
/°°1 )1 500 (), %4(5),34(6), 61 (5)) = £(5,%(), ¢ (5),2" (5), 4(5)) s
<5 7S (50000, 2 (5),30(5),38(9)) — (5,306, (6), 7 (5), 7(5)) | s
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and for t <7

|(Txn)"(8) = (T)"()| _ [(Taxa)'(t) — (Thx)'(#)]
1+ t2 1+1¢2

‘/ T (s, xu(s), x5 (5), 31 (5), %" (5)) — (5, x(s), %' (), x"(s), x"(5)) ) ds
($)If (5, xu(s), %3 (), x5 (5), %" (5)) = f* (s, x(5), X'(s), x"(5), x""(5)) | ds

1 + t2

+1 R~
X | (f*(s,2n(s), %3 (3), x5 (5), % (8)) — f* (s, x(s), ¥ (5), x" (s), 2" (5) ) | ds
00 1

o

X 1 (5, (), 14 (5), 64(5), 641 (5)) = £ (5, 0(5), 2 (5), 27 (5), 37" () s
< [T a1 (0 (6), ), 6E5), 20() — £ (5,3(6), % (5), 2" (5), () ds
< [ SO (5, %0(), 54, X15), 341(6)) = £7(5,6(8), ' (5), (), 4(5)) .

Combining the above inequalities, we obtain

ITxn — Tx|2

< max {z,7} /Ooo sq(s)1f" (s, xn(5), x5 (5), x5 (5), ' (5)) — 7 (5, x(s), x'(5), X" (5), x"" (5)) | ds,

which approaches zero as n — co. We also have

| Tx, — Tx||3
iy 7 I /
o IO -0l 1T 0 - () o)
te[0,400) L+t te[0,+00) T+t

tog
< te?()l,lfoo) [/0 1+tq(5)
X |f*(s,xn(s), x5 (5), %3 (8), x5’ (5)) — £ (s, x(s), %' (s),x" (), x"" (s)) | ds
ARt
X | f(s,xu(s), x5 (), x5 (8), x5 (8)) — f*(s,x(s), ' (s),x" (5), x""(s)) | ds
S/OooSQ(S)If*(S,xn(S)IXZ(S)/XZ(S)IXZ'(S))—f*(S,X(S),x/(S),x"(S) x"(s))| ds,
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which approaches zero as n — 0. Finally, from (3.15) we have

[(Txn) = (Tx)]la
= sup |(Tx,)"(t) = (Tx)"()] = sup [(Tixa)"(t) = (Tox)" (¢)]

te[0,4-c0) te[0,4-c0)

/too q(s)(f* (5, xu(s), x5 (s), % (5), %" (5)) = f* (s, x(5), X'(s), x"(5), x"'(s))) ds

= sup
te[0,4-c0)

< [T a1 5 s), X4 (0), 619, 61 (5)) = £ (5,0(5),2'(5),3(5), X" (5)) s,

which approaches zero as n — oo. As a result, we conclude that ||Tx, — Tx|| — 0, as n — +o0;
and therefore T: X — X is continuous.

(3) T: X — X is compact. For this it is suffices to show that T maps bounded subsets of X
into relatively compact sets. We assume that M is any bounded subset of X, then for x € M;,
we let Hy = maxg<;< ||, xem, (t) < +00. Now following as above, we get

Tx(t
Tl = )
te[0,+0)
= sup Bit (B2 - 17_7>(t_17)+%(t2_’72)+%(t3_’73)
t€[0,+00) 1+
+/ + (s, x(s),x'(s),x"(s),x""(s)) ds
G| 1Al C
< - —_— _— J—
7172 ~ * / " "
+ max l,? /0 sq(s)|f*(s,x(s),x'(s),x"(s),x"(s))| ds
C 2 A C 7 2 00
< [Bi| + (B — Ay = =~ + A S s max {1, 70 / sq(s)(Ha¢(s) +1) ds
2 2 6 3 0
< + oo,
Tx) (¢
Txl = sup (TN
tE[O,—i—oo)
(B — Ay — ) + At + 5P
= sup .
te[0,4oc0) 14t
/ " "
+/ 1+t2‘7 f*(s,x(s),x'(s),x"(s), x"(s)) ds
Crn? C
< — Anp — —— bt
< |B2— Ary |+ |A| + 5

+ max {;,17} /OOo sq(s)|f*(s,x(s),x'(s),x"(s),x"(s))| ds

IN

Cn? C 1 0
BZ—AU—3’+|A|+2+max{2,q}/O sq(s)(Ha¢(s) +1)ds

< +OO,
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HTxHBI sup M

te[0,+00) T+t
A+ Ct 1 /°° 92G(t,s)
1+t  1+4+tJo  of?

q(s)f*(s,x(s), x'(s), " (s), x"(s)) ds

= sup
te[0,4-00)

<|A] +c+/0 sq(s) (Hag(s) + 1) ds < +oo,
and

I(Tx)lls = sup [(Tx)"(t)]

te[0,4-c0)

= sup C+/ q(s)f*(s,x(s),x'(s),x"(s),x""(s)) ds
te[0,+00)

<C+/ )(Hap(s) + 1) ds < +oo,

which implies that ||Tx|| < +oco. Thus TM;j is uniformly bounded. Furthermore, for any
k >0, for t1,t, € [0, k], we have

(Tx)(h) _ (Tx)()| _ | Br+ (Ba— A=) (=) + 4B — ") + S — )

1+8 1+8 |~ 1+8
B+ (B— A =P+ 4B 1)+ SBE-1)
1+ 8
o G(tl,S) G(tz,S)
— H 1)ds,
R T | O + 1
(Tx)'(h)  (Tx)'(t2) (By— Ay — L)+ Aty + _ (By—Ap- Pyt an+ S8
1+8 1+48 |~ 1+6 1+1
0 aG(tl,S) aG(tz,S)
ot o ot H 1d
T g |96 (a0 + 1) ds

82G(t1,s) azG(tz,s)
ot2 ot2

1+ 148

T e (5) (o (s) + 1)s

*
0

’(Tx)”(tl) (Tx)"(t2)
1+t1 1+t

< ‘A—i—Ctl _A+Ct2

and
[(Tx)"(t1) — (Tx)"(t2)]|
7A@ (5 (), (5), 69, ")) ds = [ o) (" (5,(5), ¢ (5), 2 (5), () s

2]
15}
< /t q(s) (Hagp(s) + 1) ds.
1
Thus, for any € > 0, there exists a § > 0 such that

‘ (Tx)(t1) _ (Tx)(t2)

' (Tx)'(t) _ (Tx)'(t2)

1+t°i’ 1—|—tg ! 1—|—t% 1—|—t% ’
(Tx),/(tl) (Tx)”(tz) " "
- , T ) — (T t
‘ 1+4 1+t | =€ [(Tx)"(t1) = (Tx)"(t2)[ <€




14 E. Cetin and R. P. Agarwal

provided |t; — f| < 6, t1,t2 € [0,k].

Since k is arbitrary, it follows that functions belonging to % A qﬁlz)/ 3 le\ft } and

{(TM,)""} are locally equicontinuous on [0, +o0). Now for x € M;, we have

. (Tx)()| _ [(Tx)(t) C
‘ tETOO 1+8 | | 1+8 6 — 0, ast— Hoo,
_(Tx)'(0)| | (Tx)'(t)
‘ +t2 tll)r—}l:loo 142 | | 14+ 5 — 0, ast— oo,
1 17
(Tx)" <)— lim (Tx)"(t) = (Tx)"(t) —C|—0, ast— +4oo,

and

|(Tx)"(#) = lim (Tx)"(5)] = [(Tx)"(£) - C|

—+00

| a6 (7 (5,x(6), ¥(6), (), 2"(5)) s -

as t — +o00, which show that the functions from {%}, {(ff;}/ b, {(le\ft)”} and {(TM;)"}
are equiconvergent at +co. Consequently, the conditions of Lemma 2.2 hold, and hence, TM;
is relatively compact.

Therefore T: X — X is completely continuous, and Schauder’s fixed point theorem guar-
antees that T has at least one fixed point x € X, which is a solution of (3.8). Next, we shall
show that this x satisfies

o (t) < x"(t) < B(t), t € [0, +o0) (3.16)

which in view of Remark 2.4 will imply that

() <x'(t) <d(t), teln), &) <x(t)<p(t), tely+o) (3.17)
<x(t) <B(t), te]0,+00). '
For this, we shall show that x”(t) < B”(t) for all t € [0,+00). If this is not true then there
exists a fg € [0, +o0) such that

x"(to) — B"(to) = sup (x"(t) = B"(t)) > 0.

te[0,00)

Now in view of lim;_, o (x"'(t) — B (t)) < 0, there are three cases to consider.

Case L. If tg = 0, then x"'(0) — B"(0) = lim;_,o+ x"'(t) — B"(t) = sup,c(y o) (x"(t) — B"(t)) >0
But from the boundary condition (2.9), we have the contradiction x”(0) — 8”(0) < 0.

Case IL. If t5 € (0, +o0), then we have x"(ty) = B (to) and x"(ty) < B""'(ty). But then from
(3.7), (3.8) and N > sup,c (g , o [B" (t)|, we find

x"(to) = —q(to) f* (to, x(to), ¥ (t0), x" (to), x"" (t0))

= —q(to) | f(to, x(to), x' (to), B" (t0), B" (t0)) + B (to) — x"(to)

L+ [B"(to) — x"(to)]
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Now using the condition (3.2) and the definition of f;, we obtain for ty € [0,7)

x"(to) = —q(to) f(to, x(to), B'to), B (to), B" (t0))

)

o) i s i () 2 B ),
)
)

x"(to) > —q(to) f(to, x(to), B'(to), B" (t0), B (t0))
x"(to) — B" (o)

T () - o)l

if x/(to) < ,B/(to)

and for fy € [1, +00)

x"(ty) = —q(to) f(to, x(to), B'(to), B" (t0), B"" (t0))

)
x"(to) — B"(to) o /
(to)l T 1B (to) — x"(to)] if x'(to) > B'(to),
)
)

x"(to) = — q(to) f(to, x(to), B'(t0), B (t0), B" (t0))
x"(to) — p"(to)
1+ |p"(to) — x"(to)|”

Next using the condition (3.1) and the definition of fy, we obtain

x"(to) = —q(to) f(to, B(to), B'to), B" (to), B (t0))
(fo) //(tU) 5//“0)
(
(

+q(to if x'(tg) < B'(to).

_|_
[

if x(to

T5 157 (00) — % (10)] Alto)

) >
x"(to) = —q(to) f(to, B(to), B'(to), B (t0), B" (t0))
)

x"(to) — B"(to)
1—|—|ﬂ”(t0) x”(t0)|’ lfx(to <,B( )

+

to)

q

Therefore, it follows that

¥"(to) = —4(to) f (to, B(to), B'(t0), B" (t0), B" (f0)) + q(to) 7 - ‘é//<)t y— 351/&0),

> —q(to) f(to, B(to), B'(to), B (t0), B" (t0)) = B"" (to),

which is a contradiction.
Case III. If t) = +oo then

¥(400) — B (+00) = lim 2"(t) = B'(£) = sup (x"(t)— B"(1)) > 0.
f=Fe0 te[0,4-00)

But then from the boundary condition (2.9), we have the contradiction x”" (+o00) — " (+0c0) <
0.

Consequently, x”/(t) < p"(t) for t € [0, +00). The proof of a”(t) < x”(t) for t € [0, +00) is
similar. Hence (3.16) holds, and consequently (3.17) follows.

Finally, we will show that |[x"/(t)|] < N for all t € [0, +00). Suppose there exists a ty €
[0, +00) such that |x"(#p)| > N. Since lim;_, ;o x”’(t) = C < N, there exists a T > 0 such that

|x"'(t)] < N fort>T.

Let t = inf{t < T : |x"'(s)] < N,Vs € [t,+o0)}. Then |x"/(t;)| = N and |x"’(t)| < N for all
t > t, and there exists a tp < t; such that |x"/(t)| > N for t € [tp,t1]. We need to consider
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two cases x(t1) = N and x"'(t) > N for t € [tp,t1], or X'(t1) = —N and x"’(t) < —N for
t € [tp, t1]. We assume that x”/(t;) = N and x"'(t) > N for t € [t3,t1], then we have

N g N g
_° _[ds < 2
/r h(s)ds_/ Mok

/// S) l///
/1 h(x"(s)) (s) ds
_/ q(5)f (s, x(s), ¥'(s),x"(s), x"(s))x"(s) ,
3 h(x"(s))

S

< [ a9 () s

(o) "
<m X" (s) s
no (14s)7
— *© X”(S) ! oo I 1 /
- </t1 <(1+5)7> ds_/tl () <(1+s)7> ds
:B//(t) . (X/I(t) v
<m| su — inf + max a
(tE[O,foo) (T4+8)7  teo4o0) (1+£)T -1 {IIBlls, llalls}
N ;
R ON
which is a contradiction. The case x"’(t;) = —N and x"/(t) < —N for t € [t t1] leads to a

similar contradiction. Hence, |x"/(t)| < N for all t € [0, +c0). Consequently, we have

X" (t) = —q(&) f* (£ x(8), 5 (), x"(£), " (£)) = —q(8) fu(t, x(£), x' (£), x" (1), ™" (1))
= —q(t) fo(t, x(t),x"(£), x"(£), " (t)) = —q(£) f (&, x(8), x'(£), x"(£), x"' (1)),

and hence, x is a solution of (1.1). O

Example 3.2. Let us consider the fourth-order nonlinear boundary value problem on the half-line

X" (t) + ) —6¢ [(6t+x"(t)) + (x'(t) = 1)+ (P +x(t))] =0,  t€ (0,+w)
1+H5 ’ g

x"(0) =1, x(1) = -1, x'(1) = =3, x""(+00) = 0.

(3.18)

Clearly (3.18) is a particular case of (1.1) with

w — 2
q(t) = (1+1t)11 fty,zu,w) = ((1+t6))4 [(6t+u)+ (z— 1)+ (P +y)]

and A=1,B; = -1, B, = —1, C = 0. For (3.18) a direct substitution shows that
Bty =B +>—8t+6,  a(t)=—t>

are upper and lower solutions such that ,a € X N C4(O, +00). Further, for these functions we
have

a'(t) = —6t < p"(t) =6t +2,  t€[0,+o0).
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We also note that when

a(t) = P <y<Bt) =L+ —-8t+6, tc]0,+c0),
B'(t)=3t>+2t—8<z<da'(t)=-3t>, te[0,1),
W(t)=-3t><z<B(t)=32+2t-8, te[l, +oo),
o'(t) = -6t <u<B'(t)=6t+2, t €10, +00),

the function f is continuous and satisfies Nagumo’s condition with respect to « and B, that is,

u 7 —1)2 3
If(t,y,z,u,w)|:’(w_6)2(6f+ >+El+:))4+<t +y)‘

89 + 4t + 72 + 143 + 9t*
t€[0,+00) (1+1)

< 89(|w| + 6)>.
Hence we can take ¢(t) = 89 and h(w) = (w + 1)%. Now if 1 < ¢ < 11, then

sup (1+ 1?)“7i = sup 5 <89 < oo,

te[0,+c0) (1+6)" te[0,4-00) (T4t =
and

(e 0]

/oolds<+oo /w#ds<+oo /wids—/ ;ds—Jroo
0o (1+s)1t ! o (1+s)1 ! o h(s) A (s+6)2 -

these imply that conditions (2.12), (3.3) and (3.4) are fulfilled. Clearly, f is increasing in
y, decreasing in z on [0,1) x [a(t), B(¢)] x [B'(t),a’(t)] x [«”(t), B”(t)] X R and increasing on
[1,4+00) x [a(t), B(1)] x [B'(t), &' ()] x [&”(t),B"(t)] x Rin y,z. Thus f satisfies condition (3.1)
and (3.2). Theorem 3.1 now ensures that the BVP (3.18) has at least one solution x(t) such that

B <x(t) <P +#>—8t+6, forallte [0,+o0), (SeeFigure 1)
/

32 42t -8 < x'(t) < —3t>, forallt€[0,1),
—3t2 < x/(t) <3t> +2t -8, foralltc [1,4+00), (See Figure?2)
—6t < x"(t) <6t+2 forallt € [0,4+00) (See Figure 3).

Also, ||x||ls < N (see Figure 4).

Theorem 3.3. Assume that there exist strict lower and upper solutions xy, B1, and lower and upper
solutions wq, B2 of BVP (1.1), satisfying

af(t) Sag(t) < By(t), af(t) < Bi(t) < Ba(t), az(t) £ BI(t) forallt €[0,+c0). (3.19)

Suppose further that f: [0, +00) x R* — R is continuous satisfying Nagumo's condition with respect
to the pair of functions w1, B2, and

f(t,a1(t),z,u,w) < f(t,y,z,u,w) < f(t,Ba(t),z,u,w) (3.20)

and
fty,ai(t),uw) < f(ty,zuw) < f(ty, By(t),u,w) (3.21)
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for (Ly,z,w) € [0,1) x [w(t), BO] % [B(0), /()] x (1), B(8)] x R and (t,,2,u,0) €
[7,+00) x [a(t), B(1)] x [&'(t), B'(£)] x [a"(¢), p"(t)] x R. If (3.3) and (3.4) hold then (1.1) has
at least three solutions x1,x,x3 € X N C*(0, +00) satisfying

ar(t) Sx(t) < palt),  wat) <xa(t) < pa(t),  te(0,+00),

Bi(t) < x(t) < aj(t), €lon),  a(t) <xi(t) <pi(t), telp o), i=12
ay (1) < x'(8) < By (1), ( ) Sx3(t) < By(t),  tE0,+o0),

a1 (t) < x3(t) < Ba(t), € [0, +e0),

Ba(t) < x3(t) < wp(t), €0n), at) <x(t) <po(t),  tey +),

af(t) <xg(H) < By(t),  x5(t) = BI(),  x5(t) Sag(t),  tE[0,+o0).

Proof. We define auxiliary functions fo, fl, f* same as fo, f1, f* in Theorem 3.1 except a and
B replaced by a1 and B, respectively. We consider the modified problem

X" (8) +q(8) FF (8, x(8), (), 2" (1), 5" (8)) =0, t € (0, +00),

1" ! " (3'22)
x"(0) = A, x(n) = By, x'(n7) = By, 1" (+00) = C.

We want to show that (3.22) has at least three solutions. For this we define two operators as

(Tyx)(t) = /Ooo G(t,s)q(s)f* (s, x(s),x'(s),x"(s),x"(s)) ds, t € [0, +00)

and

(T0)0) = B+ (Ba— Ay = ) (=) + 507 )+ S0 =) + (B)(0), £ € [0,+09)

As for T in Theorem 3.1 we can show that T: X — X is completely continuous. Now by using
the degree theory, we will show that T has at least three fixed points which are solutions of
(3.22). For x € X, as in Theorem 3.1, we have

~ A (=)

| Tx||1 < |B1]| + |Bo — Ay — Tn +u+ G —i—max{ '72}/0 sq(s)(Hz¢p(s) +1)ds =: Qq,
| Tx||, < ’B Aﬂ—‘+|A|+ +max{2,;7}/ sq(s)(Hap(s) +1)ds =: Qo,
ITxlls < 141+ C+ [ sq(s)(Hag(s) +1)ds = Qs

ITxlla < C+ [ q(s)(Hag(s) + 1) ds = Qu,

where
H3 = sup h(t) < Hoo.
0<£<]|x]l4

Let A = {x € X : ||x|| < K} where K > max{Q1, Q2, Q3, Qs}. Then we have ||Tx|| < K, which
implies that TA C A. Thus, deg(I — T, A,0) = 1. Next, we set

Ay ={xeN:X"(t) > (1), t€[0,+00)}, AP ={xcA:x"(t) <Bi(t), t €[0,+)}.

Since () < ag(t) < By(t), af(t) < B(t) < B5(t), az(t) £ By () and aj(t) £ By (
[0, +00), we find A,, # @ # APt and A,, N AP = @ whereas the set A \ Ay, U Aﬁl #* @ Hence
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in view of the strict upper and lower solutions B and a», T has no solution in 0N, U AP
The additivity of degree implies that

deg(I —T,A,0) = deg(I — T, A\ Ay, UAP1,0) 4 deg(I — T, Ay,,0) 4+ deg(I — T, AP1,0). (3.23)

Now we shall show that deg(I — T, Ay, 0) = 1. For this, we define a completely continuous
operator Ty, T: A — A by

(Tix)(t) = /Ooo G(t,s)q(s)f* (s, x(s),x'(s),x"(s),x"(s)) ds, t € [0, +00)

and
2

(T3)(0) = B+ (B2 = An = L) (1= )
C ~

PR -+ CE P H T, e (0 4o).

where the functions ]?0, fl, f* are the same as fo, fl, fv* except «ay is replaced by a,. Again as
in Theorem 3.1 it is easy to show that T has a fixed point x satisfying a(t) < x”(t) < B4(t),
t € [0, +00). Since the lower solution a; is strict, x” (t) # a4(t), t € [0,4+00). Therefore, x € A,,.
Hence, it follows that

deg(I — T,A\ Ay,,0) = 0.

Further, we can show that TA C A. Then we have
deg(I —T,A,0) = 1. (3.24)

Since f* = f in the region A,,, we find

deg(I — T, Ay,,0) = deg(I — T, Ag,,0)
= deg(I — T, Ay,,0) + deg(I — T, A\ Ay, 0)
=deg(I - T,A,0) =1.
Similar to the proof of (3.25), we also have
deg(I — T,AP1,0) = 1. (3.25)

Thus from (3.23), (3.24) and (3.25), we obtain
deg(I —T,A\ Ay, UAPLO) = —1.

Therefore, T has at least three fixed points x; € AP xy € Ay, X3 € A\ Ay, U APt which are
solutions of the problem (1.1). This completes the proof. O

Example 3.4. Consider the fourth-order three-point boundary value problem

1 / " " _ 00
mf(t,x(t),x (1), x"(t),x"(t)) =0, t € (0,4o0) (3:26)

"(0)=-1, x(1)=16, x'(1)=16,  x"(+o00) =11,

x////(t) +

where

ftx(8), (), %" (8), " (8))

2 x/// 2 x,,, _
— (7—x///(t))—|— (18 x///((tt))z)i 18(2t) 12)
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2 2 _
Here, 4(t) = i, by, zuw) = (7 —w) + BB (14 u) + - 12+ (v +

1), =1, A= -1, By =16, B, = 16, C = 11. It is easy to check that a;(t) = —3+ —
12 + 27t — 13, Ba(t) = 3> + 61> — 5t + 23 are lower and upper solutions of (3.26) and a,(t) =
3+ 6t2+t+7, B1(t) = 213 + 212 + 6t + 5 are strict lower and upper solutions of (3.26). Further,
a1, a2, B1, B2 € X and satisfy (3.19). Clearly, f is continuous. Moreover, with respect to a1 (t) =
—313 — #2427t — 13 and B (t) = 3> + 6t — 5t + 23, when 0 < t < o0,
33 — 2427t =13 = a1 (t) Sy < Bo(t) =382 +6t2 =5t +23,  t€ [0, +0c0),
By(t) =9t + 12t -5 <z < af(t) = -9 -2t +27, t€[0,1),
Ot 2t +27 =aj(t) <z < Bh(t) =9 + 12t -5,  t€[1,+00),
—18t —2=af(t) <u < BF(t) =18t + 12

and w € R, f satisfies
[f(ty,zu,w)| < ¢(E)h(|w]),
where ¢(t) = 713 + 131 + 4212 + 2193 + 81t4, h(w) = 12 + w, and hence

® s ® s
——ds = ——ds = .
/o n(s) " /0 DysB=1®

We also have ) s .
713 + 131t + 42t% + 219¢° + 81¢
sup (1+41t)7 + + + +

ool
te[0,+00) (1+ t)7
if 1l <y <2and

o 1 1 co s
/0 max{s,l}q(s)ds—/O (1+S)7ds-|—/1 mds<-|—oo,

° 1713 + 131s 4 4252 4 219s° + 81s*
/o max{s,1}¢(s)q(s)ds = /o 157 ds
n /°° (713 + 131s + 4252 + 219s% + 81s%)
1 (1+5s)”

that is, (3.3) and (3.4) are also satisfied. Clearly, f is increasing in y, decreasing in z on [0,1) X
a1 (£), B2(£)] < [B5(t), aq ()] x [af(t), B5(t)] x R and increasing on [1,+00) x [aq(t), B2(t)] x
(B (1), a5 (£)] x [af(t), B5(t)] x Riny,z. Thus f satisfies condition (3.20) and (3.21). Therefore,
Theorem 3.3 confirms that the boundary value problem (3.26) has at least three solutions.

ds < +o0;
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Figure 1: The solution x(t) of the BVP (3.18) and a(t) = —t3, B(t) =3 + 1> — 8t +6

e
R

Figure 3: The solution second derivative x” (t) of the BVP (3.18) and a”(t) = —6t, B (t) = 6t +2

Figure 4: The solution third derivative of the BVP (3.18) satisfies [x"/ ()| < N
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