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Abstract. We consider a class of nonlinear time-delay systems of neutral type with
periodic coefficients in linear terms and several delays. We establish conditions un-
der which the zero solution is exponentially stable and obtain estimates characterizing
exponential decay of solutions at infinity. The conditions are formulated in terms of
differential matrix inequalities. All the values characterizing the decay rate are written
out in explicit form.
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1 Introduction

There is a large number of works devoted to delay differential equations (for instance, see
[1,3,15,17–23,28] and the bibliography therein). One of the important questions is asymptotic
stability of solutions to delay differential equations. This question is very important from
theoretical and practical viewpoints because delay differential equations arise in many applied
problems when describing the processes whose speeds are defined by present and previous
states (for example, see [16, 24, 25] and the bibliography therein).

This article presents a continuation of our works on asymptotic stability of solutions to de-
lay differential equations with periodic coefficients (for instance, see [5,6,11,26]). We consider
the system of nonlinear delay differential equations

d
dt

(y(t) + Dy(t− τ1)) = A(t)y(t) +
m

∑
j=1

Bj(t)y(t− τj)

+ F(t, y(t), y(t− τ1), . . . , y(t− τm)), t > 0,

(1.1)
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where D is a constant (n × n)-matrix, A(t), Bj(t) are (n × n)-matrices with continuous T-
periodic entries; i.e.,

A(t + T) ≡ A(t), Bj(t + T) ≡ Bj(t), j = 1, . . . , m,

τj > 0 are time delays, j = 1, . . . , m, τ1 > τk > 0, k = 2, . . . , m, and F(t, u, v1, . . . , vm) is a real-
valued vector function satisfying the Lipschitz condition with respect to u and the inequality

‖F(t, u, v1, . . . , vm)‖ ≤ q0‖u‖+
m

∑
j=1

qj‖vj‖, qj ≥ 0, j = 0, . . . , m. (1.2)

In the case of D 6= 0 this system is called one of neutral type [15]. Here and hereafter we use
the following dot product and vector norm

〈x, z〉 =
n

∑
j=1

xj z̄j, ‖x‖ =
√
〈x, x〉,

the symbol ‖D‖ means the spectral norm of the matrix D.
Our aims are to establish conditions under which the zero solution is exponentially stable

and obtain estimates characterizing exponential decay of solutions at infinity. To establish
conditions of stability, researchers often use various Lyapunov or Lyapunov–Krasovskii func-
tionals. At present, there is a large number of works in this direction; for example, see the
bibliographies in the survey [2] and in the book [30] devoted wholly to obtaining conditions
of stability by the use of Lyapunov–Krasovskii functionals. However, not every Lyapunov–
Krasovskii functional makes it possible to obtain estimates characterizing exponential decay
of solutions at infinity. In recent years, the study in this direction has developed rapidly. In
the case of constant coefficients, there are a lot of works for linear delay differential equations
including equations of neutral type (for example, see [20] and the bibliography therein).

The case of nonlinear equations with variable coefficients in linear terms is of special
interest and is more complicated in comparison with the case of linear equations. Along with
estimates of exponential decay of solutions, a very important question is deriving estimates
of attraction sets for nonlinear equations. The natural problem is to obtain such estimates by
means of Lyapunov–Krasovskii functionals used for exponential stability analysis of equations
defined by their linear part. To the best of our knowledge, in the case of constant coefficients,
the first constructive estimates were established in [5, 6, 27]. For periodic coefficients, the first
constructive estimates of attraction sets for the system

d
dt

y(t) = A(t)y(t) + B(t)y(t− τ) + F(t, y(t), y(t− τ)) (1.3)

using a Lyapunov–Krasovskii functional associated with the exponentially stable linear system

d
dt

y(t) = A(t)y(t) + B(t)y(t− τ) (1.4)

were obtained in [6].
To study asymptotic stability of solutions to (1.4) with T-periodic coefficients in [5] the

authors proposed to use the Lyapunov–Krasovskii functional

〈H(t)y(t), y(t)〉+
t∫

t−τ

〈K(t− s)y(s), y(s)〉 ds, (1.5)
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where the matrix valued functions H ∈ C(R+) ∩ C1([lT, (l + 1)T]), l = 0, 1, . . . , K ∈ C1([0, τ])

are such that
H(t) = H∗(t), H(t) = H(t + T) > 0, t ≥ 0, (1.6)

K(s) = K∗(s), K(s) > 0,
d
ds

K(s) < 0, s ∈ [0, τ]. (1.7)

Here and hereinafter the matrix inequality Q > 0 (or Q < 0) means that the Hermitian matrix
Q is positive (or negative) definite. In the case of the T-periodic matrix A(t) such that the zero
solution to the system of ordinary differential equations

d
dt

x = A(t)x, t > 0,

is asymptotically stable, it is not difficult to construct the functional (1.5) by the use of the
asymptotic stability criterion of the authors’ article [4]. Indeed, in accord with this criterion
the following boundary value problem for the Lyapunov differential equation

d
dt

H + HA(t) + A∗(t)H = −Q(t), t ∈ [0, T],

H(0) = H(T) > 0,
(1.8)

is uniquely solvable for every continuous matrix Q(t); moreover, if Q(t) = Q∗(t) > 0 then
H(t) = H∗(t) > 0 on [0, T]. Extend T-periodically the matrix H(t) to the whole half-axis
{t > 0} and use it in (1.5), since (1.6) are fulfilled. In view of [5, 6] solutions to (1.4) are
asymptotically stable if there exists a matrix K(s) satisfying (1.7) and such that the matrix(

Q(t)− K(0) −H(t)B(t)
−B∗(t)H(t) K(τ)

)
, t ∈ [0, T],

is positive definite. Note that this condition is equivalent to the matrix inequality

K(0) + H(t)B(t)(K(τ))−1B∗(t)H(t) < Q(t), t ∈ [0, T].

Obviously, for a wide class of T-periodic matrices B(t), the matrix K(s) can be found in the
form

K(s) = α(s)K0, K0 = K∗0 > 0, where α(s) > 0, α′(s) < 0, s ∈ [0, τ].

The usage of the functional (1.5) allowed us to obtain estimates of exponential decay of
solutions to the linear system (1.4). The authors considered in [6, 26] nonlinear systems of
delay differential equations of the form (1.3), where

‖F(t, u, v)‖ ≤ q1‖u‖1+ω1 + q2‖v‖1+ω2 , q1 ≥ 0, q2 ≥ 0, ω1 ≥ 0, ω2 ≥ 0.

Using the same functional (1.5), conditions of asymptotic stability of the zero solution were
obtained, estimates characterizing the decay rate at infinity were established, and estimates
of attraction sets of the zero solution were derived. It should be noted that the estimates are
constructive. All the values characterizing the decay rate and attraction sets depend on the
matrices H(t) and K(s). As was mentioned above, to construct these matrices it is sufficient
to solve the boundary value problem (1.8) for the Lyapunov differential equation with peri-
odic coefficients. The authors in [4] showed that this problem is well-conditioned from the
viewpoint of perturbation theory. Therefore we may apply numerical methods for solving this
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problem to a high degree of accuracy. A survey of computational methods for continuous-
time periodic systems can be found in [29]. Thus, the proposed approach makes it possible
to study numerically exponential stability of solutions to time-delay systems with periodic
coefficients in linear terms.

To study exponential stability of solutions to the systems of linear differential equations
of neutral type with constant coefficients, the first author in [7] introduced the Lyapunov–
Krasovskii functional

〈H(y(t) + Dy(t− τ)), (y(t) + Dy(t− τ))〉+
t∫

t−τ

〈K(t− s)y(s), y(s)〉 ds, (1.9)

where H = H∗ > 0 and the matrix K(s) satisfies (1.7). Using this functional, the study of
exponential stability of solutions to systems of the form (1.1) with constant coefficients and
one delay was conducted in [7, 8, 10, 14]. There, conditions of exponential stability of the zero
solution, estimates of exponential decay of solutions at infinity, and estimates of attraction
sets of the zero solution were obtained. Some examples given in [14] show effectiveness of the
proposed approach.

The usage of the functionals (1.5) and (1.9) leads to the idea of constructing the Lyapunov–
Krasovskii functional

〈H(t)(y(t) + Dy(t− τ)), (y(t) + Dy(t− τ))〉+
t∫

t−τ

〈K(t− s)y(s), y(s)〉 (1.10)

for the study of exponential stability of solutions to the linear time-delay system of neutral
type with periodic coefficients

d
dt

(y(t) + Dy(t− τ)) = A(t)y(t) + B(t)y(t− τ), t > 0. (1.11)

Using this functional, the authors in [11] established conditions of exponential stability of the
zero solution to (1.11) and derived estimates characterizing exponential decay of solutions at
infinity.

In this article we consider the nonlinear time-delay system (1.1) with several delays. As
was mentioned above, our aims are to establish conditions of exponential stability of the zero
solution to (1.1) and to obtain estimates characterizing exponential decay of solutions to (1.1)
at infinity. It should be noted that, in the case of constant coefficients, similar results were
established in [9, 12, 13]. In Sections 2, 3 we study the linear time-delay system

d
dt

(y(t) + Dy(t− τ1)) = A(t)y(t) +
m

∑
j=1

Bj(t)y(t− τj), t > 0. (1.12)

We formulate the main results for (1.12) in Section 2 and prove them in Section 3. Using these
results, we formulate the main results for (1.1) in Section 4 and prove them in Section 5.

2 Main results for (1.12)

In this section we consider the linear time-delay system (1.12). As was mentioned above, the
case of the system with one delay (m = 1) was studied in [11]. Hereafter we consider m ≥ 2.
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Theorem 2.1. Suppose that there exist (n × n)-matrix valued functions H ∈ C1([0, T]), Kj ∈
C1([0, τj]), j = 1, . . . , m:

H(t) = H∗(t), t ∈ [0, T], H(0) = H(T) > 0, (2.1)

Kj(s) = K∗j (s), s ∈ [0, τj], (2.2)

Kj(s) > 0,
d
ds

Kj(s) < 0, s ∈ [0, τj], (2.3)

such that the matrix

C(t) =

C11(t) C12(t) C13(t)
C∗12(t) C22(t) C23(t)
C∗13(t) C∗23(t) C33(t)

 (2.4)

with

C11(t) = −
d
dt

H(t)− H(t)A(t)− A∗(t)H(t)−
m

∑
j=1

Kj(0),

C12(t) = −
d
dt

H(t)D− H(t)B1(t)− A∗(t)H(t)D,

C13(t) = ( −H(t)B2(t) · · · − H(t)Bm(t) ),

C22(t) = −D∗
d
dt

H(t)D− D∗H(t)B1(t)− B∗1(t)H(t)D + K1(τ1),

C23(t) = ( −D∗H(t)B2(t) · · · − D∗H(t)Bm(t) ),

C33(t) =

K2(τ2) . . . 0
...

. . .
...

0 . . . Km(τm)


is positive definite for t ∈ [0, T]. Then the zero solution to (1.12) is exponentially stable.

Remark 2.2. In the case of m = 1, the matrix C(t) defined by (2.4) should be replaced with
the matrix (see [11]) (

C11(t) C12(t)
C∗12(t) C22(t)

)
.

Consider the initial value problem for (1.12)

d
dt
(y(t) + Dy(t− τ1)) = A(t)y(t) +

m

∑
j=1

Bj(t)y(t− τj), t > 0,

y(t) = ϕ(t), t ∈ [−τ1, 0],

y(+0) = ϕ(0),

(2.5)

where ϕ(t) ∈ C1([−τ1, 0]) is a given vector function. Assuming that the conditions of Theo-
rem 2.1 are satisfied, below we provide estimates characterizing exponential decay of solutions
to (2.5) as t → ∞. To formulate the results we introduce some notations. If the matrix H(t)
satisfies the conditions of Theorem 2.1, then

d
dt

H(t) + H(t)A(t) + A∗(t)H(t) < −
m

∑
j=1

Kj(0);
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i.e., H(t) is a solution to the boundary value problem (1.8) with Q(t) = Q∗(t) > 0. In this case
H(t) > 0 on [0, T] (see [4]). Extend T-periodically this matrix to the whole half-axis {t ≥ 0},
keeping the same notation. Using this matrix H(t) and the matrices Kj(s), j = 1, . . . , m,
satisfying the conditions of Theorem 2.1, we define

V0(ϕ) = 〈H(0)(ϕ(0) + Dϕ(−τ1)), (ϕ(0) + Dϕ(−τ1))〉+
m

∑
j=1

0∫
−τj

〈Kj(−s)ϕ(s), ϕ(s)〉ds (2.6)

and

P(t) =− d
dt

H(t)− H(t)A(t)− A∗(t)H(t)−
m

∑
j=1

Kj(0)

−
(

H(t)A(t)D +
m

∑
j=1

Kj(0)D− H(t)B1(t)

)[
K1(τ1)− D∗

m

∑
j=1

Kj(0)D

]−1

×
(

D∗A∗(t)H(t) +
m

∑
j=1

D∗Kj(0)− B∗1(t)H(t)

)
−

m

∑
j=2

H(t)Bj(t)K−1
j (τj)B∗j (t)H(t).

(2.7)

It is not hard to verify that the matrix P(t) is positive definite if the matrix C(t) in (2.4) is
positive definite (for details, see Section 3). Denote by pmin(t) > 0 the minimal eigenvalue of
the matrix P(t) and by hmin(t) the minimal eigenvalue of the matrix H(t). As was mentioned
above, H(t) > 0. Consequently, hmin(t) > 0. Let k j > 0 be the maximal number such that

d
ds

Kj(s) + k jKj(s) ≤ 0, s ∈ [0, τj], j = 1, . . . , m. (2.8)

We put
γ(t) = min {pmin(t), k1‖H(t)‖, . . . , km‖H(t)‖} , (2.9)

Φ = max
t∈[−τ1,0]

‖ϕ(t)‖, α = max
t∈[0,T]

√
V0(ϕ)

hmin(t)
, (2.10)

β(t) =
γ(t)

2‖H(t)‖ , β+ = max
t∈[0,T]

β(t), β− = min
t∈[0,T]

β(t). (2.11)

It is not hard to show that the spectrum of the matrix D belongs to the unit disk {λ ∈
C : |λ| < 1} if the conditions of Theorem 2.1 are fulfilled; i.e., if the matrix C(t) is positive
definite. Hence, ‖Dj‖ → 0 as j→ ∞. Let l be the minimal positive integer such that ‖Dl‖ < 1.
In dependence on ‖Dl‖, below in Theorems 2.3–2.5 we establish estimates if

‖Dl‖ < e−lβ+τ1 , e−lβ+τ1 ≤ ‖Dl‖ ≤ e−lβ−τ1 , e−lβ−τ1 < ‖Dl‖ < 1,

respectively.

Theorem 2.3. Let the conditions of Theorem 2.1 be satisfied and

‖Dl‖ < e−lβ+τ1 .

Then a solution to the initial value problem (2.5) satisfies the estimate

‖y(t)‖ ≤
[

α
(
1− ‖Dl‖elβ+τ1

)−1
l−1

∑
j=0
‖Dj‖ejβ+τ1

+ max
{
‖D‖eβ+τ1 , . . . , ‖Dl‖elβ+τ1

}
Φ

]
e−
∫ t

0 β(ξ) dξ , t > 0,
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where α, β(t), β+, and Φ are defined in (2.10) and (2.11).

Theorem 2.4. Let the conditions of Theorem 2.1 be satisfied and

e−lβ+τ1 ≤ ‖Dl‖ ≤ e−lβ−τ1 .

Then a solution to the initial value problem (2.5) satisfies the estimate

‖y(t)‖ ≤
[

α

(
1 +

t
lτ1

) l−1

∑
j=0
‖Dj‖ejβ+τ1

+ max
{

1, ‖D‖eβ+τ1 , . . . , ‖Dl−1‖e(l−1)β+τ1
}

Φ

]
e−
∫ t

0 σ(ξ) dξ , t > 0,

where α, β(t), β+, β−, and Φ are defined in (2.10) and (2.11),

σ(t) = min
{

β(t), − 1
lτ1

ln ‖Dl‖
}

.

Theorem 2.5. Let the conditions of Theorem 2.1 be satisfied and

e−lβ−τ1 < ‖Dl‖ < 1.

Then a solution to the initial value problem (2.5) satisfies the estimate

‖y(t)‖ ≤
[

α‖Dl‖elβ−τ1
(
‖Dl‖elβ−τ1 − 1

)−1 l−1

∑
j=0
‖Dj‖ejβ−τ1

+ ‖Dl‖ 1
l −1 max

{
1, ‖D‖, . . . , ‖Dl−1‖

}
Φ

]
exp

(
t

lτ1
ln ‖Dl‖

)
, t > 0,

where α, β−, and Φ are defined in (2.10) and (2.11).

We prove Theorems 2.3–2.5 in Section 3. Obviously, Theorem 2.1 immediately follows from
these theorems.

3 Proof of the main results for (1.12)

First, we formulate the auxiliary lemma of the matrix theory used by us further. Here and
hereafter we denote by I the unit matrix.

Lemma 3.1. Let

Q(t) =

Q11(t) Q12(t) Q13(t)
Q∗12(t) Q22(t) Q23(t)
Q∗13(t) Q∗23(t) Q33(t)

 , t ∈ [0, T],
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be a Hermitian positive definite matrix with continuous entries. Then the representation holds

Q(t) =

 I Q̃1(t)Q̃−1
2 (t) Q13(t)Q−1

33 (t)
0 I Q23(t)Q−1

33 (t)
0 0 I


×

Q11(t)− Q̃1(t)Q̃−1
2 (t)Q̃∗1(t)−Q13(t)Q−1

33 (t)Q
∗
13(t) 0 0

0 Q̃2(t) 0
0 0 Q33(t)


×

 I 0 0
Q̃−1

2 (t)Q̃∗1(t) I 0
Q−1

33 (t)Q
∗
13(t) Q−1

33 (t)Q
∗
23(t) I

 ,

where

Q̃1(t) = Q12(t)−Q13(t)Q−1
33 (t)Q

∗
23(t), Q̃2(t) = Q22(t)−Q23(t)Q−1

33 (t)Q
∗
23(t);

moreover, the matrices Q11(t)− Q̃1(t)Q̃−1
2 (t)Q̃∗1(t)− Q13(t)Q−1

33 (t)Q
∗
13(t), Q̃2(t), and Q33(t) are

positive definite.

To prove Theorems 2.3–2.5 we need the auxiliary results obtained below.

Lemma 3.2. Let the conditions of Theorem 2.1 be satisfied. Then, for a solution to the initial value
problem (2.5), the following inequality holds

‖y(t) + Dy(t− τ1)‖ ≤

√
V0(ϕ)

hmin(t)
exp

− t∫
0

γ(ξ)

2‖H(ξ)‖dξ

 , t > 0, (3.1)

where V0(ϕ) and γ(t) are defined by (2.6) and (2.9), respectively, hmin(t) > 0 is the minimal eigenvalue
of the matrix H(t).

Proof. We follow the strategy in [5]. Let y(t) be a solution to the initial value problem (2.5).
Using the above matrices H(t) and Kj(s), j = 1, . . . , m, we consider the Lyapunov–Krasovskii
functional

V(t, y) = 〈H(t)(y(t) + Dy(t− τ1)), (y(t) + Dy(t− τ1))〉+
m

∑
j=1

t∫
t−τj

〈Kj(t− s)y(s), y(s)〉 ds. (3.2)

Clearly, this Lyapunov–Krasovskii functional is a generalization of (1.10) for several delays.
The time derivative of this functional is

d
dt

V(t, y) ≡
〈

d
dt

H(t)(y(t) + Dy(t− τ1)), (y(t) + Dy(t− τ1))

〉
+

〈
H(t)(A(t)y(t) +

m

∑
j=1

Bj(t)y(t− τj)), (y(t) + Dy(t− τ1))

〉

+

〈
H(t)(y(t) + Dy(t− τ1)), (A(t)y(t) +

m

∑
j=1

Bj(t)y(t− τj))

〉

+
m

∑
j=1
〈Kj(0)y(t), y(t)〉 −

m

∑
j=1
〈Kj(τj)y(t− τj), y(t− τj)〉

+
m

∑
j=1

t∫
t−τj

〈
d
dt

Kj(t− s)y(s), y(s)
〉

ds.
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Using the matrix C(t) defined by (2.4), we obtain

d
dt

V(t, y) ≡ −
〈

C(t)

 y(t)
y(t− τ1)

z(t)

 ,

 y(t)
y(t− τ1)

z(t)

〉

+
m

∑
j=1

t∫
t−τj

〈
d
dt

Kj(t− s)y(s), y(s)
〉

ds,

(3.3)

where

z(t) =

y(t− τ2)
...

y(t− τm)

 .

Consider the first summand in the right-hand side of (3.3). Since y(t)
y(t− τ1)

z(t)

 =

 I −D 0
0 I 0
0 0 I

y(t) + Dy(t− τ1)

y(t− τ1)

z(t)


then 〈

C(t)

 y(t)
y(t− τ1)

z(t)

 ,

 y(t)
y(t− τ1)

z(t)

〉

≡
〈

S(t)

y(t) + Dy(t− τ1)

y(t− τ1)

z(t)

 ,

y(t) + Dy(t− τ1)

y(t− τ1)

z(t)

〉 ,

(3.4)

where

S(t) =

 I 0 0
−D∗ I 0

0 0 I

C(t)

 I −D 0
0 I 0
0 0 I

 =

S11(t) S12(t) S13(t)
S∗12(t) S22(t) S23(t)
S∗13(t) S∗23(t) S33(t)

 , (3.5)

S11(t) = C11(t), S12(t) = C12(t)− C11(t)D, S13(t) = C13(t),

S22(t) = D∗C11(t)D− C∗12(t)D− D∗C12(t) + C22(t),

S23(t) = C23(t)− D∗C13(t), S33(t) = C33(t).

Taking into account the entries of the matrix C(t) in (2.4), we have

S11(t) = −
d
dt

H(t)− H(t)A(t)− A∗(t)H(t)−
m

∑
j=1

Kj(0),

S12(t) = H(t)A(t)D +
m

∑
j=1

Kj(0)D− H(t)B1(t),

S13(t) = ( −H(t)B2(t) · · · − H(t)Bm(t) ), S22(t) = K1(τ1)− D∗
m

∑
j=1

Kj(0)D,

S23(t) = ( 0 · · · 0 ), S33(t) =

K2(τ2) . . . 0
...

. . .
...

0 . . . Km(τm)

 .

(3.6)
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Obviously, the matrix C(t) is positive definite if and only if the matrix S(t) is positive definite.
Since S23(t) is the zero matrix, it follows from Lemma 3.1 that

S(t) =

 I S12(t)S−1
22 (t) S13(t)S−1

33 (t)
0 I 0
0 0 I


×

S11(t)− S12(t)S−1
22 (t)S

∗
12(t)− S13(t)S−1

33 (t)S
∗
13(t) 0 0

0 S22(t) 0
0 0 S33(t)


×

 I 0 0
S−1

22 (t)S
∗
12(t) I 0

S−1
33 (t)S

∗
13(t) 0 I

 ;

moreover, the matrices

P(t) = S11(t)− S12(t)S−1
22 (t)S

∗
12(t)− S13(t)S−1

33 (t)S
∗
13(t), S22(t), and S33(t)

are positive definite. Hence,〈
S(t)

y(t) + Dy(t− τ1)

y(t− τ1)

z(t)

 ,

y(t) + Dy(t− τ1)

y(t− τ1)

z(t)

〉

≥ 〈P(t)(y(t) + Dy(t− τ1)), (y(t) + Dy(t− τ1))〉 .

(3.7)

Taking into account (3.6), the matrix P(t) has the form (2.7). Consequently, in view of (3.7),
from (3.4) we derive

−
〈

C(t)

 y(t)
y(t− τ1)

z(t)

 ,

 y(t)
y(t− τ1)

z(t)

〉

≤ − 〈P(t)(y(t) + Dy(t− τ1)), (y(t) + Dy(t− τ1))〉
≤ −pmin(t)‖y(t) + Dy(t− τ1)‖2,

(3.8)

where pmin(t) > 0 is the minimal eigenvalue of P(t). Using the matrix H(t), we have

‖y(t) + Dy(t− τ1)‖2 ≥ 1
‖H(t)‖ 〈H(t)(y(t) + Dy(t− τ1)), (y(t) + Dy(t− τ1))〉 .

By (3.8), from (3.3) we obtain

d
dt

V(t, y) ≤ − pmin(t)
‖H(t)‖ 〈H(t)(y(t) + Dy(t− τ1)), (y(t) + Dy(t− τ1))〉

+
m

∑
j=1

t∫
t−τj

〈
d
dt

Kj(t− s)y(s), y(s)
〉

ds.

Using (2.8), we have

d
dt

V(t, y) ≤ − pmin(t)
‖H(t)‖ 〈H(t)(y(t) + Dy(t− τ1)), (y(t) + Dy(t− τ1))〉

−
m

∑
j=1

k j

t∫
t−τj

〈
Kj(t− s)y(s), y(s)

〉
ds.
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Taking into account the definition of the functional (3.2), we obtain

d
dt

V(t, y) ≤ − γ(t)
‖H(t)‖V(t, y),

where γ(t) = min{pmin(t), k1‖H(t)‖, . . . , km‖H(t)‖}. From this differential inequality we
derive the estimate

V(t, y) ≤ V0(ϕ) exp

− t∫
0

γ(ξ)

‖H(ξ)‖dξ

 ,

where V0(ϕ) is defined by (2.6). Clearly,

‖y(t) + Dy(t− τ1)‖2 ≤ 1
hmin(t)

〈
H(t)(y(t) + Dy(t− τ1)), (y(t) + Dy(t− τ1))

〉
,

where hmin(t) is the minimal eigenvalue of H(t). Then, using the definition of the func-
tional (3.2), we have

‖y(t) + Dy(t− τ1)‖ ≤

√
V(t, y)
hmin(t)

≤

√
V0(ϕ)

hmin(t)
exp

− t∫
0

γ(ξ)

2‖H(ξ)‖dξ

 .

The lemma is proved.

Lemma 3.3. Let the conditions of Theorem 2.1 be satisfied. Then a solution to the initial value prob-
lem (2.5) on every segment t ∈ [kτ1, (k + 1)τ1), k = 0, 1, . . . , satisfies the following estimate

‖y(t)‖ ≤ α
k

∑
j=0
‖Dj‖e−

∫ t−jτ1
0 β(ξ) dξ + ‖Dk+1‖Φ, (3.9)

where α, β(t), and Φ are defined in (2.10) and (2.11).

Proof. By Lemma 3.2, a solution to the initial value problem (2.5) satisfies (3.1). Taking into
account the notations (2.10) and (2.11), we obtain

‖y(t) + Dy(t− τ1)‖ ≤ αe−
∫ t

0 β(ξ) dξ , t > 0. (3.10)

Obviously, for t ∈ [0, τ1) we have the inequality

‖y(t)‖ ≤ αe−
∫ t

0 β(ξ) dξ + ‖Dy(t− τ1)‖ ≤ αe−
∫ t

0 β(ξ) dξ + ‖D‖Φ,

which gives us (3.9) for k = 0.
Let t ∈ [kτ1, (k + 1)τ1), k = 1, 2 . . . . It is not hard to write out the sequence of the inequali-

ties

‖y(t)‖ ≤ αe−
∫ t

0 β(ξ) dξ + ‖Dy(t− τ1)‖

≤ αe−
∫ t

0 β(ξ) dξ + ‖Dy(t− τ1) + D2y(t− 2τ1)‖+ ‖D2y(t− 2τ1) + D3y(t− 3τ1)‖+ . . .

+ ‖Dky(t− kτ1) + Dk+1y(t− (k + 1)τ1)‖+ ‖Dk+1y(t− (k + 1)τ1)‖

≤ αe−
∫ t

0 β(ξ) dξ + ‖D‖ ‖y(t− τ1) + Dy(t− 2τ1)‖+ ‖D2‖ ‖y(t− 2τ1) + Dy(t− 3τ1)‖+ . . .

+ ‖Dk‖ ‖y(t− kτ1) + Dy(t− (k + 1)τ1)‖+ ‖Dk+1‖ ‖y(t− (k + 1)τ1)‖.
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By (3.10) we derive the estimate

‖y(t)‖ ≤ αe−
∫ t

0 β(ξ) dξ + α‖D‖e−
∫ t−τ1

0 β(ξ) dξ + α‖D2‖e−
∫ t−2τ1

0 β(ξ) dξ + . . .

+ α‖Dk‖e−
∫ t−kτ1

0 β(ξ) dξ + ‖Dk+1‖Φ,

which implies (3.9).
The lemma is proved.

Proofs of Theorems 2.3–2.5. In the case of one delay, in [11] the analogs of Theorems 2.3–2.5
(see Theorems 2–4 in [11]) were proved in detail by the use of the auxiliary assertions (see
Lemmas 2–4 in [11]). In the present paper, using Lemmas 3.2, 3.3 and repeating the reasoning
carried out when proving Theorems 2–4 in [11], we derive the required estimates for solutions
to the initial value problem (2.5).

Using the proof of Lemma 3.2, we can reformulate the conditions of exponential stability
of the zero solution to the system (1.12) as follows.

Theorem 3.4. Suppose that there exist H(t), Kj(s), j = 1, . . . , m, satisfying (2.1)–(2.3) and such that(
K1(τ1)− D∗ ∑m

j=1 Kj(0)D
)
> 0 and P(t) defined by (2.7) is positive definite for t ∈ [0, T]. Then the

zero solution to (1.12) is exponentially stable.

4 Main results for (1.1)

In this section we consider the nonlinear time-delay system (1.1). Using the results of Sec-
tions 2, 3, we establish conditions of exponential stability of the zero solution to (1.1) and
obtain estimates characterizing exponential decay of solutions to (1.1) at infinity.

Theorem 4.1. Let the conditions of Theorem 2.1 be satisfied, m ≥ 2,

q(t) =

q0 +

√√√√q2
0 + (q0‖D‖+ q1)2 +

m

∑
j=2

q2
j

 ‖H(t)‖, (4.1)

let S(t) be defined by (3.5), (3.6). Suppose that qj, j = 0, . . . , m, in (1.2) are such that the matrix
(S(t)− q(t)I) is positive definite for t ∈ [0, T]. Then the zero solution to (1.1) is exponentially stable.

Remark 4.2. In the case of m = 1, the function q(t) defined by (4.1) and the matrix S(t) in (3.5)
should be replaced with(

q0 +
√

q2
0 + (q0‖D‖+ q1)2

)
‖H(t)‖ and

(
S11(t) S12(t)
S∗12(t) S22(t)

)
,

respectively.

Consider the initial value problem for (1.1)

d
dt
(y(t) + Dy(t− τ1)) = A(t)y(t) +

m

∑
j=1

Bj(t)y(t− τj)

+ F(t, y(t), y(t− τ1), . . . , y(t− τm)), t > 0,

y(t) = ϕ(t), t ∈ [−τ1, 0],

y(+0) = ϕ(0),

(4.2)
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where ϕ(t) ∈ C1([−τ1, 0]) is a given vector function. This problem has a unique solution
because the vector function F(t, u, v1, . . . , vm) satisfies the Lipschitz condition with respect to
u and τj > 0, j = 1, . . . , m (for example, see [15, Ch. 1]). Assuming that the conditions of
Theorem 4.1 are satisfied, below we establish estimates characterizing the rate of exponential
decay of the solution as t→ ∞.

We introduce the matrix

P̃(t) = − d
dt

H(t)− H(t)A(t)− A∗(t)H(t)−
m

∑
j=1

Kj(0)− q(t)I

−
(

H(t)A(t)D +
m

∑
j=1

Kj(0)D− H(t)B1(t)

)[
K1(τ1)− D∗

m

∑
j=1

Kj(0)D− q(t)I

]−1

×
(

D∗A∗(t)H(t) +
m

∑
j=1

D∗Kj(0)− B∗1(t)H(t)

)

−
m

∑
j=2

H(t)Bj(t)
[
Kj(τj)− q(t)I

]−1 B∗j (t)H(t).

(4.3)

It is not hard to verify that the matrix P̃(t) is positive definite if the matrix (S(t)− q(t)I) is
positive definite (for details, see Section 5). Denote by p̃min(t) > 0 the minimal eigenvalue of
the matrix P̃(t). We put

γ̃(t) = min { p̃min(t), k1‖H(t)‖, . . . , km‖H(t)‖} , (4.4)

β̃(t) =
γ̃(t)

2‖H(t)‖ , β̃+ = max
t∈[0,T]

β̃(t), β̃− = min
t∈[0,T]

β̃(t). (4.5)

As was mentioned in Section 2, the spectrum of the matrix D belongs to the unit disk
{λ ∈ C : |λ| < 1} if the conditions of Theorem 2.1 are fulfilled. Hence, ‖Dj‖ → 0 as
j → ∞. Let l be the minimal positive integer such that ‖Dl‖ < 1. In dependence on ‖Dl‖, we
distinguish three cases and establish estimates for solutions to (4.2) if

‖Dl‖ < e−lβ̃+τ1 , e−lβ̃+τ1 ≤ ‖Dl‖ ≤ e−lβ̃−τ1 , e−lβ̃−τ1 < ‖Dl‖ < 1,

respectively.

Theorem 4.3. Let the conditions of Theorem 4.1 be satisfied and

‖Dl‖ < e−lβ̃+τ1 .

Then a solution to the initial value problem (4.2) satisfies the estimate

‖y(t)‖ ≤
[

α
(
1− ‖Dl‖elβ̃+τ1

)−1
l−1

∑
j=0
‖Dj‖ejβ̃+τ1

+ max
{
‖D‖eβ̃+τ1 , . . . , ‖Dl‖elβ̃+τ1

}
Φ

]
e−
∫ t

0 β̃(ξ) dξ , t > 0,

where α, β̃(t), β̃+, and Φ are defined in (2.10) and (4.5).
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Theorem 4.4. Let the conditions of Theorem 4.1 be satisfied and

e−lβ̃+τ1 ≤ ‖Dl‖ ≤ e−lβ̃−τ1 .

Then a solution to the initial value problem (4.2) satisfies the estimate

‖y(t)‖ ≤
[

α

(
1 +

t
lτ1

) l−1

∑
j=0
‖Dj‖ejβ̃+τ1

+ max
{

1, ‖D‖eβ̃+τ1 , . . . , ‖Dl−1‖e(l−1)β̃+τ1
}

Φ

]
e−
∫ t

0 σ̃(ξ) dξ , t > 0,

where α, β̃(t), β̃+, β̃−, and Φ are defined in (2.10) and (4.5),

σ̃(t) = min
{

β̃(t), − 1
lτ1

ln ‖Dl‖
}

.

Theorem 4.5. Let the conditions of Theorem 4.1 be satisfied and

e−lβ̃−τ1 < ‖Dl‖ < 1.

Then a solution to the initial value problem (4.2) satisfies the estimate

‖y(t)‖ ≤
[

α‖Dl‖elβ̃−τ1
(
‖Dl‖elβ̃−τ1 − 1

)−1 l−1

∑
j=0
‖Dj‖ejβ̃−τ1

+ ‖Dl‖ 1
l −1 max

{
1, ‖D‖, . . . , ‖Dl−1‖

}
Φ

]
exp

(
t

lτ1
ln ‖Dl‖

)
, t > 0,

where α, β̃−, and Φ are defined in (2.10) and (4.5).

We prove Theorems 4.3–4.5 in Section 5. Obviously, Theorem 4.1 immediately follows from
these theorems.

5 Proof of the main results for (1.1)

As in Section 3, to prove Theorems 4.3–4.5 we need the auxiliary results obtained below.

Lemma 5.1. Let the conditions of Theorem 4.1 be satisfied. Then, for a solution to the initial value
problem (4.2), the following inequality holds

‖y(t) + Dy(t− τ1)‖ ≤

√
V0(ϕ)

hmin(t)
exp

− t∫
0

γ̃(ξ)

2‖H(ξ)‖dξ

 , t > 0, (5.1)

where V0(ϕ) and γ̃(t) are defined by (2.6) and (4.4), respectively, hmin(t) > 0 is the minimal eigenvalue
of the matrix H(t).
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Proof. Let y(t) be a solution to the initial value problem (4.2). As above, we consider the
Lyapunov–Krasovskii functional (3.2). The time derivative of this functional is

d
dt

V(t, y) ≡
〈

d
dt

H(t)(y(t) + Dy(t− τ1)), (y(t) + Dy(t− τ1))

〉
+

〈
H(t)(A(t)y(t) +

m

∑
j=1

Bj(t)y(t− τj)), (y(t) + Dy(t− τ1))

〉

+

〈
H(t)(y(t) + Dy(t− τ1)), (A(t)y(t) +

m

∑
j=1

Bj(t)y(t− τj))

〉
+
〈

H(t)F(t, y(t), y(t− τ1), . . . , y(t− τm)), (y(t) + Dy(t− τ1))
〉

+
〈

H(t)(y(t) + Dy(t− τ1)), F(t, y(t), y(t− τ1), . . . , y(t− τm))
〉

+
m

∑
j=1
〈Kj(0)y(t), y(t)〉 −

m

∑
j=1
〈Kj(τj)y(t− τj), y(t− τj)〉

+
m

∑
j=1

t∫
t−τj

〈
d
dt

Kj(t− s)y(s), y(s)
〉

ds.

Using the matrix C(t) defined by (2.4), we obtain

d
dt

V(t, y) ≡−
〈

C(t)

 y(t)
y(t− τ1)

z(t)

 ,

 y(t)
y(t− τ1)

z(t)

〉

+
〈

H(t)F(t, y(t), y(t− τ1), . . . , y(t− τm)), (y(t) + Dy(t− τ1))
〉

+
〈

H(t)(y(t) + Dy(t− τ1)), F(t, y(t), y(t− τ1), . . . , y(t− τm))
〉

+
m

∑
j=1

t∫
t−τj

〈
d
dt

Kj(t− s)y(s), y(s)
〉

ds,

where

z(t) =

y(t− τ2)
...

y(t− τm)

 .

Taking into account (3.4), we have

d
dt

V(t, y) ≡−
〈

S(t)

y(t) + Dy(t− τ1)

y(t− τ1)

z(t)

 ,

y(t) + Dy(t− τ1)

y(t− τ1)

z(t)

〉

+
〈

H(t)F(t, y(t), y(t− τ1), . . . , y(t− τm)), (y(t) + Dy(t− τ1))
〉

+
〈

H(t)(y(t) + Dy(t− τ1)), F(t, y(t), y(t− τ1), . . . , y(t− τm))
〉

+
m

∑
j=1

t∫
t−τj

〈
d
dt

Kj(t− s)y(s), y(s)
〉

ds,

(5.2)

where the entries of the matrix S(t) are defined in (3.6).
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Consider the second and the third summands in the right-hand side of (5.2). In view
of (1.2), we obtain

J1(t) =
〈

H(t)F(t, y(t), y(t− τ1), . . . , y(t− τm)), (y(t) + Dy(t− τ1))
〉

+
〈

H(t)(y(t) + Dy(t− τ1)), F(t, y(t), y(t− τ1), . . . , y(t− τm))
〉

≤ 2‖H(t)‖
(

q0‖y(t)‖+
m

∑
j=1

qj‖y(t− τj)‖
)
‖y(t) + Dy(t− τ1)‖

≤ 2q0‖H(t)‖‖y(t) + Dy(t− τ1)‖2

+ 2(q0‖D‖+ q1)‖H(t)‖‖y(t− τ1)‖‖y(t) + Dy(t− τ1)‖

+
m

∑
j=2

2qj‖H(t)‖‖y(t− τj)‖‖y(t) + Dy(t− τ1)‖.

(5.3)

We now show that

J1(t) ≤ q(t)

(
‖y(t) + Dy(t− τ1)‖2 +

m

∑
j=1
‖y(t− τj)‖2

)
, (5.4)

where q(t) is defined by (4.1). Denote by J2(t) the right-hand side of (5.3). It can be written
out as follows

J2(t) = ‖H(t)‖
〈

Vm


‖y(t) + Dy(t− τ1)‖
‖y(t− τ1)‖
‖y(t− τ2)‖

...
‖y(t− τm)‖

 ,


‖y(t) + Dy(t− τ1)‖
‖y(t− τ1)‖
‖y(t− τ2)‖

...
‖y(t− τm)‖


〉

,

where

Vm =


2q0 q0‖D‖+ q1 q2 · · · qm

q0‖D‖+ q1 0 0 . . . 0
q2 0 0 · · · 0
...

...
...

. . .
...

qm 0 0 · · · 0

 .

It is not hard to verify that

det(Vm − λI) = (−λ)m−1 [λ2 − 2q0λ− (q0‖D‖+ q1)
2 − q2

2 − · · · − q2
m
]

.

Consequently, the eigenvalues of Vm have the form

λ1 = q0 +

√√√√q2
0 + (q0‖D‖+ q1)2 +

m

∑
j=2

q2
j ,

λ2 = q0 −

√√√√q2
0 + (q0‖D‖+ q1)2 +

m

∑
j=2

q2
j , λ3 = · · · = λm+1 = 0.

Obviously, λ1 is the maximal eigenvalue. Hence,

J2(t) ≤ λ1‖H(t)‖
(
‖y(t) + Dy(t− τ1)‖2 +

m

∑
j=1
‖y(t− τj)‖2

)
,
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which gives us (5.4).
Consequently,

d
dt

V(t, y) ≤−
〈
(S(t)− q(t)I)

y(t) + Dy(t− τ1)

y(t− τ1)

z(t)

 ,

y(t) + Dy(t− τ1)

y(t− τ1)

z(t)

〉

+
m

∑
j=1

t∫
t−τj

〈
d
dt

Kj(t− s)y(s), y(s)
〉

ds.

(5.5)

By the conditions of Theorem 4.1, the matrix (S(t) − q(t)I) is Hermitian positive definite.
Since S23(t) is the zero matrix, it follows from Lemma 3.1 that

S(t)− q(t)I =

 I S12(t)(S22(t)− q(t)I)−1 S13(t)(S33(t)− q(t)I)−1

0 I 0
0 0 I


×

P̃(t) 0 0
0 S22(t)− q(t)I 0
0 0 S33(t)− q(t)I

 I 0 0
(S22(t)− q(t)I)−1S∗12(t) I 0
(S33(t)− q(t)I)−1S∗13(t) 0 I

 ,

where

P̃(t) = S11(t)− q(t)I − S12(t)(S22(t)− q(t)I)−1S∗12(t)− S13(t)(S33(t)− q(t)I)−1S∗13(t);

moreover, the matrices

P̃(t), S22(t)− q(t)I, and S33(t)− q(t)I

are positive definite. Hence,〈
(S(t)− q(t)I)

y(t) + Dy(t− τ1)

y(t− τ1)

z(t)

 ,

y(t) + Dy(t− τ1)

y(t− τ1)

z(t)

〉

≥
〈

P̃(t)(y(t) + Dy(t− τ1)), (y(t) + Dy(t− τ1))
〉
≥ p̃min(t)‖y(t) + Dy(t− τ1)‖2,

(5.6)

where p̃min(t) > 0 is the minimal eigenvalue of P̃(t). Taking into account (3.6), the matrix
P̃(t) has the form (4.3). Consequently, in view of (5.6), from (5.5) we derive

d
dt

V(t, y) ≤ − p̃min(t)‖y(t) + Dy(t− τ1)‖2 +
m

∑
j=1

t∫
t−τj

〈
d
dt

Kj(t− s)y(s), y(s)
〉

ds.

Using the matrix H(t), we have

‖y(t) + Dy(t− τ1)‖2 ≥ 1
‖H(t)‖ 〈H(t)(y(t) + Dy(t− τ1)), (y(t) + Dy(t− τ1))〉 .

Hence,

d
dt

V(t, y) ≤ − p̃min(t)
‖H(t)‖

〈
H(t)(y(t) + Dy(t− τ1)), (y(t) + Dy(t− τ1))

〉
+

m

∑
j=1

t∫
t−τj

〈
d
dt

Kj(t− s)y(s), y(s)
〉

ds.
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Repeating the reasoning carried out when proving Lemma 3.2, we obtain (5.1).
The lemma is proved.

Lemma 5.2. Let the conditions of Theorem 4.1 be satisfied. Then a solution to the initial value prob-
lem (4.2) on every segment t ∈ [kτ1, (k + 1)τ1), k = 0, 1, . . . , satisfies the following estimate

‖y(t)‖ ≤ α
k

∑
j=0
‖Dj‖e−

∫ t−jτ1
0 β̃(ξ) dξ + ‖Dk+1‖Φ,

where α, β̃(t), and Φ are defined in (2.10) and (4.5).

Proof. Using Lemma 5.1, this lemma is proved in the same way as Lemma 3.3.

Proofs of Theorems 4.3–4.5. In the case of one delay, in [11] the analogs of Theorems 4.3–4.5
(see Theorems 2–4 in [11]) were proved in detail by the use of the auxiliary assertions (see
Lemmas 2–4 in [11]). In the present paper, using Lemmas 5.1, 5.2 and repeating the reasoning
carried out when proving Theorems 2–4 in [11], we derive the required estimates for solutions
to the initial value problem (4.2).

Using the proof of Lemma 5.1, we can reformulate the conditions of exponential stability
of the zero solution to the nonlinear system (1.1) as follows.

Theorem 5.3. Suppose that there exist H(t), Kj(s), j = 1, . . . , m, satisfying (2.1)–(2.3) and such that
the matrices

K1(τ1)− D∗
m

∑
j=1

Kj(0)D− q(t)I, Kj(τj)− q(t)I, j = 2, . . . , m,

and P̃(t) defined by (4.3) are positive definite for t ∈ [0, T]. Then the zero solution to (1.1) is exponen-
tially stable.

Remark 5.4. The results obtained above give us the assertions on robust stability for (1.12).
Indeed, consider uncertain systems of the form

d
dt

(y(t) + Dy(t− τ1)) = (A(t) + ∆A(t))y(t) +
m

∑
j=1

(Bj(t) + ∆Bj(t))y(t− τj), (5.7)

where ∆A(t), ∆Bj(t), j = 1, . . . , m, are unknown (n× n) matrices such that

‖∆A(t)‖ ≤ q0, ‖∆Bj(t)‖ ≤ qj, j = 1, . . . , m.

Obviously, in this case the vector function

F(t, u, v1, . . . , vm) = ∆A(t)u +
m

∑
j=1

∆Bj(t)vj

satisfies (1.2). Then Theorem 4.1 gives us the conditions of robust exponential stability for
(1.12). From Theorems 4.3–4.5 we have the estimates of exponential decay of solutions to (5.7).
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6 An illustrative example

Consider the system

d
dt

(y(t) + Dy(t− τ1)) = A(t)y(t) + B1(t)y(t− τ1) + B2(t)y(t− τ2), (6.1)

where

D =

(
0.12 0.1
−0.05 0.11

)
, A(t) =

(
−10 + 0.2 cos t 1− 0.3 cos t

2 + 0.5 cos t −20− 0.1 cos t

)
,

B1(t) =
(

0.1 sin t 0.3 cos t
0 −1

)
, B2(t) =

(
0.5 sin 2t 0
−0.4 sin t 0.2 cos t

)
, τ1 = 2, τ2 = 1.

According to Theorem 3.4, we can guarantee exponential stability of the zero solution to (6.1)
if there exist matrices H(t), K1(s), K2(s) satisfying (2.1)–(2.3) and such that

K1(2)− D∗K1(0)D− D∗K2(0)D > 0

and P(t) defined by (2.7) is positive definite for t ∈ [0, 2π]. We choose the matrices H(t),
K1(s), K2(s) as follows

H(t) =
(

6− 3.4 sin t 1− 2.3 sin t
1− 2.3 sin t 8 + 2.2 sin t

)
,

K1(s) = e−0.07sK0, K2(s) = e−0.28sK0, K0 =

(
1 0
0 2

)
.

It is not hard to verify that

2.38 ≤ hmin(t) ≤ 5.65, 8.4 ≤ ‖H(t)‖ ≤ 11.37.

Obviously, the matrix

K1(2)− D∗K1(0)D− D∗K2(0)D =

(
0.8305582 −0.002
−0.002 1.6703165

)
is positive definite. Calculating P(t), we obtain that

3.58 ≤ pmin(t) ≤ 41.86.

Consequently, the zero solution to (6.1) is exponentially stable.
To estimate the decay rate of solutions to (6.1) at infinity we need to calculate γ(t) and β(t)

defined in (2.9) and (2.11), respectively. Obviously, in our case

k1 = 0.07, k2 = 0.28, γ(t) = k1‖H(t)‖.

Hence,
β(t) = β+ = β− = k1/2 = 0.035.

Since ‖D‖ < e−β+τ1 , by Theorem 2.3 we have the estimate

‖y(t)‖ ≤ c max
−2≤s≤0

‖y(s)‖e−0.035 t, c > 0, t ≥ 0.
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