
Electronic Journal of Qualitative Theory of Differential Equations
2016, No. 6, 1–14; doi: 10.14232/ejqtde.2016.1.6 http://www.math.u-szeged.hu/ejqtde/

On the construction of the approximate solution of a
special type integral boundary value problem

Kateryna MarynetsB

Uzhhorod National University, Narodna Square, 3, Uzhhorod, 88000, Ukraine

Received 21 June 2015, appeared 6 February 2016

Communicated by Ivan Kiguradze

Abstract. We consider the integral boundary value problem (BVP) for a certain class of
non-linear system of ordinary differential equations of the form

dx (t)
dt

= f (t, x (t)) ,

Ax(0) +
∫ T

0
P(s)k(s, x(s))ds + Cx(T) = d,

where t ∈ [0, T], x ∈ Rn, f : [0, T]× D → Rn and k : [0, T]× D → Rn are continuous
vector functions, D ⊂ Rn is a closed and bounded domain, A, C and d are arbitrary
matrices and vector with real components, det C 6= 0.
We give a new approach for studying this problem, namely by using an appropriate
parametrization technique the original BVP is reduced to the equivalent parametrized
two-point one with linear restrictions without integral term.
To study the transformed problem we use a method based upon a special type of
successive approximations constructed analytically.

Keywords: integral boundary value problems, parametrization, numerical–analytic
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1 Notations

• Operations =, <, >, ≤, ≥, max, min between matrices and vectors mean component-
wise;

• L(Rn) is an algebra of n-dimensional matrices with real components;

• In and On are unit and zero n-dimensional matrices, respectively;

• for any vector u ∈ Rn and non-negative vector r ∈ Rn we write

B(u, r) := {ξ ∈ Rn : |ξ − u| ≤ r}

as an r-neighborhood of u ∈ Rn;

• r(K) – spectral radius of matrix K.
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2 Problem setting and parametrization of the integral boundary
conditions

Let us investigate the solutions of the system of nonlinear differential equations subjected to
the special type integral boundary conditions of the form:

dx (t)
dt

= f (t, x (t)) , (2.1)

Ax(0) +
∫ T

0
P(s)k(s, x(s))ds + Cx(T) = d, (2.2)

where t ∈ [0, T], f : [0, T]× D → Rn, A, C ∈ L(Rn), det C 6= 0, k : [0, T]× D → Rn, d ∈ Rn are
some given matrices and vector and P is a continuous n-dimensional matrix function.

Suppose that the vector function f in the right-hand side of the system of differential
equations is continuous, where D ⊂ Rn is a closed and bounded domain, and let us put

D0 :=
{∫ T

0
P(s)k(s, x(s))ds

∣∣∣ P(·)k(·, x(·)) ∈ C(Rn)

}
.

The problem is to find the continuously differentiable solution x : [0, T]→ D of the system
of differential equations (2.1) satisfying integral boundary restrictions (2.2).

To study this problem we use a technique suggested in [1–10].
Using the main ideas from [4], let us introduce the following parameters by putting

z := x(0) = col (x1(0), x2(0), . . . , xn(0)) = col (z1, z2, . . . , zn) , (2.3)

λ :=
∫ T

0
P(s)k(s, x(s))ds = col (λ1, λ2, . . . , λn) . (2.4)

Taking into account (2.3), the integral boundary restrictions (2.2) can be written as the
linear ones:

Ax(0) + Cx(T) = d(λ), (2.5)

where d(λ) := d− λ and λ is the vector parameter given by (2.3).
So, instead of the original BVP with integral boundary conditions (2.1), (2.2) we study an

equivalent parametrized one, containing already linear restrictions (2.1), (2.5).

Remark 2.1. The set of the solutions of the non-linear BVP with integral boundary conditions
(2.1), (2.2) coincides with the set of the solutions of the parametrized problem (2.1) with linear
boundary restrictions (2.5), satisfying additional conditions (2.3).

3 Construction of the successive approximations and their uniform
convergence

Let us introduce the vector

δD( f ) :=
1
2

[
max

(t,x)∈[0,T]×D
f (t, x)− min

(t,x)∈[0,T]×D
f (t, x)

]
, (3.1)

and assume that the BVP (2.1), (2.5) satisfies following conditions:
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A) there exists a set Dβ ⊂ D such that

Dβ :=
{

z ∈ D : B
(

z +
t
T

C−1 [d(λ)− (A + C) z] ,
T
2

δD( f )
)
⊂ D, ∀λ ∈ D0, t ∈ [0, T]

}
is non-empty, i.e.,

Dβ 6= ∅, (3.2)

for all λ ∈ D0, t ∈ [0, T];

B) function f in the right-hand side of (2.1) satisfies Lipschitz condition of the form

| f (t, u)− f (t, v)| ≤ K |u− v| , (3.3)

for all t ∈ [0, T] , {u, v} ⊂ D with some non-negative constant matrix K =
(
kij
)n

i,j=1;

C) the spectral radius r(Q) satisfies the inequality

r(Q) < 1, (3.4)

where
Q :=

3TK
10

. (3.5)

Let us connect with the parametrized BVP (2.1), (2.5) the sequence of functions:

xm(t, z, λ) := z +
∫ t

0
f (s, xm−1(s, z, λ))ds

− t
T

∫ T

0
f (s, xm−1(s, z, λ))ds

+
t
T

C−1 [d(λ)− (A + C) z] ,

(3.6)

where m ∈N,

x0(t, z, λ) := z +
t
T

C−1 [d(λ)− (A + C) z] ,

xm (t, z, λ) = col (xm,1 (t, z, λ) , xm,2 (t, z, λ) , . . . , xm,n (t, z, λ)) and z, λ are considered as param-
eters.

Note that the functions xm of the sequence (3.6) were built from the linear parametrized
boundary conditions (2.5), so they satisfy them for all m ∈N, z ∈ Dβ, λ ∈ D0.

Similarly to [4], let us establish the uniform convergence of the sequence (3.6).

Theorem 3.1. Assume that for the system of differential equations (2.1) and the parametrized boundary
restrictions (2.5) conditions A)–C) are satisfied.

Then for all fixed z ∈ Dβ, λ ∈ D0 the following hold.

1. The functions of the sequence (3.6) are continuously differentiable and satisfy the parametrized
boundary conditions (2.5):

Axm(0, z, λ) + Cxm(T, z, λ) = d(λ), m ∈N.

2. The sequence of functions (3.6) for t ∈ [0, T] converges uniformly as m→ ∞ to the limit function

x∞(t, z, λ) = lim
m→∞

xm(t, z, λ). (3.7)
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3. The limit function x∞ satisfies the parametrized linear two-point boundary conditions:

Ax∞(0, z, λ) + Cx∞(T, z, λ) = d(λ).

4. The limit function (3.7) is a unique continuously differentiable solution of the integral equation

x(t) = z +
∫ t

0
f (s, x(s))ds− t

T

∫ T

0
f (s, x(s))ds

+
t
T

C−1 [d(λ)− (A + C) z] ,
(3.8)

i.e., it is the unique solution on [0, T] of the Cauchy problem for the modified system of differential
equations:

dx
dt

= f (t, x) + ∆(z, λ), (3.9)

x(0) = z, (3.10)

where

∆ (z, λ) :=
1
T

[
C−1 [d(λ)− (A + C) z]−

∫ T

0
f (s, x∞(s, z, λ))ds

]
. (3.11)

5. The following error estimation holds:

|x∞(t, z, λ)− xm(t, z, λ)| ≤ 20
9

t
(

1− t
T

)
Qm(In −Q)−1δD( f ), (3.12)

where δD( f ) and Q are given by (3.1), (3.5).

Proof. Let us prove that the sequence of functions (3.6) is a Cauchy sequence in the Banach
space C([0, T], Rn). First we show that xm(t, z, λ) ∈ D, for all (t, z, λ) ∈ [0, T] × Dβ × D0,
m ∈N. Let us note, that the function x0(t, z, λ) ∈ D for all (t, z, λ) ∈ [0, T]× Dβ × D0.

Then, using the estimation from [5]:∣∣∣∣∫ t

0

[
h(τ)− 1

T

∫ T

0
h(s)ds

]
dτ

∣∣∣∣ ≤ 1
2

α1(t)
[

max
t∈[0.T]

h(t)− min
t∈[0,T]

h(t)
]

, (3.13)

where

α1(t) := 2t
(

1− t
T

)
, |α1(t)| ≤

T
2

, t ∈ [0, T] , (3.14)

relation (3.6) for m = 0 implies that:

|x1 (t, z, λ)− x0 (t, z, λ)|

≤
∣∣∣∣∫ t

0

[
f (s, x0 (s, z, λ))− 1

T

∫ T

0
f (ξ, x0 (ξ, z, λ))dξ

]
ds
∣∣∣∣

≤ α1(t)δD( f ) ≤ T
2

δD( f ).

(3.15)

Therefore, by virtue of (3.15), we conclude that x1(t, z, λ) ∈ D whenever (t, z, λ) ∈ [0, T]×
Dβ × D0.

By induction we can easily establish that all functions (3.6) are also contained in the domain
D, ∀m ∈N, t ∈ [0, T], z ∈ Dβ, λ ∈ D0.
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Now, consider the difference of functions:

xm+1(t, z, λ)− xm(t, z, λ)

=
∫ t

0

[
f (s, xm(s, z, λ))− f (s, xm−1(s, z, λ))

]
ds

− t
T

∫ T

0

[
f (s, xm(s, z, λ))− f (s, xm−1(s, z, λ))

]
ds, m ∈N,

and introduce the notation:

rm(t, z, λ) := |xm(t, z, λ)− xm−1(t, z, λ)| , m ∈N.

By virtue of the estimation (3.13) and of the Lipschitz condition (3.3), we have:

rm+1(t, z, λ) ≤ K

[(
1− t

T

) ∫ t

0
rm(s, z, λ)ds +

t
T

∫ T

t
rm(s, z, λ)ds

]
, ∀m ∈N. (3.16)

According to (3.15),

r1(t, z, λ) = |x1(t, z, λ)− x0(t, z, λ)| ≤ α1(t)δD( f ).

Using the inequality from [5]

αm+1(t) ≤
10
9

(
3
10

T
)m

α1(t), m ∈N, (3.17)

obtained for the sequence of functions

αm+1(t) =
(

1− t
T

) ∫ t

0
αm(s)ds +

t
T

∫ T

t
αm(s)ds, m ∈N, (3.18)

from (3.16) for m = 1 follows:

r2(t, z, λ) ≤ KδD( f )
[(

1− t
T

) ∫ t

0
α1(s)ds +

t
T

∫ T

t
α1(s)ds

]
≤ Kα2 (t) δD( f ).

By induction using (3.18), we can easily obtain that

rm+1(t, z, λ) ≤ Kmαm+1(t)δD( f ), m = 0, 1, 2, . . . , (3.19)

where αm+1 is calculated according to (3.18), and δD( f ) is given by (3.1).
By virtue of the estimate (3.17) from (3.19) we get:

rm+1(t, z, λ) ≤ 10
9

α1(t)QmδD( f ), (3.20)

∀m ∈N, where matrix Q is given by (3.5).
Therefore, in view of (3.20):∣∣xm+j(t, z, λ)− xm(t, z, λ)

∣∣
≤
∣∣xm+j(t, z, λ)− xm+j−1(t, z, λ)

∣∣
+
∣∣xm+j−1(t, z, λ)− xm+j−2(t, z, λ)

∣∣+ · · ·
+ |xm+1(t, z, λ)− xm(t, z, λ)|

=
j

∑
i=1

rm+i(t, z, λ) ≤ 10
9

α1(t)
j

∑
i=1

Qm+i−1δD( f )

=
10
9

α1(t)Qm
j−1

∑
i=0

QiδD( f ).

(3.21)



6 K. Marynets

Since, due to the condition (3.4), the maximum eigenvalue of the matrix Q of the form (3.5)
does not exceed the unity, we have

j−1

∑
i=0

Qi ≤ (In −Q)−1 , lim
m→∞

Qm = On.

Therefore, we conclude from (3.21) that, according to the Cauchy criterion, the sequence
{xm} of the form (3.6) uniformly converges in the domain (t, z, λ) ∈ [0, T]× Dβ × D0 to the
limit function x∞. Since all functions xm of the sequence (3.6) satisfy the boundary conditions
(2.5) for all values of the artificially introduced parameters, the limit function x∞ also satisfies
these conditions. Passing to the limit as m → ∞ in equality (3.6) we show that for all z ∈ Dβ

and λ ∈ D0 the limit function x∞(·, z, λ) is a solution of both integral equation (3.8) and the
Cauchy problem (3.9), (3.10) with ∆ given by (3.11). The uniqueness of x∞(·, z, λ) follows from
the Lipschitz condition imposed on the function f .

4 Connection of the limit function x∞ with the solution of the BVP
(2.1), (2.2)

Consider the Cauchy problem

dx
dt

= f (t, x) + µ, t ∈ [0, T], (4.1)

x(0) = z, (4.2)

where µ ∈ Rn is a control parameter and z ∈ Dβ.
By analogy to [4] let us prove the control parameter theorem.

Theorem 4.1. Let z ∈ Dβ, λ ∈ D0 and µ ∈ Rn be some given vectors. Suppose that for the system of
differential equations (2.1) all conditions of Theorem 3.1 hold.

Then for the solution x = x(·, z, µ) of the initial value problem (4.1), (4.2) to be defined on [0, T]
and to satisfy boundary conditions (2.5), it is necessary and sufficient that µ satisfies

µ := µz,λ, (4.3)

where

µz,λ :=
1
T

[
C−1[d(λ)− (A + C)z]−

∫ T

0
f (s, x∞(s, z, λ))

]
ds (4.4)

and x∞ (·, z, λ) is a function from the assertion 2. of Theorem 3.1.
In that case

x (t, z, µ) = x∞ (t, z, λ) for t ∈ [0, T]. (4.5)

Proof. Sufficiency. Let us suppose that µ = µz,λ on the right-hand side of the system of differ-
ential equations (4.1) is given by (4.4). By virtue of Theorem 3.1, the limit function (3.7) of the
sequence (3.6) is the unique solution of the initial value problem (4.1), (4.2). Furthermore, the
limit function x∞ satisfies (2.5).

Thus we have found the value of the parameter µ given by (4.4), for which (4.5) holds.
Necessity. Now we show that the parameter value (4.4) is unique, i.e., that for any µ = µ̄ 6= µz,λ

the solution x(t, z, µ̄) of the initial value problem (4.6), (4.2), where

dx
dt

= f (t, x) + µ̄, (4.6)
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does not satisfy boundary condition (2.5).
Indeed, assume the contrary. Then there exists µ̄ ∈ Rn such that µz,λ 6= µ̄ and the solution

x̄(·) := x(·, z, µ̄) of the Cauchy problem (4.1)–(4.2) is defined on [0, T] and satisfies boundary
condition (2.5).

Moreover, put xz,λ(·) := x(·, z, µz,λ).
It is obviously that the functions xz,λ and x̄ satisfy the following integral equations

xz,λ(t) = z +
∫ t

0
f (s, xz,λ(s))ds + µz,λt (4.7)

and

x̄(t) = z +
∫ t

0
f (s, x̄(s))ds + µ̄t. (4.8)

By assumption, the functions xz,λ, x̄ satisfy parametrized boundary conditions (2.5) and
the initial conditions (4.2). That is why we have

Axz,λ(0) + Cxz,λ(T) = d(λ), (4.9)

xz,λ(0) = z, (4.10)

Ax̄(0) + Cx̄(T) = d(λ), (4.11)

x̄(0) = z. (4.12)

Taking into account (4.9)–(4.12) we get

xz,λ(T) = C−1[d(λ)− Az], (4.13)

x̄(T) = C−1[d(λ)− Az]. (4.14)

By virtue of (4.7), (4.8) for t = T, µz,λ and µ can be written as

µz,λ =
1
T

[
C−1[d(λ)− (A + C)z]−

∫ T

0
f (s, xz,λ(s))ds

]
, (4.15)

µ̄ =
1
T

[
C−1[d(λ)− (A + C)z]−

∫ T

0
f (s, x̄(s))ds

]
. (4.16)

Substituting (4.15), (4.16) into the integral equations (4.7), (4.8), it follows that for all
t ∈ [0, T]

xz,λ(t) = z +
∫ t

0
f (s, xz,λ(s))ds +

t
T

[
C−1[d(λ)− (A + C)z]−

∫ T

0
f (s, xz,λ(s))ds

]
, (4.17)

x̄(t) = z +
∫ t

0
f (s, x̄(s))ds +

t
T

[
C−1[d(λ, η)− (A + C)z]−

∫ T

0
f (s, x̄(s))ds

]
. (4.18)

Using (4.17), (4.18) it is obvious that

xz,λ(t)− x̄(t) =
∫ t

0

[
f (s, xz,λ(s))− f (s, x̄(s))

]
ds− t

T

∫ T

0

[
f (s, xz,λ(s))− f (s, x̄(s))

]
ds. (4.19)

On the basis of the Lipschitz condition (3.3), from the relation (4.19) we get that the func-
tion

ω(t) = |xz,λ(t)− x̄(t)|, t ∈ [0, T], (4.20)
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satisfies integral inequalities:

ω(t) ≤ K
[∫ t

0
ω(s)ds +

t
T

∫ T

0
ω(s)ds

]
≤ Kα1(t) max

s∈[0,T]
ω(s), t ∈ [0, T], (4.21)

where α1 is given by (3.14).
Using (4.19) recursively, we come to an inequality:

ω(t) ≤ Kmαm(t) max
s∈[0,T]

ω(s), t ∈ [0, T], (4.22)

where m ∈N and functions αm are given by the formula (3.18).
Taking into account (3.17), from (4.22) for each m ∈N we get an estimation:

ω(t) ≤ Kα1(t)
10
9

(
3T
10

K
)m−1

· max
s∈[0,T]

ω(s), t ∈ [0, T].

By passing to the limit as m → ∞ in the last inequality and by virtue of (3.4), we come to
the conclusion that

max
s∈[0,T]

ω(s) ≤ Qm max
s∈[0,T]

ω(s)→ 0.

It means, according to (4.20), that the function xz,λ coincides with x̄. Starting with (4.15)
and (4.16), we get that µz,λ = µ̄. The contradiction we received proves the necessity part of
the theorem.

Let us find out the relation of the limit function x = x∞(·, z, λ) of the sequence (3.6) to the
solution of the parametrized two-point BVP (2.1) with linear boundary conditions (2.5) or the
equivalent non-linear problem (2.1) with integral conditions (2.2) [4].

Theorem 4.2. Let the conditions A)–C) hold for the original BVP (2.1), (2.2).
Then x∞(·, z∗, λ∗) is a solution of the integral BVP (2.1), (2.2) if and only if the pair (z∗, λ∗) is a

solution of the determining system of algebraic or transcendental equations:

∆(z, λ) = 0, (4.23)

V(z, λ) = 0, (4.24)

where

∆(z, λ) :=
1
T

[
C−1 [d(λ)− (A + C)z]−

∫ T

0
k(s, x∞(s, z, λ))ds

]
, (4.25)

V(z, λ) :=
∫ T

0
P(s)k(s, x∞ (s, z, λ))ds− λ. (4.26)

Proof. It suffices to apply Theorem 3.1 and notice that x∞(·, z∗, λ∗) is a solution of (2.1) if and
only if the pair (z∗, λ∗) satisfies the equation

∆(z∗, λ∗) = 0.

Moreover, taking into account (2.3), it is clear that x∞(·, z∗, λ∗) satisfies (2.2), if and only if∫ T

0
P(s)k(s, x∞(·, z∗, λ∗))ds = λ∗,

It means that x∞(·, z∗, λ∗) is a solution of the integral BVP (2.1), (2.2) if and only if (z∗, λ∗)

is a solution of system (4.23), (4.24).
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The next statement proves that the system of determining equations (4.23), (4.24) defines
all possible solutions of the original non-linear BVP (2.1) with integral boundary restrictions
(2.2).

Theorem 4.3. Let all the assumptions of Theorem 3.1 be satisfied. Then the following assertions hold.

1. If vectors z ∈ Dβ, λ ∈ D0 satisfy the system of determining equations (4.23), (4.24), then the
non-linear BVP (2.1) with integral boundary conditions (2.2) has the solution x(·) such that

x(0) = z,∫ T

0
P(s)k(s, x(s))ds = λ.

Moreover, this solution is given by formula

x(t) = x∞(t, z, λ), t = [0, T], (4.27)

where x∞ is the limit function of the sequence (3.6).

2. If BVP (2.1), (2.2) has a solution x(·), then this solution is given by (4.27), and the system of
determining equations (4.23), (4.24) is satisfied with

z = x(0),

λ =
∫ T

0
P(s)k(s, x(s))ds.

Proof. We will apply Theorems 4.1 and 4.2. If there exist such z ∈ Dβ, λ ∈ D0 that satisfy deter-
mining system (4.23), (4.24), then according to Theorem 4.2, function (4.27) is a solution of the
given BVP (2.1), (2.2) and, in view of Theorem 3.1, we get x(0) = z and

∫ T
0 P(s)k(s, x(s))ds = λ.

On the other hand, if x(·) is the solution of the original BVP (2.1), (2.2), then this function is
the solution of the Cauchy problem (4.1), (4.2) for

µ = 0,

z = x(0).

As x(·) satisfies integral boundary restrictions (2.2) and equivalent condition (2.5) with

λ :=
∫ T

0
P(s)k(s, x(s))ds, (4.28)

by virtue of Theorem 4.1, equality (4.27) is holds. Besides,

µ = µz,λ,

z = x(0),

where µz,λ is given by (4.4). Therefore, the first equation (4.23) of the determining system is
satisfied.

Taking into account the above-proved equality (4.27), it follows from (4.28) that the second
equation of the determining system also holds.
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5 Remarks on the constructive applications of the method

Although Theorem 4.2 gives sufficient and necessary conditions for the solvability and con-
struction of the solution of the given BVP, its application faces with difficulties due the fact
that the explicit forms of the functions

∆ : Dβ × D0 → Rn,

V : Dβ × D0 → Rn,

x∞(·, z, λ) = lim
m→∞

xm(·, z, λ),

in (4.23), (4.24) are usually unknown.
This complication can be overcome by using the properties of the function xm(·, z, λ) of the

form (3.6) for a fixed m, which will lead one instead of the exact determining system (4.23),
(4.24) to the m-th approximate system of determining equations of the form:

∆m(z, λ) = 0, (5.1)

Vm(z, λ) = 0, (5.2)

where ∆m, Vm : Dβ × D0 → Rn are defined by the determining function given by formulae

∆m(z, λ) :=
1
T

[
C−1 [d(λ)− (A + C)z]−

∫ T

0
f (s, xm(s, z, λ))ds

]
,

Vm(z, λ) :=
∫ T

0
P(s)k(s, xm (s, z, λ))ds− λ,

and xm(·, z, λ) is a vector function, that is defined by the recursive relation (3.6).
It is important to note that, unlike to system (4.23), (4.24), the m-th approximate deter-

mining system (5.1), (5.2) contains only terms involving the function xm and, thus known
explicitly.

6 An illustrative example

Let us apply the numerical–analytic scheme described above to the system of differential
equations {

x′1(t) = x2,

x′2(t) = x1 +
5
2 x2

2,
(6.1)

considered for t ∈ [0, 1] with the two-point integral boundary conditions

Ax(0) +
∫ 1

0
P(s) f (s, x(s))ds + Cx (1) = d, (6.2)

where

A =

(
1 0
0 0

)
, C =

(
1 0
0 1

)
, d =

(
3/5

13/30

)
,

and

P(t) =
(

0 t
t/2 1

)
, t ∈ [0, 1].
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It is easy to check that the pair of functions

x∗1(t) = 0.1t2 + 0.2, x∗2(t) = 0.2t

is an exact solution of the problem (6.1), (6.2).
Suppose that the BVP (6.1), (6.2) is considered in the domain

D = {(x1, x2) : |x1| ≤ 0.32, |x2| ≤ 0.25} .

Following (2.3), introduce the parameters:

col (x1(0), x2(0)) =: col (z1, z2) , (6.3)∫ T

0
P(s) f (s, x(s))ds =: col (λ1, λ2) . (6.4)

The formal substitution (6.3) transforms the boundary restrictions (6.2) to the linear con-
ditions

Ax(0) + Cx (1) = d(λ), (6.5)

where d(λ) := d− λ.
Put

f1(t, x1, x2) := x2,

f2(t, x1, x2) := x1 −
5
2

x2
2.

Then (6.1) takes the form (2.1) with T = 1, n = 2, and it is then easy to check that the matrix
K from the Lipschitz condition (3.3) can be taken as

K =

(
0 1
1 1.25

)
.

Calculations show that matrix Q =
(

0 0.3
0.3 0.375

)
and

r (Q) < 0.55 < 1.

The vector δD ( f ) can be estimated as

δD ( f ) ≤
(

0.26
0.4

)
.

The role of Dβ is played by the domain defined by inequalities:

−0.5666666667 + λ1 + 2z1 ≤ 0.125,

−0.3625 + λ2 + z2 ≤ 0.1990625.

The domain D0 is such that

D0 := {(λ1, λ2) : |λ1| ≤ 0.2, |λ2| ≤ 0.27} .

One can verify that, for the parametrized BVP (6.1), (6.5), all the needed conditions are
fulfilled, and we can proceed with application of the numerical–analytic scheme described
above. As a result, we construct the sequence of approximate solutions.
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The components of the iteration sequence (3.6) for the boundary value problem (6.1) under
the linear parametrized two-point boundary conditions (6.5) have the form

xm,1(t, z, λ) := z1 +
∫ t

0
f1 (s, xm−1,1(s, z, λ), xm−1,2(s, z, λ)) ds

− t
∫ 1

0
f1 (s, xm−1,1(s, z, λ), xm−1,2(s, z, λ)) ds

+ t(0.5666666667− λ1 − 2z1), (6.6)

xm,2(t, z, λ) := z2 +
∫ t

0
f2 (s, xm−1,1(s, z, λ), xm−1,2(s, z, λ)) ds

− t
∫ 1

0
f2 (s, xm−1,1(s, z, λ), xm−1,2(s, z, λ)))ds

+ t(0.3625− λ2 − z2), (6.7)

for m = 1, 2, 3, . . . , where

x0,1(t, z, λ) := z1 + t(0.5666666667− λ1 − 2z1), (6.8)

x0,2(t, z, η, λ) := z2 + t(0.3625− λ2 − z2). (6.9)

The system of approximate determining equations of the form (5.1), (5.2) for the given
example at the m-th step is

∆m,1(z, λ) = 0, (6.10)

∆m,2(z, λ) = 0, (6.11)∫ 1

0
P(s) f (s, xm(s, z, λ))ds = λ, (6.12)

where

∆m,1(z, λ, η) := −
∫ 1

0
f1 (s, xm−1,1(s, z, λ), xm−1,2(s, z, λ)) ds + 0.5666666667− λ1 − 2z1,

∆m,2(z, λ) = − 2
∫ 1

0
f2 (s, xm−1,1(s, z, λ), xm−1,2(s, z, λ)) ds + 0.3625− λ2 − z2.

Using (6.6)–(6.9) at the first iteration (m = 1) and applying Maple 13, we get

x11 = z1 + 0.5z2t + 0.18125t2 − 0.5t2λ2 − 0.5t2z2 + 0.3854166667t + 0.5tλ2 − tλ1 − 2tz1,

and

x12 = 0.1886718749t− 0.6979166666z2t− 0.90625t2z2 − 1.604166667tλ2

+ 0.5tλ1 + tz1 − 1.666666667z2
2t + 0.6041666666t3λ2

+ 0.6041666666t3z2 − 0.8333333333t3λ2
2 − 0.8333333333t3z2

2

− 0.5t2λ1 − t2z1 + 2.5t2z2
2 + 0.8333333333tλ2

2

+ 0.2833333334t2 − 1.666666667t3λ2z2 + 2.5t2λ2z2 − 0.8333333334tλ2z2

− 0.1095052083t3 + z2

for all t ∈ [0, 1] .
Here and below, we omit the obvious arguments reflecting the dependence on z1, z2, λ1, λ2.
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The computation shows that the approximate solutions of the determining system (6.10)–
(6.12) for m = 1 are

z1 ≈ z11 = 0.1997985545,

z2 ≈ z12 = 0.0003290208687,

λ1 ≈ λ11 = 0.06696248863,

λ2 ≈ λ12 = 0.1625831391.

Hence, the components of the first approximation to the first and second components of
solution are

x11 = 0.1997985545 + 0.0003131491t + 0.09979392005t2,

and
x12 = 0.0003290208687 + 0.1828945650t + 0.04988936318t2 − 0.03319608821t3.

The graphs of the first approximation and the exact solution of the original BVP are shown
on Figure 6.1.

Figure 6.1: The first components of the exact solution (solid line)
and its first approximation (drawn with dots).

The error of the first approximation is

max
t∈[0,1]

|x∗1(t)− x11(t)| ≤ 2.1 · 10−4,

max
t∈[0,1]

|x∗2(t)− x12(t)| ≤ 1.4 · 10−3.

Similarly, the error of the third approximation is

max
t∈[0,1]

|x∗1(t)− x31(t)| ≤ 2.1 · 10−5,

max
t∈[0,1]

|x∗2(t)− x32(t)| ≤ 5.1 · 10−5.

Continuing calculations, one can get approximate solutions of the original BVP with higher
precision.
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