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1 Introduction

We consider the existence of solutions for the following fourth-order boundary value problem
set on the half-line 

u(4)(t)− u′′(t) + u(t) = f (t, u(t)), t ∈ [0,+∞),

u(0) = u(+∞) = 0,

u′′(0) = u′′(+∞) = 0,

(1.1)

where f ∈ C([0,+∞)×R, R).
Many authors used critical point theory to establish the existence of solutions for fourth-

order boundary value problems on bounded intervals (see for example [8,9,13]), but there are
only a few papers that consider the above problem on the half-line using critical point theory.
We cite [5] where the authors consider the existence of solutions for a particular fourth-order
BVP on the half-line using critical point theory.

We endow the following space

H2
0(0,+∞) =

{
u ∈ L2(0,+∞), u′ ∈ L2(0,+∞), u′′ ∈ L2(0,+∞), u(0) = 0, u′(0) = 0

}
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with its natural norm

‖u‖ =
(∫ +∞

0
u′′ 2(t)dt +

∫ +∞

0
u′ 2(t)dt +

∫ +∞

0
u2(t)dt

) 1
2

.

Note that if u ∈ H2
0(0,+∞), then u(+∞) = 0, u′(+∞) = 0, (see [3, Corollary 8.9]). Let

p, q : [0,+∞) −→ (0,+∞) be two continuously differentiable and bounded functions with

M1 = max(‖p‖L2 , ‖p′‖L2) < +∞, M2 = max(‖q‖L2 , ‖q′‖L2) < +∞.

We also consider the following spaces

Cl,p[0,+∞) =

{
u ∈ C([0,+∞), R) : lim

t→+∞
p(t)u(t) exists

}
endowed with the norm

‖u‖∞,p = sup
t∈[0,+∞)

p(t)|u(t)|,

and

C1
l,p,q[0,+∞) =

{
u ∈ C1([0,+∞), R) : lim

t→+∞
p(t)u(t), lim

t→+∞
q(t)u′(t) exist

}
endowed with the natural norm

‖u‖∞,p,q = sup
t∈[0,+∞)

p(t)|u(t)|+ sup
t∈[0,+∞)

q(t)|u′(t)|.

Let

Cl [0,+∞) =

{
u ∈ C([0,+∞), R) : lim

t→+∞
u(t) exists

}
endowed with the norm ‖u‖∞ = supt∈[0,+∞) |u(t)|.

To prove that H2
0(0,+∞) embeds compactly in C1

l,p,q[0,+∞), we need the following
Corduneanu compactness criterion.

Lemma 1.1 ([4]). Let D ⊂ Cl([0,+∞), R) be a bounded set. Then D is relatively compact if the
following conditions hold:
(a) D is equicontinuous on any compact sub-interval of R+, i.e.

∀ J ⊂ [0,+∞) compact, ∀ ε > 0, ∃ δ > 0, ∀ t1, t2 ∈ J :

|t1 − t2| < δ =⇒ |u(t1)− u(t2)| ≤ ε, ∀ u ∈ D;

(b) D is equiconvergent at +∞ i.e.,

∀ ε > 0, ∃ T = T(ε) > 0 such that

∀ t : t ≥ T(ε) =⇒ |u(t)− u(+∞)| ≤ ε, ∀ u ∈ D.

Similar reasoning as in [6] yields the following compactness criterion in the space
C1

l,p,q([0,+∞), R).
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Lemma 1.2. Let D ⊂ C1
l,p,q([0,+∞), R) be a bounded set. Then D is relatively compact if the

following conditions hold:
(a) D is equicontinuous on any compact sub-interval of [0,+∞), i.e.

∀ J ⊂ [0,+∞) compact, ∀ ε > 0, ∃ δ > 0, ∀ t1, t2 ∈ J :

|t1 − t2| < δ =⇒ |p(t1)u(t1)− p(t2)u(t2)| ≤ ε, ∀ u ∈ D,

|t1 − t2| < δ =⇒ |q(t1)u′(t1)− q(t2)u′(t2)| ≤ ε, ∀ u ∈ D;

(b) D is equiconvergent at +∞ i.e.,

∀ ε > 0, ∃ T = T(ε) > 0 such that

∀ t : t ≥ T(ε) =⇒ |p(t)u(t)− (pu)(+∞)| ≤ ε, ∀ u ∈ D,

∀ t : t ≥ T(ε) =⇒ |q(t)u′(t)− (qu′)(+∞)| ≤ ε, ∀ u ∈ D.

Now we recall some essential facts from critical point theory (see [1, 2, 10]).

Definition 1.3. Let X be a Banach space, Ω ⊂ X an open subset, and J : Ω −→ R a functional.
We say that J is Gâteaux differentiable at u ∈ Ω if there exists A ∈ X∗ such that

lim
t→0

J(u + tv)− J(u)
t

= Av,

for all v ∈ X. Now A, which is unique, is denoted by A = J′G(u).

The mapping which sends to every u ∈ Ω the mapping J′G(u) is called the Gâteaux differ-
ential of J and is denoted by J′G.

We say that J ∈ C1 if J is Gâteaux differential on Ω and J′G is continuous at every u ∈ Ω.

Definition 1.4. Let X be a Banach space. A functional J : Ω −→ R is called coercive if, for
every sequence (uk)k∈N ⊂ X,

‖uk‖ → +∞ =⇒ |J(uk)| → +∞.

Definition 1.5. Let X be a Banach space. A functional J : X −→ (−∞,+∞] is said to be
sequentially weakly lower semi-continuous (swlsc for short) if

J(u) ≤ lim inf
n→+∞

J(un)

as un ⇀ u in X, n→ ∞.

Lemma 1.6 (Minimization principle [2]). Let X be a reflexive Banach space and J a functional
defined on X such that

(1) lim‖u‖→+∞ J(u) = +∞ (coercivity condition),

(2) J is sequentially weakly lower semi-continuous.

Then J is lower bounded on X and achieves its lower bound at some point u0.

Definition 1.7. Let X be a real Banach space, J ∈ C1(X, R). If any sequence (un) ⊂ X for
which (J(un)) is bounded in R and J′(un) −→ 0 as n → +∞ in X′ possesses a convergent
subsequence, then we say that J satisfies the Palais–Smale condition (PS condition for brevity).



4 M. Briki, T. Moussaoui and D. O’Regan

Lemma 1.8 (Mountain Pass Theorem, [11, Theorem 2.2], [12, Theorem 3.1]). Let X be a Banach
space, and let J ∈ C1(X, R) satisfy J(0) = 0. Assume that J satisfies the (PS) condition and there
exist positive numbers ρ and α such that

(1) J(u) ≥ α if ‖u‖ = ρ,

(2) there exists u0 ∈ X such that ‖u0‖ > ρ and J(u0) < α.

Then there exists a critical point. It is characterized by

J′(u) = 0, J(u) = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)),

where
Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = u0}.

1.1 Variational setting

Take v ∈ H2
0(0,+∞), and multiply the equation in Problem (1.1) by v and integrate over

(0,+∞), so we get∫ +∞

0

(
u(4)(t)− u′′(t) + u(t)

)
v(t)dt =

∫ +∞

0
f (t, u(t))v(t)dt.

Hence ∫ +∞

0

(
u′′(t)v′′(t) + u′(t)v′(t) + u(t)v(t)

)
dt =

∫ +∞

0
f (t, u(t))v(t)dt.

This leads to the natural concept of a weak solution for Problem (1.1).

Definition 1.9. We say that a function u ∈ H2
0(0,+∞) is a weak solution of Problem (1.1) if

∫ +∞

0

(
u′′(t)v′′(t) + u′(t)v′(t) + u(t)v(t)

)
dt =

∫ +∞

0
f (t, u(t))v(t)dt,

for all v ∈ H2
0(0,+∞).

In order to study Problem (1.1), we consider the functional J : H2
0(0,+∞) −→ R defined

by

J(u) =
1
2
‖u‖2 −

∫ +∞

0
F(t, u(t))dt,

where

F(t, u) =
∫ u

0
f (t, s)ds.

2 Some embedding results

We begin this section by proving some continuous and compact embeddings. Here p and q
(and M1, M2) are as in Section 1.

Lemma 2.1. H2
0(0,+∞) embeds continuously in C1

l,p,q[0,+∞).
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Proof. For u ∈ H2
0(0,+∞), we have

|p(t)u(t)| = |p(+∞)u(+∞)− p(t)u(t)|

=

∣∣∣∣∫ +∞

t
(pu)′(s)ds

∣∣∣∣
≤
∣∣∣∣∫ +∞

t
p′(s)u(s)ds

∣∣∣∣+ ∣∣∣∣∫ +∞

t
p(s)u′(s)ds

∣∣∣∣
≤
(∫ +∞

0
p′2(s)ds

) 1
2
(∫ +∞

0
u2(s)ds

) 1
2

+

(∫ +∞

0
p2(s)ds

) 1
2
(∫ +∞

0
u′2(s)ds

) 1
2

≤ max(‖p′‖L2 , ‖p‖L2)‖u‖
≤ M1‖u‖,

and

|q(t)u′(t)| = |q(+∞)u′(+∞)− q(t)u′(t)|

=

∣∣∣∣∫ +∞

t
(qu′)′(s)ds

∣∣∣∣
≤
∣∣∣∣∫ +∞

t
q′(s)u′(s)ds

∣∣∣∣+ ∣∣∣∣∫ +∞

t
q(s)u′′(s)ds

∣∣∣∣
≤
(∫ +∞

0
q′2(s)ds

) 1
2
(∫ +∞

0
u′ 2(s)ds

) 1
2

+

(∫ +∞

0
q2(s)ds

) 1
2
(∫ +∞

0
u′′2(s)ds

) 1
2

≤ max(‖q′‖L2 , ‖q‖L2)‖u‖
≤ M2‖u‖.

Hence ‖u‖∞,p,q ≤ M‖u‖, with M = max(M1, M2).

The following compactness embedding is an important result.

Lemma 2.2. The embedding H2
0(0,+∞) ↪→ C1

l,p,q[0,+∞) is compact.

Proof. Let D ⊂ H2
0(0,+∞) be a bounded set. Then it is bounded in C1

l,p,q[0,+∞) by Lemma 2.1.
Let R > 0 be such that for all u ∈ D, ‖u‖ ≤ R. We will apply Lemma 1.2.
(a) D is equicontinuous on every compact interval of [0,+∞). Let u ∈ D and t1, t2 ∈ J ⊂
[0,+∞) where J is a compact sub-interval. Using the Cauchy–Schwarz inequality, we have

|p(t1)u(t1)− p(t2)u(t2)| =
∣∣∣∣∫ t1

t2

(pu)′(s)ds
∣∣∣∣

=

∣∣∣∣∫ t1

t2

(
p′(s)u(s) + u′(s)p(s)

)
ds
∣∣∣∣

≤
(∫ t1

t2

p′2(s)ds
) 1

2
(∫ t1

t2

u2(s)ds
) 1

2

+

(∫ t1

t2

p2(s)ds
) 1

2
(∫ t1

t2

u′2(s)ds
) 1

2

≤ max

[(∫ t1

t2

p′2(s)ds
) 1

2

,
(∫ t1

t2

p2(s)ds
) 1

2
]
‖u‖

≤ R max

[(∫ t1

t2

p′2(s)ds
) 1

2

,
(∫ t1

t2

p2(s)ds
) 1

2
]
−→ 0,
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as |t1 − t2| → 0, and

|q(t1)u′(t1)− q(t2)u′(t2)| =
∣∣∣∣∫ t1

t2

(qu′)′(s)ds
∣∣∣∣

=

∣∣∣∣∫ t1

t2

(
q′(s)u′(s) + q(s)u′′(s)

)
ds
∣∣∣∣

≤
(∫ t1

t2

q′2(s)ds
) 1

2
(∫ t1

t2

u′2(s)ds
) 1

2

+

(∫ t1

t2

q2(s)ds
) 1

2
(∫ t1

t2

u′′2(s)ds
) 1

2

≤ max

[(∫ t1

t2

q′2(s)ds
) 1

2

,
(∫ t1

t2

q2(s)ds
) 1

2
]
‖u‖

≤ R max

[(∫ t1

t2

q′2(s)ds
) 1

2

,
(∫ t1

t2

q2(s)ds
) 1

2
]
−→ 0,

as |t1 − t2| → 0.
(b) D is equiconvergent at +∞. For t ∈ [0,+∞) and u ∈ D, using the fact that (pu)(+∞) =

0, (qu′)(+∞) = 0 (note that u(∞) = 0, u′(∞) = 0 and p, q are bounded) and using the Cauchy–
Schwarz inequality, we have

|(pu)(t)− (pu)(+∞)| =
∣∣∣∣∫ +∞

t
(pu)′(s)ds

∣∣∣∣
=

∣∣∣∣∫ +∞

t

(
p′(s)u(s) + u′(s)p(s)

)
ds
∣∣∣∣

≤ max

[(∫ +∞

t
p′2(s)ds

) 1
2

,
(∫ +∞

t
p2(s)ds

) 1
2
]
‖u‖

≤ R max

[(∫ +∞

t
p′2(s)ds

) 1
2

,
(∫ +∞

t
p2(s)ds

) 1
2
]
−→ 0,

as t→ +∞, and

|(qu′)(t)− (qu′)(+∞)| =
∣∣∣∣∫ +∞

t
(qu′)′(s)ds

∣∣∣∣
=

∣∣∣∣∫ +∞

t

(
q′(s)u′(s) + q(s)u′′(s)

)
ds
∣∣∣∣

≤ max

[(∫ +∞

t
q′ 2(s)ds

) 1
2

,
(∫ +∞

t
q2(s)ds

) 1
2
]
‖u‖

≤ R max

[(∫ +∞

t
q′ 2(s)ds

) 1
2

,
(∫ +∞

t
q2(s)ds

) 1
2
]
−→ 0,

as t→ +∞.

Corollary 2.3. C1
l,p,q[0,+∞) embeds continuously in Cl,p[0,+∞) .

Corollary 2.4. The embedding H2
0(0,+∞) ↪→ Cl,p[0,+∞) is continuous and compact.
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3 Existence results

Here p (and M1) are as in Section 1.

Theorem 3.1. Assume that F satisfy the following conditions.

(F1) There exist two constants 1 < α < β < 2 and two functions a, b with a
p α ∈ L1([0,+∞), [0,+∞)),

b
p β ∈ L1([0,+∞), [0,+∞)) such that

|F(t, x)| ≤ a(t)|x|α, ∀(t, x) ∈ [0,+∞)×R, |x| ≤ 1

and

|F(t, x)| ≤ b(t)|x|β, ∀(t, x) ∈ [0,+∞)×R, |x| > 1.

(F2) There exist an open bounded set I ⊂ [0,+∞) and two constants η > 0 and 0 < γ < 2 such that

F(t, x) ≥ η|x|γ, ∀(t, x) ∈ I ×R, |x| ≤ 1.

Then Problem (1.1) has at least one nontrivial weak solution.

Proof.
Claim 1. We first show that J is well defined.

Let
Ω1 = {t ≥ 0, |u(t)| ≤ 1}, Ω2 = {t ≥ 0, |u(t)| > 1}.

Given u ∈ H2
0(0,+∞), it follows from (F1) and Corollary 2.4 that∫ +∞

0
|F(t, u(t))|dt =

∫
Ω1

|F(t, u(t))|dt +
∫

Ω2

|F(t, u(t))|dt

≤
∫

Ω1

a(t)|u(t)|αdt +
∫

Ω2

b(t)|u(t)|βdt

≤
∫

Ω1

a(t)
pα(t)

|p(t)u(t)|αdt +
∫

Ω2

b(t)
pβ(t)

|p(t)u(t)|βdt

≤
∣∣∣∣ a

p α

∣∣∣∣
L1
‖u‖α

∞,p +

∣∣∣∣ b
p β

∣∣∣∣
L1
‖u‖β

∞,p

≤ Mα
1

∣∣∣∣ a
p α

∣∣∣∣
L1
‖u‖α + Mβ

1

∣∣∣∣ b
p β

∣∣∣∣
L1
‖u‖β.

Thus

|J(u)| ≤ 1
2
‖u‖2 + Mα

1

∣∣∣∣ a
p α

∣∣∣∣
L1
‖u‖α + Mβ

1

∣∣∣∣ b
p β

∣∣∣∣
L1
‖u‖β < +∞.

Claim 2. J is coercive.
From (F1) and Corollary 2.4, we have

J(u) =
1
2
‖u‖2 −

∫
Ω1

F(t, u(t))dt−
∫

Ω2

F(t, u(t))dt

≥ 1
2
‖u‖2 −Mα

1

∣∣∣∣ a
p α

∣∣∣∣
L1
‖u‖α −Mβ

1

∣∣∣∣ b
p β

∣∣∣∣
L1
‖u‖β.

(3.1)

Now since 0 < α < β < 2, then (3.1) implies that

lim
‖u‖→+∞

J(u) = +∞.
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Consequently, J is coercive.

Claim 3. J is sequentially weakly lower semi-continuous.
Let (un) be a sequence in H2

0(0,+∞) such that un ⇀ u as n −→ +∞ in H2
0(0,+∞). Then

there exists a constant A > 0 such that ‖un‖ ≤ A, for all n ≥ 0 and ‖u‖ ≤ A. Now (see
Corollary 2.4) (p(t)un(t)) converges to (p(t)u(t)) as n −→ +∞ for t ∈ [0,+∞). Since F is
continuous, we have F(t, un(t)) −→ F(t, u(t)) as n −→ +∞, and using (F1) we have

|F(t, un(t))| ≤ a(t)|un(t)| α + b(t)|un(t)| β

≤ a(t)
p α(t)

|p(t)un(t)| α +
b(t)

p β(t)
|p(t)un(t)| β

≤ a(t)
p α(t)

‖un‖ α
∞,p +

b(t)
p β(t)

‖un‖ β
∞,p

≤ a(t)
p α(t)

M α
1 ‖un‖ α +

b(t)
p β(t)

Mβ
1‖un‖ β

≤ a(t)
p α(t)

M α
1 A α +

b(t)
p β(t)

Mβ
1 A β,

so from the Lebesgue Dominated Convergence Theorem we have

lim
n→+∞

∫ +∞

0
F(t, un(t))dt =

∫ +∞

0
F(t, u(t))dt.

The norm in the reflexive Banach space is sequentially weakly lower semi-continuous, so

lim inf
n→+∞

‖un‖ ≥ ‖u‖.

Thus one has

lim inf
n→+∞

J(un) = lim inf
n→+∞

(
1
2
‖un‖2 −

∫ +∞

0
F(t, un(t))dt

)
≥ 1

2
‖u‖2 −

∫ +∞

0
F(t, u(t))dt = J(u).

Then, J is sequentially weakly lower semi-continuous.
From Lemma 1.6, J has a minimum point u0 which is a critical point of J.

Claim 4. We show that u0 6= 0.
Let u1 ∈ H2

0(0,+∞) \ {0} and |u1(t)| ≤ 1, for all t ∈ I. Then from (F2), we have

J(su1) =
s2

2
‖u1‖2 −

∫ +∞

0
F(t, su1(t))dt

≤ s2

2
‖u1‖2 −

∫
I

η|su1(t)|γdt

≤ s2

2
‖u1‖2 − s γη

∫
I
|u1(t)|γdt, 0 < s < 1.

Since 0 < γ < 2, it follows that J(su1) < 0 for s > 0 small enough. Hence J(u0) < 0, and
therefore u0 is a nontrivial critical point of J.

Finally, it is easy to see that under (F1), the functional J is Gâteaux differentiable and the
Gâteaux derivative at a point u ∈ X is

(J′(u), v) =
∫ +∞

0

(
u′′(t)v′′(t) + u′(t)v′(t) + u(t)v(t)

)
dt−

∫ +∞

0
f (t, u(t))v(t)dt, (3.2)



Fourth-order BVP via critical point theory 9

for all v ∈ H2
0(0,+∞). Therefore u is a weak solution of Problem (1.1).

Theorem 3.2. Assume that f satisfies the following assumptions.

(F3) There exist nonnegative functions ϕ, g such that g ∈ C(R, [0,+∞)) with

| f (t, x)| ≤ ϕ(t)g(x), for all t ∈ [0,+∞) and all x ∈ R,

and for any constant R > 0 there exists a nonnegative function ψR with ϕψR ∈ L1(0,+∞) and

sup
{

g
(

y
p(t)

)
: y ∈ [−R, R]

}
≤ ψR(t) for a.e. t ≥ 0.

(F4)
1

a(t)
F
(
t,

1
p(t)

x
)
= o(|x|2) as x −→ 0

uniformly in t ∈ [0,+∞) for some function a ∈ L1(0,+∞) ∩ C[0,+∞).

(F5) There exists a positive function c1 and a nonnegative function c2 with c1, c2 ∈ L1(0, ∞), and
µ > 2 such that

(a) F(t, x) ≥ c1(t)|x|µ − c2(t), for t ≥ 0, ∀ x ∈ R \ {0},
(b) µF(t, x) ≤ x f (t, x), for t ≥ 0, ∀ x ∈ R.

Then Problem (1.1) has at least one nontrivial weak solution.

Proof. We have J(0) = 0.
Claim 1. J satisfies the (PS) condition.
Assume that (un)n∈N ⊂ H2

0(0,+∞) is a sequence such that (J(un))n∈N is bounded and
J′(un) −→ 0 as n −→ +∞. Then there exists a constant d > 0 such that

|J(un)| ≤ d, ‖J′(un)‖E′ ≤ dµ, ∀n ∈N.

From (F5)(b) we have

2d + 2d‖un‖ ≥ 2J(un)−
2
µ
(J′(un), un)

≥
(

1− 2
µ

)
‖un‖2 + 2

[∫ +∞

0

(
1
µ

un(t) f (t, un(t))− F(t, un(t))
)

dt
]

≥
(

1− 2
µ

)
‖un‖2.

Since µ > 2, then (un)n∈N is bounded in H2
0(0,+∞).

Now, we show that (un) converges strongly to some u in H2
0(0,+∞). Since (un) is bounded

in H2
0(0,+∞), there exists a subsequence of (un) still denoted by (un) such that (un) converges

weakly to some u in H2
0(0,+∞). There exists a constant c > 0 such that ‖un‖ ≤ c. Now (see

Corollary 2.4) (p(t)un(t)) converges to p(t)u(t) on [0,+∞). We have f (t, un(t)) −→ f (t, u(t))
and

| f (t, un(t))| =
∣∣∣∣ f (t, 1

p(t)
p(t)un(t))

∣∣∣∣
≤ ϕ(t)g

(
1

p(t)
p(t)un(t)

)
≤ ϕ(t)ψcM1(t),
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and using the Lebesgue Dominated Convergence Theorem, we have

lim
n→+∞

∫ +∞

0
( f (t, un(t))− f (t, u(t))) (un(t)− u(t)) dt = 0. (3.3)

Since limn→+∞ J′(un) = 0 and (un) converges weakly to some u, we have

lim
n→+∞

〈J′(un)− J′(u), un − u〉 = 0. (3.4)

It follows from (3.2) that

(J′(un)− J′(u), un − u) = ‖un − u‖2 −
∫ +∞

0
( f (t, un(t))− f (t, u(t)))(un(t)− u(t))dt.

Hence limn→+∞ ‖un − u‖ = 0. Thus (un) converges strongly to u in H2
0(0,+∞), so J satis-

fies the (PS) condition.

Claim 2. J satisfies assumption (1) of Lemma 1.8.
Let 0 < ε < 1

|a|L1 M2
1
. From (F4), there exists 0 < δ < 1 such that

∣∣∣ 1
a(t)

F
(
t,

1
p(t)

x
)∣∣∣ ≤ ε

2
|x|2, for t ∈ [0,+∞) and |x| ≤ δ.

Using Corollary 2.4, we have∫ +∞

0
|F(t, u(t))dt| =

∫ +∞

0

∣∣∣∣F(t,
1

p(t)
p(t)u(t)

)
dt
∣∣∣∣

≤
∫ +∞

0

ε

2
|a(t)|p2(t)|u(t)|2dt

≤ ε

2
M2

1|a|L1‖u‖2,

whenever ‖u‖∞,p ≤ δ.
Let 0 < ρ ≤ δ

M1
and α = 1

2 (1− ε|a|L1 M2
1)ρ

2. Then for ‖u‖ = ρ (note ‖u‖∞,p ≤ δ), we have

J(u) =
1
2
‖u‖2 −

∫ +∞

0
F(t, u(t))dt

≥ 1
2
(1− ε|a|L1 M2

1)‖u‖2 = α,

so assumption (1) in Lemma 1.8 is satisfied.

Claim 3. J satisfies assumption (2) of Lemma 1.8.
By (F5)(a) we have for some v0 ∈ H2

0(0,+∞), v0 6= 0,

J(ξv0) =
1
2

ξ2‖v0‖2 −
∫ +∞

0
F(t, ξv0(t))dt

≤ 1
2

ξ2‖v0‖2 − |ξ|µ
∫ +∞

0
c1(t)|v0(t)|µdt +

∫ +∞

0
c2(t)dt.

Now since µ > 2, then for u0 = ξv0, J(u0) ≤ 0, as ξ → +∞, so assumption (2) in Lemma 1.8
is satisfied. From Lemma 1.8, J possesses a critical point which is a nontrivial weak solution
of Problem (1.1).
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As an example of the above theorem, take f (t, x) = 5
2 exp(−t)|x| 12 x. To see this take

c1(t) = exp(−t), c2(t) = 0,

µ =
5
2

, a(t) =
1

(1 + t)2 , p(t) =
1

1 + t
,

ϕ(t) =
5
2

e−t, g(x) = |x| 32 and ψR(t) = (1 + t)
3
2 R

3
2 .
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