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Abstract. In this paper we study an existence result of the quasilinear problem
−div[φ′(|∇u|2)∇u] + a(x)|u|α−2u = |u|γ−2u + |u|β−2u in RN(N ≥ 3), where φ(t) be-
haves like tq/2 for small t and tp/2 for large t, a is a positive potential, 1 < p < q < N,
1 < α ≤ p∗q′/p′ and max {α, q} < γ < β < p∗ = pN/(N − p), with p′ and q′ the
conjugate exponents of p, respectively q. Our main result is the proof of the existence
of a weak solution, based on the mountain pass theorem.
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1 Introduction and preliminary results

In this paper we are interested for a new type of operator, introduced by Azzollini in some
recent papers [4, 5] and by N. Chorfi and V. Rădulescu in [8]. Their studies are based on the
nonhomogeneous operators of the type

div[φ′(|∇u|2)∇u],

where φ ∈ C1(R+, R+) has a different growth near zero and at infinity. Such a type of
behavior occurs when φ(t) = 2[(1 + t)1/2 − 1], which corresponds to the operator

div
(

∇u√
1 + |∇u|2

)
known as the prescribed mean curvature operator or the capillary surface operator.

More precisely, φ(t) behaves like tq/2 for small t and tp/2 for large t, where 1 < p < q < N.
Such behavior occurs, for example, when

φ(t) =
2
p

[(
1 + tq/2

)p/q
− 1
]
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which generates the differential operator

div[(1 + |∇u|q)(p−q)/q |∇u|q−2∇u].

In [8] N. Chorfi and V. Rădulescu approached the quasilinear Schrödinger equation

− div[φ′(|∇u|2)∇u] + a(x)|u|α−2u = f (x, u) in RN (N ≥ 3). (1.1)

Their interest was studying the problem

−∆u + a(x)u = f (x, u) in RN ,

where N ≥ 3, a is a positive potential and f has a subcritical growth, problem studied by
P. Rabinowitz in [15], in the new abstract setting introduced by Azzollini in [4,5] (see also [17]).

The importance of the Schrödinger type equation is obvious. This equation is fundamental
for quantum mechanics, which together with general relativity represents the most useful
current theories about the physical universe.

In 1927, elaborating research of many physicists, Erwin Schrödinger wrote a differential
equation for any quantum waves function, namely

ih̄
∂

∂u
Ψ = ĤΨ,

where h̄ is the Planck constant divided by 2Π, Ψ is the wave function, i is the square root of
minus one and Ĥ is the Hamiltonian operator.

The classical wave equation defines waves in space and the solution is a numerical function
depending on space and time. The same happens with the Schrödinger equation, but in this
case the values of the wave function Ψ are also complex, not just real.

The applications of this equations are numerous, varying from Bose–Einstein condensates
and nonlinear optics, propagation of the electric field in optical fibers, stability of Stokes
waves in water to the behavior of deep water waves and freak waves in the ocean. For more
applications to nonlinear equations with variable or constant exponents we refer [1,7,9,16,18–
20].

In this paper we are interested to study problem (1.1) in the particular case

f (x, u) = |u|γ−2u + |u|β−2u.

More precisely, we consider the quasilinear degenerate problem

− div[φ′(|∇u|2)∇u] + a(x)|u|α−2u = |u|γ−2u + |u|β−2u in RN (N ≥ 3), (1.2)

where a is a positive potential, 1 < p < q < N, 1 < α ≤ p∗q′/p′ and max {α, q} < γ < β <

p∗ = pN/(N − p), with p′ and q′ the conjugate exponents, respectively, of p and q.
Our purpose is to prove, by means of the mountain pass theorem (see [12–14]), that prob-

lem (1.2) admits at last one weak solution.
Now, we define the function space Lp(RN) + Lq(RN) as the completion of C∞

c (RN) in the
norm

‖u‖Lp+Lq := inf
{
‖v‖p + ‖w‖q ; v ∈ Lp(RN), w ∈ Lq(RN), u = v + w

}
. (1.3)

We set ‖u‖p,q = ‖u‖Lp(RN)+Lq(RN).
The property that Lp(RN) + Lq(RN) are Orlicz spaces, as well as others properties of these

spaces, has been proved by M. Badiale, L. Pisani and S. Rolando in [6].
In order to use them throughout this paper, we state the following result that is also found

in [5].
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Proposition 1.1. Let Ω ∈ RN , u ∈ Lp(Ω) + Lq(Ω). We have:

(i) if Ω′ ⊂ Ω is such that |Ω′| < +∞, then u ∈ Lp(Ω′);

(ii) if Ω′ ⊂ Ω is such that u ∈ L∞(Ω′), then u ∈ Lq(Ω′);

(iii) |[|u(x) > 1|]| < +∞;

(iv) u ∈ Lp([|u(x)| > 1]) ∩ Lq([|u(x)| ≤ 1]);

(v) the infimum in (1.3) is attained;

(vi) Lp(Ω) + Lq(Ω) is reflexive and (Lp(Ω) + Lq(Ω))′ = Lp′(Ω) ∩ Lq′(Ω);

(vii) ‖u‖Lp(Ω)+Lq(Ω) ≤ max
{
‖u‖Lp([|u(x)|>1]) , ‖u‖Lq([|u(x)|≤1])

}
;

(viii) if B ∈ Ω, then ‖u‖Lp(Ω)+Lq(Ω) ≤ ‖u‖Lp(B)+Lq(B) + ‖u‖Lp(Ω\B)+Lq(Ω\B).

Finally, we define the function space

X := C∞
c (RN)

‖·‖
,

where

‖u‖ = ‖∇u‖p,q +

(∫
RN

a(x)|u|αdx
)1/α

.

We remark that X is continuously embedded in W defined by Azzollini in [5], where

W := C∞
c (RN)

‖·‖
,

‖u‖ = ‖∇u‖p,q + ‖u‖α .

In the next section we introduce the main hypotheses and we state the basic results of this
paper. The proof of the main result are developed in Section 3.

2 The main results

We assume that a in problem (1.2) is a singular potential satisfying the following hypotheses:

(a1) a ∈ L∞
loc(R

N \ {0});

(a2) ess infRN a > 0;

(a3) limx→0 a(x) = lim|x|→∞ a(x) = +∞.

For example, a(x) = exp(|x|)/|x|, for x ∈ RN \ {0} is such a potential.
In the following, we assume that the function φ, which generates the differential operator

in problem (1.2), has the next properties:

(φ1) φ ∈ C1(R+, R+);

(φ2) φ(0) = 0;



4 I. D. Stîrcu

(φ3) there exists c1 > 0 such that{
c1tp(x)/2 ≤ φ(t) if t ≥ 1,

c1tq(x)/2 ≤ φ(t) if 0 ≤ t ≤ 1;

(φ4) there exists c2 > 0 such that{
φ(t) ≤ c2tp(x)/2 if t ≥ 1,

φ(t) ≤ c2tq(x)/2 if 0 ≤ t ≤ 1;

(φ5) there exists 0 < µ < 1 such that 2tφ′(t) ≤ γµφ(t) for all t ≥ 0;

(φ6) the mapping t 7−→ φ(t2) is strictly convex.

Our first hypothesis which asserts that φ′ approaches 0 ensures us that problem (1.2) is
degenerate and no ellipticity condition is assumed.

We also remark that, because of the presence of the general potential a, the solutions of
problem (1.2) cannot be reduced to radially symmetric solutions, like in [5]. A frequently
used property in [5] by Azzollini was the continuously embedding of the space W in Lp∗(RN),
provided that 1 < p < min {q, N}, 1 < p∗q′/p′ and α ∈ (1, p∗q′/p′). By interpolation, for
every r ∈ [α, p∗], W is continuously embedded in Lr(RN) .

Definition 2.1. A weak solution of problem (1.2) is a function u ∈ X \ {0} such that∫
RN

[
φ′(|∇u|2)(∇u · ∇v) + a(x)|u|α−2uv− |u|γ−2uv− |u|β−2uv

]
dx = 0,

for any v ∈ X.

We define the energy functional I : X → R by

I(u) =
1
2

∫
RN

φ(|∇u|2)dx +
1
α

∫
RN

a(x)|u|αdx− 1
γ

∫
RN
|u|γdx− 1

β

∫
RN
|u|βdx.

Proposition 2.2. The functional I is well-defined on X and I ∈ C1(X, R), with the Gâteaux derivative
given by

I′(u)(v) =
∫

RN

[
φ′(|∇u|2)(∇u · ∇v) + a(x)|u|α−2uv− |u|γ−2uv− |u|β−2uv

]
dx,

for all u, v ∈ X.

This result can be easily ensured by standard arguments and [3, Lemma 2.2].
We notice that our hypotheses imply that

φ(|∇u|2) ≈
{
|∇u|p, if |∇u| >> 1;

|∇u|q, if |∇u| << 1.

Now, we give a version of the mountain pass lemma of A. Ambrosetti and P. Rabinowitz [2]
(see also [8]).
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Lemma 2.3. Let X be a Banach space and assume that I ∈ C1(X, R) satisfies the following geometric
hypotheses:

(a) I(0) = 0

(b) there exist two positive numbers a and r such that I(u) ≥ a for any u ∈ X with ‖u‖ = r;

(c) there exists e ∈ X with ‖e‖ > r such that I(e) < 0.

Let
P := {p ∈ C([0, 1]; X); p(0) = 0, p(1) = e}

and
c := inf

p∈P
sup

t∈[0,1]
I(p(t)).

Then there exists a sequence (un) ⊂ X such that

lim
n→∞

I(un) = c and lim
n→∞

∥∥I′(un)
∥∥

X∗ = 0.

Moreover, if I satisfies the Palais–Smale condition at the level c, then c is a critical value of I.

Finally, the main result of this paper is given by the following theorem.

Theorem 2.4. Suppose that 1 < p < q < N, 1 < α ≤ p∗q′/p′, max {α, q} < γ < β < p∗,
(a1)–(a3) and (φ1)–(φ6) are satisfied. Then problem (1.2) has at last one weak solution.

3 Proof of Theorem 2.4

It is obvious that I(0) = 0.
Now we check (b), the first geometrical condition of the mountain pass lemma, more

exactly the existence of a “mountain” around the origin. Let be u ∈ X, r ∈ (0, 1) a fixed point
and ‖u‖ = r.

Using (φ3), (iv) of Proposition 1.1 and the continuously embeddings of the spaces Lγ(RN)

and Lβ(RN) in Lp∗(RN) we obtain

I(u) ≥ c1

2

∫
[|∇u|≤1]

|∇u|qdx +
c2

2

∫
[|∇u|>1]

|∇u|pdx +
1
α

∫
RN

a(x)|u|αdx

− 1
γ

∫
RN
|u|γdx− 1

β

∫
RN
|u|βdx

≥ C max
{∫

[|∇u|≤1]
|∇u|qdx,

∫
[|∇u|>1]

|∇u|pdx
}
+

1
α

∫
RN

a(x)|u|αdx

− 1
γ

∫
RN
|u|γdx− 1

β

∫
RN
|u|βdx

≥ C ‖∇u‖q
p,q +

1
α

∫
RN

a(x)|u|αdx− c3 ‖u‖γ
p∗ − c4 ‖u‖

β
p∗

≥ C ‖∇u‖q
p,q +

1
α

∫
RN

a(x)|u|αdx− C̃ ‖u‖p∗
p∗

(3.1)

where c3 and c4 are two positive constants.



6 I. D. Stîrcu

Since we set r ∈ (0, 1) and we have the hypothesis that max {α, q} < p∗, we obtain by
relation (3.1) that there exists a > 0 such that

I(u) ≥ a, for every u ∈ X with ‖u‖ = r. (3.2)

Now, we verify (c). We fix u ∈ C∞
c (RN) \ {0} and t > 0. Then, by (φ4), we have

I(tu) ≤ c1

2

∫
[|∇(tu)|≤1]

|∇(tu)|qdx +
c2

2

∫
[|∇(tu)|>1]

|∇(tu)|pdx +
tα

α

∫
RN

a(x)|u|αdx

− tγ

γ

∫
RN
|u|γdx− tβ

β

∫
RN
|u|βdx

≤ C
(

tq
∫

RN
|∇u|qdx + tp

∫
RN
|∇u|pdx

)
+

tα

α

∫
RN

a(x)|u|αdx

− tγ

γ

∫
RN
|u|γdx− tβ

β

∫
RN
|u|βdx.

(3.3)

Taking into account the hypotheses of problem (1.2), relations (3.2) and (3.3), since u is
fixed, we obtain that

lim
t→∞

I(tu) = −∞.

So, there exists t0 > 0 such that I(tu) < 0. Thus, we have checked the second geometrical
hypothesis of the mountain pass lemma, or the existence of a “valley” over the chain of
mountains.

Now, we prove that the corresponding setting is non-degenerate, namely, the associated
min-max value given by Lemma (2.3) is positive.

Let us define
c := inf

p∈P
max
t∈[0,1]

I(p(t)),

where
P := {p ∈ C([0, 1], X); p(0) = 0, p(1) = t0u} .

We notice that
c ≥ I(p(0)) = I(0) = 0,

for all p ∈ P.
We claim that

c > 0. (3.4)

By contradiction, we suppose that c = 0, that is, for all ε > 0 there exists q ∈ P such that

0 ≤ max
t∈[0,1]

I(q(t)) < ε.

If we fix ε < a, where a is given by (3.2), then q(0) = 0 and q(1) = t0u. Therefore,

‖q(0)‖ = 0 and ‖q(1)‖ > r.

Since q is continuous, there exists t1 ∈ (0, 1) such that ‖q(t1)‖ = r, so

‖I(q(t1))‖ = a > ε.

The above inequality is a contradiction, which shows that our claim (3.4) is true.
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By Lemma (2.3), we obtain a Palais–Smale sequence (un) ∈ X for the level c > 0 such that

lim
n→∞

I(un) = c and lim
n→∞

∥∥I′(un)
∥∥

X∗ = 0. (3.5)

Finally, we prove that this sequence (un) is bounded in X. Using relation (3.5), we obtain
that

c + O(1) + o(‖un‖)

= I(un)−
1
γ

I′(un)[un]

=
1
2

∫
RN

φ(|∇un|2)dx +
1
α

∫
RN

a(x)|un|αdx− 1
γ

∫
RN
|un|γdx

− 1
β

∫
RN
|un|βdx− 1

γ

∫
RN

φ′(|∇un|2)|∇un|2dx− 1
γ

∫
RN

a(x)|un|αdx

+
1
γ

∫
RN
|un|γdx +

1
γ

∫
RN
|un|βdx

=
∫

RN

[
1
2

φ(|∇un|2)−
1
γ

φ′(|∇un|2)|∇un|2
]

dx

+

(
1
α
− 1

γ

) ∫
RN

a(x)|un|αdx +

(
1
γ
− 1

β

) ∫
RN
|un|βdx.

(3.6)

By relation (φ5) and hypothesis max {α, q} < γ < β < p∗ we have

c + O(1) + o(‖un‖) = I(un)−
1
γ

I′(un)[un]

≥
∫

RN

[
1
2

φ(|∇un|2)−
1
γ

φ′(|∇un|2)|∇un|2
]

dx

+

(
1
α
− 1

γ

) ∫
RN

a(x)|un|αdx

≥ 1
2

∫
RN

φ(|∇un|2)dx− µ

2

∫
RN

φ(|∇un|2)dx

+

(
1
α
− 1

γ

) ∫
RN

a(x)|un|αdx

=
1− µ

2

∫
RN

φ(|∇un|2)dx +

(
1
α
− 1

γ

) ∫
RN

a(x)|un|αdx

≥ c0

[
min

{
‖∇un‖q

p,q , ‖∇un‖p
p,q

}
+
∫

RN
a(x)|un|αdx

]
,

(3.7)

for all n ∈N, with c0 > 0 arbitrary.
By the above inequality we deduce that (un) is bounded in X.
We know that X is a closed subset of W. Then, by Proposition 2.5 in [5] we deduce that

un ⇀ u0 in X, (3.8)

un → u0 in Lγ(RN), (3.9)

un → u0 in Lβ(RN). (3.10)

Now, we are concerned to prove that u0 is a solution of problem (1.2).
Fix ϕ ∈ C∞

0 (RN) and set Ω := supp(ϕ). We can write

I(u) = A(u)− B(u)
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and for this purpose, we define the energy functionals

A(u) =
1
2

∫
RN

φ(|∇u|2)dx +
1
α

∫
RN

a(x)|u|αdx

and

B(u) =
1
γ

∫
RN
|u|γdx +

1
β

∫
RN
|u|βdx.

Relation (3.5) yelds to
A(un)− B(un)→ c (3.11)

and
A′(un)(ϕ)− B′(un)(ϕ)→ 0 as n→ ∞. (3.12)

By (3.9) and (3.10) we obtain

B(un)→ B(u0) and B′(un)(ϕ)→ B′(u0)(ϕ) as n→ ∞. (3.13)

It follows from (3.12) and (3.13) that

A′(un)(ϕ)→ B′(u0)(ϕ) as n→ ∞ (3.14)

Since A is convex (by (φ6)),

A(un) ≤ A(u0) + A′(un)(un − u0) for every n ∈N. (3.15)

This both (3.14) and (3.8) yields to

lim sup
n→∞

A(un) ≤ A(u0). (3.16)

The functional A is convex and continuous, thus it is lower semicontinuous, so

A(u0) ≤ lim inf
n→∞

A(un). (3.17)

Combining (3.16) and (3.17) we obtain that

A(un)→ A(u0) as n→ ∞.

Making use of the same arguments as in [5, p. 210], we deduce that

∇un → ∇u0 as n→ ∞ in Lp(RN) + Lq(RN)

and ∫
RN

a(x)|un|αdx →
∫

RN
a(x)|u0|αdx as n→ ∞.

We can conclude now that∫
RN

φ′(|∇u0|2)∇u0∇ϕdx +
∫

RN
a(x)|u0|α−2u0ϕdx−

∫
RN
|u0|γ−2u0ϕdx−

∫
RN
|u0|β−2u0ϕdx = 0,

for all ϕ ∈ X, then u0 is a solution of problem (1.2).
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Proof of Theorem 2.4 completed. We have previously shown, by means of mountain pass lemma,
that problem (1.2) has a weak solution. It remains to argue that the solution u0 found above
is nontrivial. So, in order to complete the proof of theorem (2.4), we use some methods
developed in [10] and [11].

Since the secquence (un) satisfies the Palais–Smale condition, relation (3.5) leads to

c
2
≤ I(un)−

1
γ

I′(un)[un]

=
∫

RN

[
φ(|∇un|2)− φ′(|∇un|2)|∇un|2

]
+

(
1
α
− 1

2

) ∫
RN

a(x)|un|αdx

+

(
1
2
− 1

γ

) ∫
RN
|un|γdx +

(
1
2
− 1

β

) ∫
RN
|un|βdx,

(3.18)

for n a positive integer large enough.
By (φ6) we deduce that

φ(t2)− φ(0) ≤ φ′(t2)t2

and applying now (φ2),
φ(t2) ≤ φ′(t2)t2,

which means we can write that

φ(|∇un|2) ≤ φ′(|∇un|2)|∇un|2. (3.19)

From now, we split the proof in two cases. First, we suppose that α ≥ 2. Combining
relations (3.18) and (3.19) we obtain

c
2
≤
(

1
2
− 1

γ

) ∫
RN
|un|γdx +

(
1
2
− 1

β

) ∫
RN
|un|βdx

≤ 1
2

∫
RN
|un|γdx +

1
2

∫
RN
|un|βdx

≤ c3 ‖un‖p∗
p∗ + c4 ‖un‖p∗

p∗

≤ c ‖un‖p∗
p∗ ,

(3.20)

where c3 and c4 are positive constants.
Our aim is to show that u0 6= 0. For this purpose we suppose by contradiction that u0 = 0.

This both relation (3.9) implies that

un → 0 in Lγ(RN), (3.21)

hence,

un → 0 in Lp∗(RN). (3.22)

By (3.20) and (3.22) it follows that c = 0, which is a contradiction.
It remains to study the case α ∈ (0, 2). By (3.18) and (3.19) we obtain that for n large

enough,

c
2
≤ I(un)−

1
γ

I′(un)[un]

≤
(

1
α
− 1

2

) ∫
RN

a(x)|un|αdx +

(
1
2
− 1

γ

) ∫
RN
|un|γdx +

(
1
2
− 1

β

) ∫
RN
|un|βdx

≤
(

1
α
− 1

2

) ∫
RN

a(x)|un|αdx +

(
1
2
− 1

γ

)
c3 ‖un‖p∗

p∗ +

(
1
2
− 1

β

)
c4 ‖un‖p∗

p∗ .

(3.23)
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We argue again by contradiction and assume that u0 = 0. In particular, this implies that

un → 0 in Lα
loc(R

N). (3.24)

Thus, by (3.22), relation (3.23) becomes

c
2
≤
(

1
α
− 1

2

) ∫
RN

a(x)|un|αdx. (3.25)

We consider k a positive integer and define

ω :=
{

x ∈ RN ; 1/k < |x| < k
}

.

Using (3.24) and the continuously embedding of the space Lα(ω, a) in Lα(ω) we obtain that

C0

∫
ω

a(x)|un|αdx ≤ c
2

,

for all n ≥ n0 and k large enough. Thus,

c
2
≤
∫

RN\ω
a(x)|un|αdx

≤ C0

inf|x|≤1/k a(x)

∫
|x|≤1/k

a(x)|un|αdx +
C0

inf|x|≥k a(x)

∫
|x|≥k

a(x)|un|αdx

≤ C0M

[
1

inf|x|≤1/k a(x)
+

1
inf|x|≥k a(x)

]
,

(3.26)

where M = supn

∫
RN a(x)|un|αdx.

If we choose k large enough and take into account hypothesis (a2), we obtain by (3.26) that
c = 0, a contradiction.

Resuming, we have obtained that u0 is a nontrivial solution of problem (1.2) and this
concludes our proof.
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[12] P. Pucci, V. Rădulescu, The impact of the mountain pass theory in nonlinear analysis: a
mathematical survey, Boll. Unione Mat. Ital. (3) 9(2010), 543–582. MR2742781

[13] P. Pucci, J. Serrin, Extensions of the mountain pass theorem, J. Funct. Anal. 59(1984),
185–210. MR0766489; url

[14] P. Pucci, J. Serrin, A mountain pass theorem, J. Differential Equations 60(1985), 142–149.
MR0808262; url

[15] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys.
43(1992), 270–291. MR1162728; url
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