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Abstract. We study the regularity conditions for a weak solution to 3D MHD equations
in a whole space R3, based on the papers [C. He, Y. Wang, J. Differential Equations
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1 Introduction

We study the following 3D Hall-MHD equations:

(1.1)


ut −4u + (u · ∇)u− (b · ∇)b +∇π = 0,

bt −4b + (u · ∇)b− (b · ∇)u = 0,

div u = 0, div b = 0,

in QT := R3 × [0, T),

where u : QT → R3 is the flow velocity vector, b : QT → R3 is the magnetic vector and π =

p + |b|2
2 : QT → R is the total pressure. We consider the initial value problem of (1.1), which

requires initial conditions

(1.2) u(x, 0) = u0(x) and b(x, 0) = b0(x), x ∈ R3

The initial conditions satisfy the compatibility condition, i.e.

∇ · u0(x) = 0, and ∇ · b0(x) = 0.

The notion of weak solutions will be introduced in Definition 2.2 of Section 2.
The MHD equations describe the motions of the interactions of electrically conducting

fluid flows and the electromagnetic forces, e.g., plasma and liquid metals (see e.g., [3]).
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Definition 1.1. A weak solution pair (u, b) of the 3D MHD equations (1.1)–(1.2) is regular in
QT provided that ‖u‖L∞(QT) + ‖b‖L∞(QT) < ∞.

It is well-known that global weak solutions for MHD exist in finite energy space (see [4])
and classical solutions can exist locally in time in R3. In other words, the weak solutions exist
globally in time (see [4]), however, as shown in [14], if weak solutions (u, b) are fulfilled in
L∞(0, T; H1(R3)), they become regular.

In particular, for the regularity issue, lots of contributions have been made so far (see e.g.
[1, 5–8, 18, 19]).

We list only some results relevant to our concerns. In view of the regularity conditions in
Lorentz space, He and Wang proved in [9] that a weak solution pair (u, b) become regular
in the presence of a certain type of the integral conditions, typically referred to as Serrin’s
condition, namely,

u ∈ Lq,∞(0, T; Lp,∞(R3)) with 3/p + 2/q ≤ 1, 3 < p ≤ ∞,

or
∇u ∈ Lq,∞(0, T; Lp,∞(R3)) with 3/p + 2/q ≤ 2,

3
2
< p ≤ ∞.

On the other hand, Wang proved in [17] that a weak solution pair (u, b) become regular if u
satisfies

u ∈ L2(0, T; BMO(R3).

Our study is motivated by these viewpoints, we obtain the regularity conditions for a weak
solution to 3D MHD equations (1.1)–(1.2) in a whole space. Our proof is based on a priori
estimate for the gradient of the velocity field. In the argument of proof, the pressure term is
vanished due to the divergence structure of u and b.

Our main results reads as follows.

Theorem 1.2. Suppose that (u, b) be a weak solution of 3D MHD equations (1.1)–(1.2) with initial
condition u0, b0 ∈ H1(Ω). If (u, b) satisfies

∇u ∈ Lq((0, T); Lp,∞(R3)),
3
p
+

2
q
= 2,

3
2
< p ≤ ∞,

then (u, b) is regular in QT.

Remark 1.3. Motivated by the work of He and Wang [9], we obtain weak type regularity
condition with respect to the space variables only for the gradient of the velocity field. Sub-
stituting a priori estimate for the heat kernel method in [9], we can obtain the desired result.

Remark 1.4. We do not yet obtain the result in [2, 12].

Theorem 1.5. Suppose that (u, b) be a weak solution of 3D MHD equations (1.1)–(1.2) with initial
condition u0, b0 ∈ H1(Ω). If (u, b) satisfies one of the following two conditions:

a.
∫ T

0
‖∇u‖BMO(R3) dt < ∞,

b.
∫ T

0
‖∇u‖2

BMO−1(R3)
+ ‖∇b‖2

BMO−1(R3)
dt < ∞.

then (u, b) is regular in QT.
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Remark 1.6. This result is improved the work of He and Wang [9] with respect to the gradient
of the velocity field. Moreover, using the estimate in [16, Lemma A.5], we obtain BMO−1(R3)-
regularity condition.

This paper is organized as follows: in Section 2 we recall the notion of weak solutions and
review some known results. In Section 3, we present the proofs of the Theorem 1.5.

2 Preliminaries

In this section we collect notations and definitions used throughout this paper. We also recall
some lemmas, which are useful to our analysis. For 1 ≤ q ≤ ∞, Wk,q(R3) indicates the usual
Sobolev space with standard norm ‖·‖k,q, i.e.

Wk,q(R3) = {u ∈ Lq(R3) : Dαu ∈ Lq(R3), 0 ≤ |α| ≤ k}.

In case that q = 2, we write Wk,q(R3) as Hk(R3). All generic constants will be denoted by C,
which may vary from line to line.

2.1 BMO and Lorentz spaces

The John–Nirenberg space or the space of the Bounded Mean Oscillation (in short BMO space)
[10] consists of all functions f which are integrable on every ball BR(x) ⊂ R3 and satisfy:

‖ f ‖2
BMO = sup

x∈R3
sup
x∈R

1
B(x, R)

∫
B(x,R)

| f (y)− fBR(y)| dy < ∞.

Here, fBR denote for the average of f over all ball BR(x) in R3. It will be convenient to define
BMO in terms of its dual space, H1. On the other hand, following [11] let w be the solution to
the heat equation wt − ∆w = 0 with initial data v. Then

‖v‖2
BMO = sup

x,R

1
B(x, R)

∫
B(x,R)

∫ R2

0
|w|2 dt dy,

and define the space BMO−1-norms by

‖v‖2
BMO−1 = sup

x,R

1
B(x, R)

∫
B(x,R)

∫ R2

0
|∇w|2 dt dy.

We note that suppose that u be a tempered distribution. Then u ∈ BMO−1 if and only if there
exist f i ∈ BMO with u = ∑ ∂i f i in [11, Theorem 1].

Let m(ϕ, t) be the Lebesgue measure of the set {x ∈ R3 : |ϕ(x)| > t}, i.e.

m(ϕ, t) := m{x ∈ R3 : |ϕ(x)| > t}.

We consider the Lorentz space Lp,q(R3) with 1 ≤ p, q ≤ ∞ with the norm [15]

‖ϕ‖Lp,q(R3) =


( ∫ ∞

0
tq(m(ϕ, t))q/p dt

t

)1/q

< ∞, for 1 ≤ q < ∞,

sup
t≥0

{
t(m(ϕ, t))

1
p
}
< ∞, for q = ∞.
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In particular, in the case of bounded domains Ω, the Lorentz space Lp,∞(R3) is also called
weak Lp(Ω) space with the norm, which is equivalent to the norm

‖ f ‖Lq,∞(Ω) = sup
0<|Ω|<∞

|Ω|1/q−1
∫

Ω
| f (x)| dx.

Following [15], the Lorentz space Lp,q(R3) may be defined by real interpolation methods

Lp,q(R3) = (Lp1(R3), Lp2(R3))α,q, (2.1)

with
1
p
=

1− α

p1
+

α

p2
, 1 ≤ p1 < p < p2 ≤ ∞.

From the interpolation method above, we note that

L
2p

p−1 ,2(R3) =
(

L2(R3), L6(R3)
)

3
2p ,2

.

We also need the Hölder inequality in Lorentz spaces (see [13] for a proof).

Lemma 2.1. Assume 1 ≤ p1, p2 ≤ ∞, 1 ≤ q1, q2 ≤ ∞ and u ∈ Lp1,q1(R3), v ∈ Lp2,q2(R3). Then
uv ∈ Lp3,q3(R3) with 1

p3
= 1

p1
+ 1

p2
and 1

q3
≤ 1

q1
+ 1

q2
, and the inequality

‖uv‖Lp3,q3 (R3) ≤ C‖u‖Lp1,q1 (R3)‖v‖Lp2,q2 (R3)

is valid.

We recall first the definition of weak solutions.

Definition 2.2 (Weak solutions). Let u0, b0 ∈ L2
σ(R

3). We say that (u, b) is a weak solution of
(1.1) if u and b satisfy the following:

(i) u ∈ L∞([0, T); L2(R3))∩ L2([0, T); H1(R3)), b ∈ L∞([0, T); L2(R3))∩ L2([0, T); H1(R3)).

(ii) (u, b) satisfies (1.1) in the sense of distribution; that is

∫ T

0

∫
R3

(
∂φ

∂t
+ ∆φ + (u · ∇)φ

)
u dx dt +

∫
R3

u0φ(x, 0) dx =
∫ T

0

∫
R3
(b · ∇)φ b dx dt,

∫ T

0

∫
R3

(
∂φ

∂t
+ ∆φ + (u · ∇)φ

)
b dx dt +

∫
R3

b0φ(x, 0) dx

=
∫ T

0

∫
R3

(b · ∇)φ u dx dt + γ
∫ T

0

∫
R3
(∇× b)× b · (∇× φ) dx dt,

for all φ ∈ C∞
0 (R3 × [0, T)) with div φ = 0, and∫

R3
u · ∇ψ dx = 0,

∫
R3

b · ∇ψ dx = 0,

for every ψ ∈ C∞
0 (R3).
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3 Proofs of the theorems

Proof of Theorem 1.2.
Testing −∆u and −∆b to the fluid equation and by the magnetic equation of (1.1), respec-

tively, using the integrating by parts, integrating on domain, we have

1
2

d
dt
(‖∇u(τ)‖2

L2(R3) + ‖∇b(τ)‖2
L2(R3)) +

∫
R3
(|∆u|2 + |∆b|2) dx

≤ −
∫

R3
∇[(u · ∇)u] : ∇u dx +

∫
R3
∇[(b · ∇)b] : ∇u dx

−
∫

R3
∇[(u · ∇)b] · ∇b dx +

∫
R3
∇[(b · ∇)u] : ∇b dx

=: I1 + I2 + I3 + I4.

(3.1)

We estimate separately the terms in the right hand side of (3.1). The first term I1 is computed
as follows:

I1 =
∫

R2
(∇u · ∇)u : ∇u ≤ ‖∇u‖3

L3 ,

where the divergence free condition of u is used.
On the other hand, we observe that

I2 + I4 =
∫

R2
(∇b · ∇)b · ∇u dx +

∫
R2
(∇b · ∇)u · ∇b dx.

Indeed,∫
(b · ∇)∇b · ∇u dx +

∫
(b · ∇)∇u · ∇b dx

=
3

∑
j=1

∫
bj

(
∂∇b
∂xj
∇u dx +

∂∇u
∂xj
∇b
)

dx = −
3

∑
j=1

∫
bj

(
∂(∇b∇u)

∂xj

)
dx = 0,

where we use the product rule and div b = 0. Summing up the terms I1–I4, we have

1
2

d
dt
(‖∇u(τ)‖2

L2 + ‖∇b(τ)‖2
L2) +

∫
R3
(|∆u|2 + |∆b|2) dx

≤
∫

R2
|∇u|3 dx−

∫
R2
(∇b · ∇)b · ∇u dx

−
∫

R2
(∇b · ∇)u · ∇b dx−

∫
R3
∇[(u · ∇)b] · ∇b dx.

(3.2)

First of all, using the interpolation (2.1), Lemma 2.1, Hölder and Young’s inequalities, we
estimate the second term as follows:∫

R3
|∇b|2|∇u| dx ≤ ‖∇u‖Lq,∞‖|∇b|2‖

L
q

q−1 ,1

= ‖∇u‖Lq,∞‖∇b‖2

L
2q

q−1 ,1

≤ C‖∇u‖Lq,∞‖∇b‖2θ
L2‖∇2b‖2(1−θ)

L2

≤ C‖∇u‖
2q

2q−3
Lq,∞ ‖∇b‖2

L2 +
1
16
‖∇2b‖2

L2 ,

where θ = 1− 3
2q . Similarly, we have∫

R3
|∇u|3 dx ≤ C‖∇u‖

2q
2q−3
Lq,∞ ‖∇u‖2

L2 +
1
16
‖∇2u‖2

L2 .
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Using the estimates above, (3.1) becomes

1
2

d
dt
(‖∇u‖2

L2 + ‖∇b‖2
L2) +

3
4

∫
(|∇2u|2 + |∇2b|2) dx ≤ C‖∇u‖

2q
2q−3
Lq,∞ (‖∇u‖2

L2 + ‖∇b‖2
L2). (3.3)

Under the given condition, we apply Gronwall’s inequality to estimate (3.3)

sup
0<τ≤T

(‖∇u(τ)‖2
L2 + ‖∇b(τ)‖2

L2) +
∫ T

0

∫
(|∇2u|2 + |∇2b|2) dx dt

≤ C(‖∇u(0)‖2
L2 + ‖∇b(0)‖2

L2).

Proof of Theorem 1.5. In this proof, we only need to estimate the convection terms in the
previous proof as follows

a. ∫
R3
|∇b|2|∇u| dx ≤ ‖∇u‖BMO‖|∇b|2‖H1

≤ ‖∇u‖BMO‖∇b‖L2‖∇b‖L2

= ‖∇u‖BMO‖∇b‖2
L2 .

Similarly, we obtain ∫
R3
|∇u|3 dx ≤ C‖∇u‖BMO‖∇u‖2

L2 .

Using the estimates above, (3.1) becomes

d
dt
(‖∇u‖2

L2 + ‖∇b‖2
L2) +

∫
(|∇2u|2 + |∇2b|2) dx

≤ C‖∇u‖BMO(‖∇u‖2
L2 + ‖∇b‖2

L2). (3.4)

b. Following [16, Lemma A.5], we note that

‖u‖2
L4 = ‖uu‖L2 ≤ C‖∇u‖L2‖u‖BMO−1 .

Using this estimate, we have∫
R3
|∇b|2|∇u| dx ≤ ‖∇u‖L2‖∇b‖2

L4

≤ C‖∇u‖L2‖∇2b‖L2‖∇b‖BMO−1

≤ C‖∇u‖2
L2‖∇b‖2

BMO−1 +
1
8
‖∇2b‖2

L2 .

Similarly, we obtain∫
R3
|∇u|3dx ≤ C‖∇u‖2

L2‖∇u‖2
BMO−1 +

1
8
‖∇2u‖2

L2 .

Using the estimates above, (3.1) becomes

d
dt
(‖∇u‖2

L2 + ‖∇b‖2
L2) +

∫
(|∇2u|2 + |∇2b|2) dx

≤ C(‖∇u‖2
BMO−1 + ‖∇b‖2

BMO−1)(‖∇u‖2
L2 + ‖∇b‖2

L2). (3.5)
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So then, we apply Gronwall’s inequality to estimates (3.4) and (3.5) to find

sup
0<τ≤T

(‖∇u(τ)‖2
L2 + ‖∇b(τ)‖2

L2) +
∫ T

0

∫
(|∇2u|2 + |∇2b|2) dx dt ≤ C.
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