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Abstract. In this paper we consider a class of delay differential equations of the form
ẋ(t) = α(t)h(x(t− τ), x(t− σ))− β(t) f (x(t)), where h is a mixed monotone function.
Sufficient conditions are presented for the permanence of the positive solutions. Our
results give also lower and upper estimates of the limit inferior and the limit superior of
the solutions via a special solution of an associated nonlinear system of algebraic equa-
tions. The results are generated to a more general class of delay differential equations
with mixed monotonicity.
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1 Introduction

In this manuscript we study persistence and permanence (see definitions in Section 2) of the
scalar delay equation

ẋ(t) = α(t)h(x(t− τ), x(t− σ))− β(t) f (x(t)), t ≥ 0, (1.1)

where we assume that h : R+ ×R+ → R+ is a mixed monotone function, i.e., h is monotone
increasing in its first argument, and it is monotone decreasing in its second argument. Here
and later R+ denotes the set of nonnegative reals.

Equation (1.1) is a special case of a more general scalar equation

ẋ(t) = r(t)
(

g(t, xt)− h(x(t))
)
, t ≥ 0, (1.2)

where xt(θ) = x(t + θ), −δ ≤ θ ≤ 0 is the segment function. Equation (1.2) can be considered
as a population model equation with delay in the birth term r(t)g(t, xt), and no delay in the

BCorresponding author. Email: hartung.ferenc@uni-pannon.hu

https://doi.org/10.14232/ejqtde.2018.1.53
https://www.math.u-szeged.hu/ejqtde/
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self-inhibition term r(t)h(x(t)). The presence of time delays in the birth term of a population
model was explained, e.g., in [5, 7, 11, 19–23]. The persistence and permanence of (1.2) was
studied in [13] under conditions which do not include mixed monotone functions in the birth
term. Recently, persistence of the equation

ẋ(t) =
n

∑
k=1

αk(t)x(t− τk(t))− β(t)x2(t), t ≥ 0, (1.3)

was proved in [2] and [8] under the assumption that the coefficients αk and β are bounded
below and above by positive constants. Note that this assumption was not needed in [13],
and nor we will use it in this manuscript. Persistence and permanence of classes of nonlinear
delay systems was investigated, e.g., in [9, 10, 15].

Delay differential equations with mixed monotone functions in the delay term were stud-
ied, e.g., in [3, 4, 12, 16, 17]. For such equations, persistence and permanence of solutions of
a class of nonlinear differential equations with multiple delays were first studied in [3]. Our
manuscript extends the results of [13] for the case when the birth term in the population
model contains a mixed monotone function. We note that the class of equations determined
by the conditions used in [3] and this paper are different, since, e.g., one of the conditions of
[3] assumes that the term f in (1.1) should be estimated below and after by linear functions,
and in our paper we study cases when the nonlinearity of f can be of higher order.

The structure of the paper is the following. In Section 2 we formulate our main results
related to equation (1.1). Theorem 2.4 below presents sufficient conditions implying the per-
manence of equation (1.1), and also, we give a method how to find the lower and upper esti-
mate of the limit inferior and limit superior of the solutions. We extend this result to a more
general scalar equation with multiple delays in Theorem 2.6. Section 3 contains applications
of the main results. The proofs of the main results are presented in Section 4.

2 Main results

Consider the scalar nonlinear delay equation

ẋ(t) = α(t)h(x(t− τ), x(t− σ))− β(t) f (x(t)), t ≥ 0, (2.1)

with the associated initial condition

x(t) = ϕ(t), −δ ≤ t ≤ 0. (2.2)

Let τ, σ ≥ 0 and δ := max{τ, σ} > 0 be fixed, and C := C([−δ, 0], R), C+ := {ψ ∈
C([−δ, 0], R+) : ψ(0) > 0}.

In the following, we state our conditions which will be needed in later results:

(H1) α, β ∈ C(R+, R+) with β(t) > 0 for t > 0,
∫ ∞

0 β(s)ds = ∞ and

0 < inf
t>0

α(t)
β(t)

≤ sup
t>0

α(t)
β(t)

< ∞; (2.3)

(H2) h ∈ C(R+ ×R+, R+) with h(x, y) > 0 for x > 0, y ≥ 0, and h(x1, y1) ≤ h(x2, y2) for
x1, x2, y1, y2 ∈ R+ with x1 ≤ x2, y1 ≥ y2, i.e., h is a mixed monotone function;
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(H3) f ∈ C(R+, R+) satisfies 0 = f (0) < f (x1) < f (x2) for 0 < x1 < x2,

lim
x→0+

f (x)
h(x, y)

= 0, for all fixed y ≥ 0, (2.4)

and

lim
x→∞

f (x)
h(x, y)

= ∞, for all fixed y ≥ 0; (2.5)

(H4) f (x)
h(x,y) is strictly monotone increasing in x for a fixed y ≥ 0, and it is strictly monotone
increasing in y for a fixed x > 0, and

lim
y→∞

f (x)
h(x, y)

= ∞ for all fixed x > 0. (2.6)

Note that our assumptions imply the existence of a solution of the initial value problem
(IVP) (2.1)–(2.2) for any ϕ ∈ C+, but the solution may not be unique. Any fixed solution
corresponding to the initial function will be denoted by x(ϕ)(t). Lemma 2.3 below will imply
that any solution x(ϕ) is defined on R+ under the conditions (H1)–(H3).

We say that equation (2.1) is persistent if for ϕ ∈ C+ any solution x(t) = x(ϕ)(t) of the IVP
(2.1)–(2.2) satisfies

lim inf
t→∞

x(t) > 0.

Equation (2.1) is permanent if there exist constants 0 < m ≤ M such that

m ≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤ M

for any ϕ ∈ C+ and for any corresponding solution x(t) = x(ϕ)(t) of the IVP (2.1)–(2.2). Note
that sometimes this property is called in the literature as uniform permanence.

Our first result shows that assumptions (H1) and (H2) imply that all solutions correspond-
ing to an initial function ϕ ∈ C+ remain positive for t > 0.

Lemma 2.1. Assume that α, β satisfy (H1), h satisfies (H2) and f ∈ C(R+, R+) satisfies 0 = f (0) <
f (x1) < f (x2) for 0 < x1 < x2. Then, for any ϕ ∈ C+, we have that x(ϕ)(t) > 0 for t ∈ R+.

In the proof of the next lemma and in our main theorem we need to solve a system of two
nonlinear algebraic equations of the form

g(x, y) = m (2.7)

g(y, x) = m, (2.8)

where m > 0, m > 0, g ∈ C(R+ ×R+, R+). We say that (x, y) is a positive solution of the
system (2.7)–(2.8) if x > 0 and y > 0. A pair of positive numbers (x∗, y∗) is called a dominant
positive solution of the system (2.7)–(2.8) if (x∗, y∗) is a positive solution, and it satisfies x∗ ≤ x
and y∗ ≥ y for any positive solutions (x, y) of the system (2.7)–(2.8).

The next lemma gives conditions under which the algebraic system (2.7)–(2.8) has a posi-
tive solution, and also shows the existence of a unique dominant positive solution. Also, we
investigate solvability of a related system of inequalities.
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Lemma 2.2. Suppose m > 0, m > 0, g ∈ C(R+ ×R+, R+) is strictly monotone increasing in
x and y, i.e., for any fixed x ≥ 0 and y ≥ 0 the functions g(x, ·) and g(·, y) are strictly monotone
increasing. Moreover, assume that g satisfies

g(0, y) = 0 for all fixed y ≥ 0, (2.9)

lim
x→∞

g(x, y) = ∞ for all fixed y ≥ 0, (2.10)

and

lim
y→∞

g(x, y) = ∞ for all fixed x > 0. (2.11)

Then

(i) the system (2.7)–(2.8) has at least one positive solution, and it has a dominant positive solution.

(ii) The system of inequalities

g(x, y) ≥ m (2.12)

g(y, x) ≤ m (2.13)

has infinitely many positive solutions (x, y), i.e., solutions with x > 0 and y > 0. In addition,
for any M > 0 and ε > 0 the system (2.12)–(2.13) has a positive solution (x, y) satisfying
x ≥ M and y ≤ ε.

Moreover, for any positive solution (x, y) of the system of inequalities (2.12)–(2.13) it follows

x ≥ x∗ and y ≤ y∗,

where (x∗, y∗) is the dominant positive solution of the system (2.7)–(2.8).

Our next results shows that equation (2.1) is persistent under our conditions.

Lemma 2.3. Assume that (H1)–(H3) are satisfied. Then, for any ϕ ∈ C+, any solution x(ϕ)(t) of the
IVP (2.1)–(2.2) satisfies

inf
t≥0

x(ϕ)(t) > 0 (2.14)

and
sup
t≥0

x(ϕ)(t) < ∞. (2.15)

We need the following notations in the next theorem:

m := lim inf
t→∞

α(t)
β(t)

> 0, m := lim sup
t→∞

α(t)
β(t)

< ∞. (2.16)

Now we are ready to formulate our main result, which claims that equation (2.1) is per-
sistent under our conditions. We refer to [16] and [17] for related results for delay equations
with a single delay in the mixed monotone term and a linear function f .

Theorem 2.4. Assume that (H1)–(H4) are satisfied. Let m and m be defined by (2.16). Then for any
ϕ ∈ C+, any solution x(t) = x(ϕ)(t) of the IVP (2.1)–(2.2) satisfies

x∗ ≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤ x∗, (2.17)

where (x∗, x∗) is the dominant positive solution of the algebraic system

f (x) = mh(x, y) (2.18)

f (y) = mh(y, x). (2.19)
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The next result claims that if, in addition to the conditions of Theorem 2.4, we assume that
limt→∞

α(t)
β(t) exists, then all positive solutions converge to the same limit.

Corollary 2.5. Assume that (H1)–(H4) are satisfied. Moreover, suppose that the limit

m := lim
t→∞

α(t)
β(t)

> 0 (2.20)

exists and the algebraic system

f (x) = mh(x, y) (2.21)

f (y) = mh(y, x) (2.22)

has a unique positive solution. Then for any ϕ ∈ C+, any solution x(t) = x(ϕ)(t) of the IVP
(2.1)–(2.2) satisfies

lim
t→∞

x(t) = x∗, (2.23)

where x∗ is the unique positive solution of the algebraic equation

f (x) = mh(x, x). (2.24)

Note that it is an interesting open question whether the statement remains true if the
algebraic system (2.21)–(2.22) has several positive solutions.

Our results can be extended to equations of the form

ẋ(t) = H(t, x(t− τ1), . . . , x(t− τk), x(t− σ1), . . . , x(t− σ`))− F(t, x(t)), t ≥ 0. (2.25)

Here τ1, . . . , τk, σ1, . . . , σ` ≥ 0, and δ := max{τ1, . . . , τk, σ1, . . . , σ`} > 0. We assume that

(H0) H ∈ C(Rk+`+1
+ , R+), F ∈ C(R2

+, R+), and there exist functions H0 ∈ C(Rk+`
+ , R+),

f ∈ C(R+, R+), α1, α2, β1, β2 ∈ C(R+, R+) such that

α1(t)H0(u1, . . . , uk, v1, . . . , v`) ≤ H(t, u1, . . . , uk, v1, . . . , v`)

≤ α2(t)H0(u1, . . . , uk, v1, . . . , v`)
(2.26)

for all t, u1, . . . , uk, v1, . . . , v` ∈ R+, and

β1(t) f (u) ≤ F(t, u) ≤ β2(t) f (u), t, u ∈ R+. (2.27)

(H2*) H0(u1, . . . , uk, v1, . . . , v`) > 0 for u1, . . . , uk > 0 and v1, . . . , v` ≥ 0, and the function
H0(u1, . . . , uk, v1, . . . , v`) is monotone increasing in the variables u1, . . . , uk, and it is
monotone decreasing in the variables v1, . . . , v`.

We define the function
h(u, v) := H0(u, . . . , u, v, . . . , v). (2.28)

Then the following result is an easy consequence of the proof of the main Theorem 2.4.

Theorem 2.6. Suppose (H0) holds, the functions α1, α2, β1 and β2 defined in (H0) satisfy (H1) with
α = αi and β = β j (i = 1, 2, j = 1, 2), the function H0 defined in (H0) satisfies (H2*), the functions f
defined in (H0) and h defined by (2.28) satisfy (H3) and (H4). Let

m := lim inf
t→∞

α1(t)
β2(t)

> 0, m := lim sup
t→∞

α2(t)
β1(t)

< ∞. (2.29)

Then for any ϕ ∈ C+, any solution x(t) = x(ϕ)(t) of the IVP (2.25) and (2.2) satisfies

x∗ ≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤ x∗, (2.30)

where (x∗, x∗) is the dominant positive solution of the algebraic system (2.18)–(2.19).
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3 Applications and examples

In this section, we give some applications of our main results. We present two equations with
multiple delays and mixed monotonicity. In the first model the associated nonlinear system of
algebraic equations has a unique positive solution. In the second model, depending on some
system parameters, the associated algebraic system has one, two or three positive solutions.
We also present numerical examples to test the accuracy of the obtained estimates for the limit
inferior and limit superior of the solutions.

First, we consider the nonlinear delay differential equation:

ẋ(t) = α(t)
γ1 + γ2x(t− τ)

γ3 + γ4x(t− σ)
− β(t)xp(t), t ≥ 0, (3.1)

with the initial condition
x(t) = ϕ(t), −δ ≤ t ≤ 0, (3.2)

where δ := max{τ, σ} > 0 and ϕ ∈ C+.
We show that, under natural conditions, Theorem 2.4 can be applied to prove the bound-

edness of the positive solutions. Equation (3.1) can be written in the form (2.1) with h(x, y) :=
γ1+γ2x
γ3+γ4y and f (x) := xp. We suppose the functions α and β satisfy (H1). We assume γ1 ≥
0, γ2 > 0, γ3 > 0 and γ4 > 0. Then h satisfies (H2). We check that all conditions of Theo-
rem 2.4 are satisfied for equation (3.1). Our assumptions shows that condition (H1) is satisfied.
The function h(x, y) = γ1+γ2x

γ3+γ4y clearly satisfies condition (H2). Suppose p > 1. For condition
(H3), we have f (0) = 0 and f is strictly monotone increasing. Since

lim
x→0+

f (x)
h(x, y)

= lim
x→0+

xp γ3 + γ4y
γ1 + γ2x

= 0 for all fixed y ≥ 0,

lim
x→∞

f (x)
h(x, y)

= lim
x→∞

xp γ3 + γ4y
γ1 + γ2x

= ∞ for all fixed y ≥ 0,

and

lim
y→∞

f (x)
h(x, y)

= lim
y→∞

xp γ3 + γ4y
γ1 + γ2x

= ∞ for all fixed x > 0.

Then (2.4), (2.5) and (2.6) are satisfied. It is clear that f (x)
h(x,y) is strictly monotone increasing in x

for a fixed y ≥ 0 and is strictly monotone increasing in y for a fixed x > 0. Thus all conditions
of Theorem 2.4 are satisfied for equation (3.1). The associated algebraic system (2.18)–(2.19)
has the form

xp = m
γ1 + γ2x
γ3 + γ4y

(3.3)

yp = m
γ1 + γ2y
γ3 + γ4x

. (3.4)

An application of Lemma 2.2 with g(x, y) = xp γ3+γ4y
γ1+γ2x gives immediately the existence of the

dominant positive solution of the system (3.3)–(3.4) if p > 1, γ1 ≥ 0, γ2 > 0, γ3 > 0, γ4 > 0,
m > 0 and m > 0. In the next lemma we prove that if p > 2, then the positive solution of the
system (3.3)–(3.4) is unique.

Lemma 3.1. Assume that p > 2, γ1 ≥ 0, γ2 > 0, γ3 > 0, γ4 > 0, m > 0 and m > 0. Then the
system (3.3)–(3.4) has a unique positive solution (x∗, y∗).
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Proof. If (x, y) satisfies (3.3) and (3.4), then

xp

yp = µ
γ1 + γ2x
γ3 + γ4y

γ3 + γ4x
γ1 + γ2y

,

where µ := m
m . Thus

(γ1 + γ2y)(γ3 + γ4y)
yp = µ

(γ1 + γ2x)(γ3 + γ4x)
xp . (3.5)

Define the function ω : R+ → R+ by ω(u) := γ1γ3u−p + (γ1γ4 + γ2γ3)u1−p + γ2γ4u2−p. Then
ω is strictly decreasing, and we can see that limu→0+ ω(u) = ∞ and limu→∞ ω(u) = 0. Thus ω

is invertible and its inverse satisfies limu→0+ ω−1(u) = ∞ and limu→∞ ω−1(u) = 0. From (3.5),
we get

ω(y) = µω(x)

or equivalently
y = ω−1(µω(x)). (3.6)

Equation (3.3) is equivalent to

xp(γ3 + γ4y) = m(γ1 + γ2x),

or
γ3 + γ4ω−1(µω(x)) = γ1mx−p + γ2mx1−p. (3.7)

Since p > 2, then the left hand side of (3.7) is strictly increasing on (0, ∞) with

lim
x→0+

(γ3 + γ4ω−1(µω(x))) = γ3 > 0, lim
x→∞

(γ3 + γ4ω−1(µω(x))) = ∞,

and also the right hand side of (3.7) is strictly decreasing with

lim
x→∞

(γ1mx−p + γ2mx1−p) = 0, lim
x→0+

(γ1mx−p + γ2mx1−p) = ∞.

We conclude that equation (3.7) has a unique positive solution x∗. Hence the system (3.3)–(3.4)
has a unique positive solution (x∗, y∗), where y∗ is defined by (3.6).

The above discussion and Theorem 2.4 imply the following result for equation (3.1).

Corollary 3.2. Assume the functions α and β satisfy (H1), p > 2, γ1 ≥ 0, γ2 > 0, γ3 > 0 and
γ4 > 0. Then, for any initial function ϕ ∈ C+, the solution x(ϕ)(t) of the IVP (3.1)–(3.2) satisfies

x∗ ≤ lim inf
t→∞

x(ϕ)(t) ≤ lim sup
t→∞

x(ϕ)(t) ≤ x∗,

where (x∗, x∗) is the unique positive solution of the algebraic system (3.3)–(3.4), where m :=
lim inft→∞

α(t)
β(t) and m := lim supt→∞

α(t)
β(t) .

Example 3.3. Consider the differential equation

ẋ(t) =
√

t(2 + cos t)
1 + x(t− 2)
1 + 2x(t− 1)

−
√

tx3(t), t ≥ 0. (3.8)
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Note that the conditions of Corollary 3.2 are satisfied for (3.8). Therefore, the associated
algebraic system

x3 = m
1 + x
1 + 2y

(3.9)

y3 = m
1 + y

1 + 2x
, (3.10)

where m := lim inft→∞
α(t)
β(t) = 1 and m := lim supt→∞

α(t)
β(t) = 3 has a unique positive solution.

We solve the system (3.9)–(3.10) numerically by the fixed point iteration

xk+1 = 3

√
1 + xk

1 + 2yk
(3.11)

yk+1 = 3

√
3(1 + yk)

1 + 2xk
(3.12)

starting from the initial value (x0, y0) = (0, 0). The first 14 terms of this sequence are displayed
in Table 3.1. We can observe that the sequence is convergent, and its limit is equal to (x∗, x∗) ≈
(0.77329, 1.41745). Therefore Corollary 3.2 yields

x∗ ≤ lim inf
t→∞

x(ϕ)(t) ≤ lim sup
t→∞

x(ϕ)(t) ≤ x∗. (3.13)

We plotted the numerical solution of equation (3.8) in Figure 3.1 corresponding to the constant
initial functions ϕ(t) = 0.2, ϕ(t) = 1 and ϕ(t) = 1.8, respectively. The horizontal lines in
Figure 3.1 correspond to the lower and upper bounds 0.77329 and 1.41745, respectively. We
also observe that the difference of any two solutions converges to zero, i.e., the solutions are
asymptotically equivalent. The numerical results demonstrate the theoretical bounds (3.13).

k xk yk

0 0.00000 0.00000
1 1.00000 1.44225
2 0.80149 1.34668
3 0.78717 1.39327
4 0.77859 1.40761
5 0.77539 1.41356
6 0.77412 1.41591
7 0.77362 1.41684
8 0.77342 1.41721
9 0.77334 1.41735
10 0.77331 1.41741
11 0.77330 1.41743
12 0.77329 1.41744
13 0.77329 1.41745
14 0.77329 1.41745

Table 3.1: Fixed point iteration defined by (3.11)–(3.12)
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Figure 3.1: Numerical solution of equation (3.8).

Next, we consider the nonlinear delay differential equation:

ẋ(t) = α(t)x(t− τ)e−γx(t−σ) − β(t)xp(t), t ≥ 0, (3.14)

with the initial condition (3.2).
Equation (3.14) can be written in the form (2.1) with h(x, y) := xe−γy and f (x) := xp. We

assume that α and β satisfy (H1), γ > 0 and p > 1. The function h clearly satisfies condition
(H2). For condition (H3), we have f (0) = 0 and f is strictly monotone increasing. We have

lim
x→0+

f (x)
h(x, y)

= lim
x→0+

xp

xe−γy = lim
x→0+

xp−1eγy = 0 for all fixed y ≥ 0,

lim
x→∞

f (x)
h(x, y)

= lim
x→∞

xp−1eγy = ∞ for all fixed y ≥ 0,

and

lim
y→∞

f (x)
h(x, y)

= lim
y→∞

xp−1eγy = ∞ for all fixed x > 0.

Then (2.4), (2.5) and (2.6) are satisfied. Also it is clear that f (x)
h(x,y) = xp−1eγy is strictly monotone

increasing in x for a fixed y ≥ 0, and it is strictly monotone increasing in y for a fixed x > 0.
Thus all conditions of Theorem 2.4 are satisfied for equation (3.14).

The system of algebraic equations (2.18)–(2.19) related to (3.14) equals to

xp = mxe−γy (3.15)

yp = mye−γx. (3.16)

Lemma 2.2 with g(x, y) = xp−1eγy implies that (3.15)–(3.16) has a dominant positive solution
under the above conditions. The following lemma gives necessary and sufficient conditions
under which the system has either one, two or three positive solutions.
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Lemma 3.4. Assume p > 1, γ > 0, m > 0 and m > 0. For m >
( p−1

γ e
)p−1 let 0 < x1 < x2 be the

roots of the equation

xe−
γ

p−1 x =

(
p− 1

γ

)2

m
1

1−p .

Then

(A) the system (3.15)–(3.16) has a unique positive solution (x∗, y∗) if and only if one of the following
conditions is satisfied:

(A1) 0 < m ≤
( p−1

γ e
)p−1;

(A2) m >
( p−1

γ e
)p−1 and m

1
p−1 e−

γ
p−1 x1 + p−1

γ log x1 < 1
γ log m;

(A3) m >
( p−1

γ e
)p−1 and m

1
p−1 e−

γ
p−1 x2 + p−1

γ log x2 > 1
γ log m.

(B) The system (3.15)–(3.16) has exactly two positive solutions if and only if one of the following
conditions is satisfied:

(B1) m >
( p−1

γ e
)p−1 and m

1
p−1 e−

γ
p−1 x1 + p−1

γ log x1 = 1
γ log m;

(B2) m >
( p−1

γ e
)p−1 and m

1
p−1 e−

γ
p−1 x2 + p−1

γ log x2 = 1
γ log m.

(C) The system (3.15)–(3.16) has exactly three positive solutions if and only if

m
1

p−1 e−
γ

p−1 x2 +
p− 1

γ
log x2 <

1
γ

log m < m
1

p−1 e−
γ

p−1 x1 +
p− 1

γ
log x1.

Proof. Since we are looking for positive solutions, system (3.15)–(3.16) is equivalent to

xp−1 = me−γy, (3.17)

yp−1 = me−γx. (3.18)

Equation (3.17) yields

y =
1
γ

log m− p− 1
γ

log x. (3.19)

The vector (x, y) = (x∗, y∗) is a positive solution of the system (3.17)–(3.18) if and only if
x = x∗ is a positive solution of the equation

m
1

p−1 e−
γ

p−1 x +
p− 1

γ
log x− 1

γ
log m = 0, (3.20)

and y = y∗ is defined by (3.19). We define the function θ : R+ → R by

θ(u) := m
1

p−1 e−
γ

p−1 u +
p− 1

γ
log u.

Then (3.20) can be written in the form

θ(x) =
1
γ

log m. (3.21)
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Since limu→0+ θ(u) = −∞ and limu→∞ θ(u) = ∞, it follows that equation (3.21) has at least
one positive solution. We have

θ′(x) = − γ

p− 1
m

1
p−1 e−

γ
p−1 u +

p− 1
γ

1
u
=

γ

p− 1
m

1
p−1

1
u

((
p− 1

γ

)2

m
1

1−p − η(u)

)
,

where
η(u) := ue−

γ
p−1 u.

It is easy to check that η is unimodal with the properties that η(0) = 0, limu→∞ η(u) = 0 and
its maximum is

ηmax :=
p− 1

γe
,

which is taken at the point umax = p−1
γ . Therefore, if

(
p− 1

γ

)2

m
1

1−p ≥ ηmax

(or equivalently, (A1) holds), then θ′(u) > 0 for all u > 0 (except possibly at u = umax), and
hence equation (3.21) has exactly one positive solution.

Suppose for the rest of the proof that
( p−1

γ

)2m
1

1−p < ηmax, i.e., m >
( p−1

γ e
)p−1. Then

the graph of η has two intersections 0 < x1 < x2 with the graph of the constant function( p−1
γ

)2m
1

1−p , and hence θ is monotone increasing on the intervals (−∞, x1] and [x2, ∞), and it
is decreasing on [x1, x2]. Hence equation (3.21) has also one positive solution if θ(x1) <

1
γ log m

(condition (A2)) or θ(x2) > 1
γ log m (condition (A3)). Similarly, if θ(x1) = 1

γ log m (condition
(B1)) or θ(x2) = 1

γ log m (condition (B2)), then equation (3.21) has two positive solutions.
Finally, if θ(x2) < 1

γ log m < θ(x1) (condition (C)), then equation (3.21) has three positive
solutions.

Remark 3.5. The proof of the previous lemma yields that in the cases when the system (3.15)–
(3.16) has more than one solution, its dominant positive solution (x∗, y∗) satisfies the inequal-
ity x∗ ≤ x1, and for other solutions (x, y) of the system (3.15)–(3.16) it follows x > x1.

We have therefore the following corollary of our main Theorem 2.4.

Corollary 3.6. Assume that p > 1, γ > 0 and α, β satisfy (H1). Then, for any initial function
ϕ ∈ C+, the solution x(ϕ)(t) of the IVP (3.14) and (3.2) satisfies

x∗ ≤ lim inf
t→∞

x(ϕ)(t) ≤ lim sup
t→∞

x(ϕ)(t) ≤ x∗,

where (x∗, x∗) is the dominant positive solution of the algebraic system (3.15)–(3.16) with m :=
lim inft→∞

α(t)
β(t) and m := lim supt→∞

α(t)
β(t) .

Example 3.7. Consider the following nonlinear differential equation,

ẋ(t) = 4
√

te0.25 sin tx(t− e)e−x(t−1) − 4
√

tx2(t), t ≥ 0. (3.22)
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Note that the conditions of Corollary 3.6 are satisfied for (3.22). We have m := lim inft→∞
α(t)
β(t) =

e−0.25 ≈ 0.7788 and m := lim supt→∞
α(t)
β(t) = e0.25 ≈ 1.2840 < e, so condition (A1) of Lemma 3.4

holds. Therefore, the algebraic system

x2 = mxe−y (3.23)

y2 = mye−x (3.24)

has a unique positive solution (x∗, x∗). Then Corollary 3.6 implies

x∗ ≤ lim inf
t→∞

x(ϕ)(t) ≤ lim sup
t→∞

x(ϕ)(t) ≤ x∗ (3.25)

for any ϕ ∈ C+.
We solve the system (3.23)–(3.24) numerically by the fixed point iteration

xk+1 = e−0.25e−yk (3.26)

yk+1 = e0.25e−xk . (3.27)

We computed the sequence defined by the iteration (3.26)–(3.27) starting from the initial value
(x0, y0) = (0.001, 0.002). The first 23 terms of this sequence are displayed in Table 3.2. We can
observe that the sequence is convergent, and its limit is (x∗, x∗) ≈ (0.30115, 0.95013). Therefore
Corollary 3.6 yields (3.25) with x∗ ≈ 0.30115 and x∗ ≈ 0.95013. We plotted the numerical
solution of equation (3.22) in Figure 3.2 corresponding to the constant initial functions ϕ(t) =
0.2, ϕ(t) = 0.7 and ϕ(t) = 1.4. The horizontal lines in Figure 3.2 correspond to the lower
and upper bounds 0.30115 and 0.95013, respectively. The numerical results demonstrate the
theoretical bounds (3.25). �
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Figure 3.2: Numerical solution of equation (3.22).

4 Proofs

In this section we present the proofs of our main results. First we recall the next lemma from
[13], which is needed in our proofs later.
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k xk yk

0 0.00100 0.00200
1 0.77724 1.28274
2 0.21594 0.59023
3 0.43161 1.03464
4 0.27675 0.83393
5 0.33827 0.97361
6 0.29417 0.91552
7 0.31176 0.95679
8 0.29915 0.94011
9 0.30419 0.95203
10 0.30058 0.94725
11 0.30202 0.95068
12 0.30099 0.94931
13 0.30140 0.95029
14 0.30111 0.94990
15 0.30123 0.95018
16 0.30114 0.95006
17 0.30117 0.95014
18 0.30115 0.95011
19 0.30116 0.95014
20 0.30115 0.95013
21 0.30116 0.95013
22 0.30115 0.95013
23 0.30115 0.95013

Table 3.2: Fixed point iteration (3.26)–(3.27).

Lemma 4.1. Consider the ordinary differential equation

ẏ(t) = β(t)
(

c− f (y(t))
)

, t ≥ T ≥ 0 (4.1)

with the initial condition
y(T) = y∗, (4.2)

where c ≥ 0, and β ∈ C(R+, R+) with β(t) > 0 for t > 0,
∫ ∞

0 β(s)ds = ∞ and f ∈ C(R, R+)

satisfies 0 = f (0) < f (x1) < f (x2) for 0 < x1 < x2. Then for any solution y(T, y∗, c)(t) of the IVP
(4.1)–(4.2) we have

(i) c > 0 and 0 < y∗ < f−1(c) yield that

0 < y(T, y∗, c)(t) < f−1(c), ẏ(T, y∗, c)(t) > 0, t ≥ T

and
lim
t→∞

y(T, y∗, c)(t) = f−1(c);

(ii) y∗ = f−1(c) yields that y(T, y∗, c)(t) = f−1(c), t ≥ T;
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(iii) c ≥ 0 and y∗ > f−1(c) yield that

y(T, y∗, c)(t) > f−1(c), ẏ(T, y∗, c)(t) < 0, t ≥ T

and
lim
t→∞

y(T, y∗, c)(t) = f−1(c).

Proof of Lemma 2.1. Let x(t) = x(ϕ)(t) be any solution of the IVP (2.1)–(2.2). Since x(0) =

ϕ(0) > 0, there exists a ξ > 0 such that x(t) > 0 for 0 ≤ t < ξ. If ξ = ∞, then the proof
is completed. Otherwise, there exists a t1 ∈ (0, ∞) such that x(t) > 0 for 0 ≤ t < t1 and
x(t1) = 0. Since α(t) ≥ 0 for t ≥ 0 and h(u, v) ≥ 0 for any (u, v) ∈ R+ ×R+, we have from
(2.1) that

ẋ(t) ≥ −β(t) f (x(t)), 0 ≤ t ≤ t1. (4.3)

But from the comparison theorem of the differential equations (see, e.g., [6]), we have

x(t) ≥ y(t), 0 ≤ t ≤ t1,

where y(t) = y(0, ϕ(0), 0)(t) is the positive solution of (4.1), with c = 0, T = 0 and with the
initial condition

y(0) = x(0) = ϕ(0) > 0.

Then at t = t1 we get x(t1) ≥ y(t1) > 0, which is a contradiction with our assumption that
x(t1) = 0. Hence x(t) > 0 for t ∈ R+.

Proof of Lemma 2.2. First, we prove part (i). Consider first equation (2.8) and fix an x ≥ 0.
Since g(0, x) = 0, limy→∞ g(y, x) = ∞, and g(·, x) is a strictly monotone increasing continuous
function, there exists a unique y > 0 such that g(y, x) = m. Thus there exists a function
y = s(x) such that s : R+ → (0, ∞) satisfies

g(s(x), x) = m, x ≥ 0. (4.4)

We claim that s satisfies the following properties:

(i) s is strictly monotone decreasing,

(ii) s is continuous on R+,

(iii) limx→∞ s(x) = 0.

To prove (i), let 0 ≤ x1 < x2, then we get

m = g(s(x1), x1) < g(s(x1), x2).

But
m = g(s(x2), x2) < g(s(x1), x2),

thus the strict monotonicity of g in its first variable yields s(x2) < s(x1), and hence s(x) is
strictly monotone decreasing. To show (ii), let xn be a strictly monotone increasing sequence of
nonnegative numbers such that limn→∞ xn = x. Then s(xn) is a monotone decreasing sequence
by part (i), so it has a limit, say limn→∞ s(xn) = A. Since we have xn < x, then s(xn) > s(x),
and so A ≥ s(x). Suppose s(x) < A, we have m = g(s(xn), xn) for all n. Taking the limit as
n→ ∞ gives

m = g(A, x) > g(s(x), x) = m.
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This contradiction yields that limn→∞ s(xn) = s(x). Similarly for any monotone decreasing
sequence xn converging to x, we can show that limn→∞ s(xn) = s(x). Hence s(x) is continuous
on R+. To prove (iii), suppose that s(x) ≥ B > 0 for x > 0. Then, the monotonicity of g and
(2.11) yield

m = g(s(x), x) ≥ g(B, x)→ ∞ as x → ∞,

which is a contradiction, and hence limx→∞ s(x) = 0.
Now, consider equation (2.7) and fix an x ≥ 0. Then g(x, ·) is a strictly monotone increasing

continuous function which tends to ∞ at ∞ by (2.11). Thus equation (2.7) has a unique solution
y if and only if g(x, 0) ≤ m. But g(·, 0) is a strictly monotone increasing function which tends
to ∞ at ∞ and g(0, 0) = 0. Therefore there exists a positive constant xm such that g(x, 0) ≤ m
for x ∈ (0, xm]. Hence for any x ∈ (0, xm] there exists a unique y ≥ 0 such that (2.7) holds.
This implies that there exists a function y = r(x) satisfying

g(x, r(x)) = m, x ∈ (0, xm]. (4.5)

We claim that r satisfies the following properties:

(i) r is strictly monotone decreasing,

(ii) r is continuous on (0, xm],

(iii) r(xm) = 0,

(iv) limx→0+ r(x) = ∞.

The proofs of (i) and (ii) are similar to that for the function s, so they are omitted here. Part
(iii) is clear from the above definitions of r. To prove (iv), suppose that r(x) ≤ C, where C > 0.
Then, using (2.9) and (4.5),

m = g(x, r(x)) ≤ g(x, C)→ 0 as x → 0,

which is a contradiction, since m > 0, and hence (iv) is proved.
The above properties of the functions r and s imply that their graphs have at least one

intersection, i.e., there exists an x such that r(x) = s(x). See Figure 4.1 for a possible situation
of the graphs. Hence the system (2.7) and (2.8) has at least one positive solution. Let x∗ =
inf{u : (u, v) is a positive solution of (2.7) and (2.8)}, and let y∗ = s(x∗). Clearly, (x∗, y∗) is a
positive solution of (2.7) and (2.8). The monotonicity of r and s imply that y∗ ≥ v for any
solution (u, v) of the system (2.7) and (2.8), so (x∗, y∗) is the dominant solution of (2.7) and
(2.8).

Next, we prove part (ii). Consider first inequality (2.13) and we claim that (2.13) is satisfied
if and only if y ≤ s(x). To prove this claim, suppose that y ≤ s(x). Then

g(y, x) ≤ g(s(x), x) = m.

On the other hand if y > s(x), then

g(y, x) > g(s(x), x) = m.

Thus our claim is proved.
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(x*,y*)

r(x)

s(x)

xm

Figure 4.1: A possible graphs of s(x) and r(x).

Now, we consider inequality (2.12) and we claim that that (x, y) is a positive solution of
(2.12) if and only if [y ≥ r(x) and x ∈ (0, xm]] or [x > xm and y > 0]. To prove the claim,
suppose that y ≥ r(x) and x ∈ (0, xm], then

g(x, y) ≥ g(x, r(x)) = m.

On the other hand if y < r(x), then

g(x, y) < g(x, r(x)) = m.

Suppose x > xm and y > 0. Then, using the strict monotonicity of g in both variables, we get

g(x, y) > g(xm, y) > g(xm, 0) = g(xm, r(xm)) = m.

Thus our claim is proved.
Clearly, all points of the region A = {(x, y) : x > xm and 0 < y < s(x)} give us a positive

solution of the system (2.12) and (2.13), and the property limx→∞ s(x) = 0 yields that for any
M > 0 and ε > 0 there exists (x, y) ∈ A such that x > M and y < ε. Hence, the definition of
the dominant solution completes the proof of part (ii).

Proof of Lemma 2.3. Let ϕ ∈ C+ be an arbitrary fixed initial function and x(t) = x(ϕ)(t) be any
solution of the IVP (2.1)–(2.2). Then, by Lemma 2.1, we have x(t) > 0 for t ≥ 0. We claim
that there exist positive constants d > 0 and d∗ > 0 such that the following inequalities are
satisfied,

min
0≤t≤δ

x(t) > d, max
0≤t≤δ

x(t) < d∗,

α(t)
β(t)

h(d, d∗) > f (d) and
α(t)
β(t)

h(d∗, d) < f (d∗), t ≥ δ.
(4.6)

The last two inequalities in (4.6) follow if

sup
t≥δ

α(t)
β(t)

<
f (d∗)

h(d∗, d)
(4.7)

and

inf
t≥δ

α(t)
β(t)

>
f (d)

h(d, d∗)
. (4.8)
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We define the function

g(x, y)

{ f (x)
h(x,y) , x > 0, y ≥ 0,

0, x = 0, y ≥ 0.
(4.9)

The assumed monotonicity of f (x)
h(x,y) in its both variables implies easily that g is continuous on

R+ ×R+. Then Lemma 2.2 with m = supt≥δ
α(t)
β(t) and m = inft≥δ

α(t)
β(t) yields that there exist

positive numbers d and d∗ satisfying the system of inequalities (4.7)–(4.8), max0≤t≤δ x(t) < d∗

and min0≤t≤δ x(t) > d.
We show that d < x(t) < d∗ for all t ≥ 0. Suppose in contrary that there exists t2 ∈ (δ, ∞)

such that d < x(t) < d∗ for t ∈ [0, t2) and either

(i) x(t2) = d or

(ii) x(t2) = d∗.

First, consider case (i). Then ẋ(t2) ≤ 0. On the other hand, the mixed monotonicity of h
and (4.6) yield that

ẋ(t2) = β(t2)

[
α(t2)

β(t2)
h(x(t2 − τ), x(t2 − σ))− f (x(t2))

]
≥ β(t2)

[
α(t2)

β(t2)
h(d, d∗)− f (d)

]
> 0,

which is a contradiction, since ẋ(t2) ≤ 0. Therefore x(t) > d for all t ≥ 0, and hence (2.14)
holds.

Next, consider case (ii). Then ẋ(t2) ≥ 0. On the other hand, the mixed monotonicity of h
and (4.6) yield that

ẋ(t2) = β(t2)

[
α(t2)

β(t2)
h(x(t2 − τ), x(t2 − σ))− f (x(t2))

]
≤ β(t2)

[
α(t2)

β(t2)
h(d∗, d)− f (d∗)

]
< 0,

which is a contradiction, since ẋ(t2) ≥ 0. Therefore x(t) < d∗ for all t ≥ 0, and hence (2.15)
holds.

Proof of Theorem 2.4. Let x(t) be any fixed solution of the IVP (2.1)–(2.2), and introduce the
short notations

x(∞) := lim inf
t→∞

x(t) and x(∞) := lim sup
t→∞

x(t).

Lemma 2.3 implies that 0 < x(∞) ≤ x(∞) < ∞. Moreover, for any T ≥ δ, the constants
defined by

aT := inf
t≥T

x(t) ≤ sup
t≥T

x(t) =: AT (4.10)

and

mT := inf
t≥T

α(t)
β(t)

≤ sup
t≥T

α(t)
β(t)

=: MT (4.11)
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are positive and finite. By (4.10), (4.11) and the mixed monotonicity of h, we get from (2.1)
that

ẋ(t) ≥ β(t)[mT h(aT , AT )− f (x(t))], t ≥ T. (4.12)

From (4.12) and the comparison theorem of differential equations we see that

x(t) ≥ y(t) for t ≥ T,

where y(t) = y(T, x(T), mT h(aT , AT ))(t) is the solution of equation (4.1) with c = mT h(aT , AT )

and with the initial condition
y(T) = x(T).

From Lemma 4.1, we see that

y(∞) := lim
t→∞

y(t) = f−1(mT h(aT , AT )).

Thus
f−1(mT h(aT , AT )) = y(∞) ≤ x(∞), T ≥ δ,

and from the last inequality, we have

lim
T→∞

f−1(mT h(aT , AT )) ≤ x(∞).

Using relations

lim
T→∞

aT = x(∞), lim
T→∞

AT = x(∞) and lim
T→∞

mT = m

and the continuity of f−1 and h, we obtain

lim
T→∞

f−1(mT h(aT , AT )) = f−1( lim
T→∞

mT h(aT , AT )) = f−1(mh(x(∞), x(∞))).

Therefore we get
f−1(mh(x(∞), x(∞))) ≤ x(∞),

and hence
mh(x(∞), x(∞)) ≤ f (x(∞)). (4.13)

In a similar way we can obtain the relation

mh(x(∞), x(∞)) ≥ f (x(∞)). (4.14)

Since x(∞) and x(∞) are positive, (H2) yields h(x(∞), x(∞)) > 0 and h(x(∞), x(∞)) > 0.
Hence (4.13) and (4.14) are equivalent to the system of inequalities

f (x(∞))

h(x(∞), x(∞))
≥ m (4.15)

f (x(∞))

h(x(∞), x(∞))
≤ m. (4.16)

Define the function g by (4.9). Then g is continuous on R+ × R+, and (x(∞), x(∞)) is a
solution of the corresponding system of inequalities (2.12)–(2.13). Therefore Lemma 2.2 im-
plies (2.17), where (x∗, x∗) is the dominant positive solution of (2.7)–(2.8), or equivalently, the
dominant positive solution of the system (2.18)–(2.19).
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Proof of Corollary 2.5. We show that the system (2.21)–(2.22) has a solution of the form (x∗, x∗).
But, clearly, the system (2.21)–(2.22) has a solution of the form (x∗, x∗) if and only if x∗ is a
solution of (2.24).

Assumptions (H2) and (H4) imply that the function f (x)
h(x,x) is strictly increasing, since for

0 < x1 < x2 it follows
f (x1)

h(x1, x1)
<

f (x1)

h(x1, x2)
<

f (x2)

h(x2, x2)
.

Next, let xn be a sequence of nonnegative reals with xn → 0 as n→ ∞, and let A be such that
xn < A for all n. Then, using (H2) and (H3), we get

0 ≤ f (xn)

h(xn, xn)
<

f (xn)

h(xn, A)
→ 0, as n→ ∞,

so limx→0+
f (x)

h(x,x) = 0. Similarly, it can be shown that limx→∞
f (x)

h(x,x) = ∞. Therefore, equa-
tion (2.24) has a unique solution for any m > 0.

Hence (x∗, x∗) is the unique solution of the system (2.21)–(2.22), hence Theorem 2.4 proves
the statement of the corollary.

Proof of Theorem 2.6. First we comment that Lemma 2.3 can be easily extended to equation
(2.25), hence the limit inferior and limit superior of the solutions are positive and finite. We
use the notations introduced in the proof of Theorem 2.4, and define

mT := inf
t≥T

α1(t)
β2(t)

≤ sup
t≥T

α2(t)
β1(t)

=: MT

Then, similarly to the proof of Theorem 2.4, we get

ẋ(t) ≥ β2(t)
(

α1(t)
β2(t)

H0(t, x(t− τ1), . . . , x(t− τk), x(t− σ1), . . . , x(t− σ`))− f (x(t))
)

≥ β2(t) (mT H0(t, aT , . . . , aT , AT , . . . , AT )− f (x(t)))

= β2(t)[mT h(aT , AT )− f (x(t))], t ≥ T.

This relation implies the inequality (4.13). Similar argument shows (4.14), and that completes
the proof.
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