
Electronic Journal of Qualitative Theory of Differential Equations

2011, No. 53, 1-13; http://www.math.u-szeged.hu/ejqtde/

On mild solutions to fractional differential equations

with nonlocal conditions ∗

Lizhen Chena, Zhenbin Fanb,c †

a Department of Mathematics, Yangzhou University, Yangzhou, Jiangsu 225002, China

b Department of Mathematics, Changshu Institute of Technology, Suzhou, Jiangsu 215500, China

c Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract: We prove new existence results of mild solutions to fractional differential equa-

tions with nonlocal conditions in Banach spaces. The nonlocal item is only assumed to be

continuous. This generalizes some recent results in this area.

Keywords: Nonlocal condition; fractional differential equations; strongly continuous semi-

group; fixed point theorem.

MSC(1991): 34K05; 34A12; 34A40.

1 Introduction

In this paper, we are concerned with the existence of mild solutions for a fractional differential

equation with nonlocal conditions of the form:






Dqu(t) = Au(t) + f(t, u(t)), 0 ≤ t ≤ T,

u(0) = u0 − g(u),
(1.1)

where Dq is the Caputo fractional derivatives of order q with 0 < q ≤ 1, A : D(A) ⊂ X → X

is the infinitesimal generator of a strongly continuous semigroup T (t), t ≥ 0, X a real Banach
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space endowed with the norm ‖ ·‖, f and g are appropriate continuous functions to be specified

later.

Recently, the fractional differential equations are appropriate models for describing real

world problems, which cannot be described using classical integer order differential equations.

So, they have been studied by many researchers. And, some recent contributions to the theory

of fractional differential equations can be seen in [1–5, 13, 16–18, 20, 21].

On the other hand, the following differential equations with nonlocal conditions have been

studied extensively in the literature, since it is demonstrated that the nonlocal problems have

better effects in applications than the classical ones.






u′(t) = Au(t) + f(t, u(t)), 0 ≤ t ≤ T,

u(0) = u0 − g(u).
(1.2)

Many authors developed different techniques and methods to solve the above nonlocal problem.

For more details on this topic we refer the reader to [7, 9–12, 14, 15, 19] and references therein.

Naturally, some researchers combined the above two directions and studied the fractional

differential equation (1.1) with nonlocal conditions. In [8, 23], the authors studied the existence

of mild solutions to equation (1.1) when the nonlocal item g was assumed to be Lipschitz or

compact function in different frameworks. In this paper, we study further the existence of mild

solutions to nonlocal problem (1.1). By using the ideas in [10, 22], we prove the existence of

mild solutions to equation (1.1) without the Lipschitz or compact assumption on the nonlocal

item g. Actually, the continuity of g is only assumed and g is completely determined on [δ, T ] for

some small δ > 0 or g is continuous in C([0, T ], X) with L1([0, T ], X) topology (see Corollaries

3.5-3.7). Our results extend some existing ones in this area.

This paper has three sections. In the next section, we recall some definitions on Caputo

fractional derivatives and mild solutions to equation (1.1). In the last section, we establish the

existence of mild solutions to equation (1.1) via the techniques developed in [10, 22].

2 Preliminaries

Throughout this paper, let N, R and R+ be the set of positive integers, real numbers

and positive real numbers, respectively. We denote by X a Banach spaces with norm ‖ · ‖,
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C([0, T ], X) the space of all X-valued continuous functions on [0, T ] and L1([0, T ], X) the space

of X-valued Bochner integrable functions on [0, T ] with the norm ‖f‖L1 =
∫ T

0
‖f(t)‖ dt.

Now, let us recall some basic definitions and results on fractional derivative and fractional

differential equations.

Definition 2.1. ([20]) The fractional order integral of the function f ∈ L1([0, T ], R+) of order

α ∈ R+ is defined by

Iαf(t) =
1

Γ(α)

∫ t

0

(t − s)α−1f(s) ds,

where Γ is the Gamma function.

Definition 2.2. ([20]) The Riemann-Liouville fractional order derivative of order α of a function

f given on the interval [0, +∞) is defined by

LDαf(t) =
1

Γ(n − α)

dn

dtn

∫ t

0

(t − s)n−α−1f(s) ds,

where α ∈ (n − 1, n), n ∈ N.

Definition 2.3. ([20]) The Caputo fractional order derivative of order α of a function f given

on the interval [0, +∞) is defined by

Dαf(t) =
1

Γ(n − α)

∫ t

0

(t − s)n−α−1f (n)(s) ds,

where α ∈ (n − 1, n), n ∈ N.

If f takes values in Banach space X, the integrals which appear in above three definitions

are taken in Bochner’s sense.

In this paper, we always suppose that the linear operator A : D(A) ⊂ X → X generates

a compact strongly continuous semigroup {T (t) : t ≥ 0}, i.e., T (t) is compact for any t > 0.

Moreover, we denote

M := sup
t≥0

‖T (t)‖ < ∞.

Now, using the probability density function and its Laplace transform developed in [6] (also

see [8, 21]), we can give the following definition of mild solutions to equation (1.1).
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Definition 2.4. A continuous function u is said to be a mild solution of (1.1) if u satisfies

u(t) =

∫ ∞

0

ξq(σ)T (tqσ)(u0 − g(u)) dσ + q

∫ t

0

∫ ∞

0

σ(t − s)q−1ξq(σ)T ((t − s)qσ)f(s, u(s)) dσ ds

for t ∈ [0, T ], where ξq is a probability density function defined on (0,∞) such that

∫ ∞

0

ξq(σ) dσ = 1,

∫ ∞

0

σvξq(σ) dσ =
Γ(1 + v)

Γ(1 + qv)
, v ∈ [0, 1].

3 Main Results

Let r be a fixed positive real number. Write

Br := {x ∈ X; ‖x‖ ≤ r}.

Wr := {u ∈ C([0, T ], X); u(t) ∈ Br for t ∈ [0, T ]}.

Clearly, Br, Wr are bounded closed and convex sets. We make the following assumptions.

(H1) f : [0, T ] × X → X is continuous.

(H2) g : C([0, T ], X) → X is continuous.

(H) The set g(convQWr) is pre-compact, where convB denotes the convex closed hull of set

B ⊆ C([0, T ], X).

Remark 3.1. It is easy to see that condition (H) is weaker than the compactness and convexity

of g. The same hypothesis can be seen from [10, 22], where the authors considered the existence

of mild solutions for semilinear nonlocal problems of integer order when A is a linear, densely

defined operator on X which generates a C0-semigroup. After the proof of our main results,

we will give some special types of nonlocal item g which is neither Lipschitz nor compact, but

satisfies the condition (H) in the next Corollaries.

Under these assumptions, we can prove the main results in this paper.

Theorem 3.2. Assume that conditions (H1), (H2) and (H) are satisfied. Then the nonlocal

problem (1.1) has at least one mild solution provided that

M [‖u0‖ + sup
u∈Wr

‖g(u)‖+
T q

Γ(1 + q)
sup

s∈[0,T ],u∈Wr

‖f(s, u(s))‖] ≤ r. (3.1)

EJQTDE, 2011 No. 53, p. 4



Proof. For u ∈ C([0, T ], X), from the properties of probability density function ξq and condition

(H1), it follows that

∫ t

0

∫ ∞

0

σ(t − s)q−1ξq(σ)T ((t − s)qσ)f(s, u(s)) dσ ds

≤
M

Γ(1 + q)

∫ t

0

(t − s)q−1 ds sup
s∈[0,T ]

‖f(s, u(s))‖

≤
MT q

qΓ(1 + q)
sup

s∈[0,T ]

‖f(s, u(s))‖,

which means that
∫ ∞

0
σ(t− s)q−1ξq(σ)T ((t− s)qσ)f(s, u(s)) dσ is Bochner’s integrable on [0, t]

with respect to s ∈ [0, t] for all t ∈ [0, T ]. Define the mapping Q on Wr by

(Qu)(t) =

∫ ∞

0

ξq(σ)T (tqσ)(u0−g(u)) dσ+q

∫ t

0

∫ ∞

0

σ(t−s)q−1ξq(σ)T ((t−s)qσ)f(s, u(s)) dσ ds

for t ∈ [0, T ]. It is easy to see that the fixed point of Q is a mild solution of nonlocal problem

(1.1). Subsequently, we will prove that Q has a fixed point by using Schauder’s fixed point

theorem.

Firstly, we prove that the mapping Q is continuous on C([0, T ], X). For this purpose, let

{un}
+∞
n=1 be a sequence in C([0, T ], X) with limn→∞ un = u in C([0, T ], X). By the continuity

of f , we deduce that f(s, un(s)) converges to f(s, u(s)) in X uniformly for s ∈ [0, T ], it follows

that

‖(Qun)(t) − (Qu)(t)‖

≤M [‖g(un) − g(u)‖ +
q

Γ(1 + q)

∫ t

0

(t − s)q−1‖f(s, un(s)) − f(s, u(s))‖ ds]

≤M [‖g(un) − g(u)‖ +
T q

Γ(1 + q)
sup

s∈[0,T ]

‖f(s, un(s)) − f(s, u(s))‖].

Then by the continuity of g and f , we get limn→∞ Qun = Qu in C([0, T ], X), which implies

that the mapping Q is continuous on C([0, T ], X).

Secondly, we claim that QWr ⊆ Wr. In fact, for any u ∈ Wr, by (3.1), we have

‖(Qu)(t)‖ ≤ M [‖u0‖ + sup
u∈Wr

‖g(u)‖+
T q

Γ(1 + q)
sup

s∈[0,T ],u∈Wr

‖f(s, u(s))‖] ≤ r,

i.e., Q maps Wr into itself.
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Thirdly, we show that there exists a set W ⊆ Wr such that Q : W → W is a compact

mapping. For this purpose, let

Qu = Q1u + Q2u

with

(Q1u)(t) =

∫ ∞

0

ξq(σ)T (tqσ)(u0 − g(u)) dσ,

(Q2u)(t) = q

∫ t

0

∫ ∞

0

σ(t − s)q−1ξq(σ)T ((t − s)qσ)f(s, u(s)) dσ ds

for t ∈ [0, T ].

For t ∈ (0, T ] and δ > 0, set

(Q1
δu)(t) = T (tqδ)

∫ ∞

δ

ξq(σ)T (tqσ − tqδ)(u0 − g(u)) dσ, u ∈ Wr.

By (3.1) and the compactness of T (t), t > 0, we deduce that Q1
δWr(t) is relatively compact in

X for any δ > 0. Moreover, we have

‖(Q1u)(t) − (Q1
δu)(t)‖

≤‖

∫ ∞

0

ξq(σ)T (tqσ)(u0 − g(u)) dσ −

∫ ∞

δ

ξq(σ)T (tqσ)(u0 − g(u)) dσ‖

≤M(‖u0‖ + sup
u∈Wr

‖g(u)‖)

∫ δ

0

ξq(σ) dσ

→0,

as δ → 0, which implies that Q1Wr(t) is relatively compact in X for every t ∈ (0, T ] since

there are a family of relatively compact sets arbitrarily close to it. Next, we prove that Q1Wr

is equicontinuous on [η, T ] for any small positive number η. For u ∈ Wr and η ≤ t1 < t2 ≤ T ,

there exist positive numbers δ and N such that

‖(Q1u)(t2) − (Q1u)(t1)‖

≤

∫ δ

0

ξq(σ)‖[T (tq2σ) − T (tq1σ)](u0 − g(u))‖ dσ +

∫ N

δ

ξq(σ)‖[T (tq2σ) − T (tq1σ)](u0 − g(u))‖ dσ

+

∫ ∞

N

ξq(σ)‖[T (tq2σ) − T (tq1σ)](u0 − g(u))‖ dσ

≤

∫ N

δ

ξq(σ)‖T (tq2σ) − T (tq1σ)‖ · ‖(u0 − g(u))‖ dσ + 2M(‖u0‖ + sup
u∈Wr

‖g(u)‖)

∫ δ

0

ξq(σ) dσ

+ 2M(‖u0‖ + sup
u∈Wr

‖g(u)‖)

∫ ∞

N

ξq(σ) dσ.
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Now, as T (·) is compact, T (t) is operator norm continuous for t > 0. Thus T (t) is operator

norm continuous uniformly for t ∈ [ηqδ, T qN ]. Combining this with the absolute continuity of

ξq(·) on [0,∞), it follows that Q1Wr is equicontinuous on [η, T ].

For Q2 : Wr → C([0, T ], X), we claim that it is a compact mapping. In fact, Q2Wr(0) is

relatively compact. For t ∈ (0, T ], let δ ∈ (0, t) and define a mapping on Wr by

(Q2
δu)(t) =q

∫ t−δ

0

∫ ∞

δ

σ(t − s)q−1ξq(σ)T ((t − s)qσ)f(s, u(s)) dσ ds

=qT (δqδ)

∫ t−δ

0

∫ ∞

δ

σ(t − s)q−1ξq(σ)T ((t− s)qσ − δqδ)f(s, u(s)) dσ ds

for u ∈ Wr. We get that Q2
δWr(t) is relatively compact for any δ ∈ (0, t) since T (δqδ) is

compact. Moreover, for u ∈ Wr, we obtain

‖(Q2u)(t) − (Q2
δu)(t)‖

≤q

∫ t

t−δ

∫ ∞

0

σ(t − s)q−1ξq(σ)‖T ((t − s)qσ)f(s, u(s))‖ dσ ds

+ q

∫ t−δ

0

∫ δ

0

σ(t − s)q−1ξq(σ)‖T ((t − s)qσ)f(s, u(s))‖ dσ ds

≤M [
δq

Γ(1 + q)
+ T q

∫ δ

0

σξq(σ) dσ] sup
s∈[0,T ],u∈Wr

‖f(s, u(s))‖

→0,

as δ → 0, which implies that Q2Wr(t) is relatively compact in X for every t ∈ (0, T ] since

there are a family of relatively compact sets arbitrarily close to it. Next, we prove that Q2Wr

is equicontinuous on [0, T ]. For u ∈ Wr and 0 ≤ t1 < t2 ≤ T , we have

‖(Q2u)(t2) − (Q2u)(t1)‖

=‖q

∫ t2

t1

∫ ∞

0

σ(t2 − s)q−1ξq(σ)T ((t2 − s)qσ)f(s, u(s)) dσ ds

+ q

∫ t1

0

∫ ∞

0

σ(t2 − s)q−1ξq(σ)T ((t2 − s)qσ)f(s, u(s)) dσ ds

− q

∫ t1

0

∫ ∞

0

σ(t1 − s)q−1ξq(σ)T ((t2 − s)qσ)f(s, u(s)) dσ ds

+ q

∫ t1

0

∫ ∞

0

σ(t1 − s)q−1ξq(σ)T ((t2 − s)qσ)f(s, u(s)) dσ ds

− q

∫ t1

0

∫ ∞

0

σ(t1 − s)q−1ξq(σ)T ((t1 − s)qσ)f(s, u(s)) dσ ds‖,
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which implies that

‖(Q2u)(t2) − (Q2u)(t1)‖

≤q

∫ t2

t1

∫ ∞

0

σ(t2 − s)q−1ξq(σ)‖T ((t2 − s)qσ)f(s, u(s))‖ dσ ds

+ q

∫ t1

0

∫ ∞

0

σ[(t1 − s)q−1 − (t2 − s)q−1]ξq(σ)‖T ((t2 − s)qσ)f(s, u(s))‖ dσ ds

+ q

∫ t1

0

∫ ∞

0

σ(t1 − s)q−1ξq(σ)‖[T ((t2 − s)qσ) − T ((t1 − s)qσ)]f(s, u(s))‖ dσ ds

≤
M(t2 − t1)

q

Γ(1 + q)
sup

s∈[0,T ],u∈Wr

‖f(s, u(s))‖ +
M [tq1 − t

q
2 + (t2 − t1)

q]

Γ(1 + q)
sup

s∈[0,T ],u∈Wr

‖f(s, u(s))‖

+ q

∫ t1

0

∫ ∞

0

σ(t1 − s)q−1ξq(σ)‖[T ((t2 − s)qσ) − T ((t1 − s)qσ)]f(s, u(s))‖ dσ ds.

(3.2)

For the last expression of the right side of the above inequality, if t1 = 0, then it equals to zero;

if t1 > 0, then there exist positive numbers δ and N such that

q

∫ t1

0

∫ ∞

0

σ(t1 − s)q−1ξq(σ)‖[T ((t2 − s)qσ) − T ((t1 − s)qσ)]f(s, u(s))‖ dσ ds

=q

∫ t1−δ

0

∫ N

δ

σ(t1 − s)q−1ξq(σ)‖[T ((t2 − s)qσ) − T ((t1 − s)qσ)]f(s, u(s))‖ dσ ds

+ q

∫ t1−δ

0

∫ δ

0

σ(t1 − s)q−1ξq(σ)‖[T ((t2 − s)qσ) − T ((t1 − s)qσ)]f(s, u(s))‖ dσ ds

+ q

∫ t1−δ

0

∫ ∞

N

σ(t1 − s)q−1ξq(σ)‖[T ((t2 − s)qσ) − T ((t1 − s)qσ)]f(s, u(s))‖ dσ ds

+ q

∫ t1

t1−δ

∫ ∞

0

σ(t1 − s)q−1ξq(σ)‖[T ((t2 − s)qσ) − T ((t1 − s)qσ)]f(s, u(s))‖ dσ ds

≤q

∫ t1−δ

0

∫ N

δ

σ(t1 − s)q−1ξq(σ)‖T ((t2 − s)qσ) − T ((t1 − s)qσ)‖ · ‖f(s, u(s))‖ dσ ds

+ 2MT q(

∫ δ

0

σξq(σ) dσ +

∫ ∞

N

σξq(σ) dσ) sup
s∈[0,T ],u∈Wr

‖f(s, u(s))‖

+
2M

Γ(1 + q)

∫ t1

t1−δ

(t1 − s)q−1 ds sup
s∈[0,T ],u∈Wr

‖f(s, u(s))‖.

(3.3)

Thus, combining the above inequalities (3.2) (3.3) with the norm continuity of T (t) uniformly

on [δqδ, T qN ] and the absolute continuity of integrals, we obtain the equicontinuity of Q2Wr on

[0, T ]. Therefore, Q2 : Wr → C([0, T ], X) is a compact mapping by the Arzela-Ascoli theorem.

In summary, we have proven that QWr(t) is relatively compact for every t ∈ (0, T ] and QWr

is equicontinuous on [η, T ] for any small positive number η.
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Now, let W = convQWr, we get that W is a bounded closed and convex subset of C([0, T ], X)

and QW ⊆ W . It is easy to see that QW (t) is relatively compact in X for every t ∈ (0, T ]

and QW is equicontinuous on [η, T ] for any small positive number η. Moreover, we know that

g(W ) = g(convQWr) is pre-compact due to the condition (H).

Thus, we claim that Q : W → W is a compact mapping. In fact, it is easy to see that

Q1W (0) =
∫ ∞

0
ξq(σ)T (tqσ)(u0 − g(W )) dσ is relatively compact since g(W ) = g(convQWr) is

pre-compact. It remains to prove that Q1W is equicontinuous on [0, T ]. For that, let u ∈ W

and 0 ≤ t1 < t2 ≤ T , there exists positive number N such that

‖(Q1u)(t2) − (Q1u)(t1)‖

≤

∫ N

0

ξq(σ)‖[T (tq2σ) − T (tq1σ)](u0 − g(u))‖ dσ +

∫ ∞

N

ξq(σ)‖[T (tq2σ) − T (tq1σ)](u0 − g(u))‖ dσ

≤

∫ N

0

ξq(σ)‖[T (tq2σ) − T (tq1σ)](u0 − g(u))‖ dσ + 2M(‖u0‖ + sup
u∈W

‖g(u)‖)

∫ ∞

N

ξq(σ) dσ.

In view of the compactness of g(W ) and the strong continuity of T (t) on [0, T qN ], we obtain the

equicontinuity of Q1W on [0, T ]. Thus, Q1 : W → C([0, T ], X) is a compact mapping by the

Arzela-Ascoli theorem, and hence Q : W → W is also a compact mapping. Now, Schauder’s

fixed point theorem implies that Q has a fixed point on W , which gives rise to a mild solution

of nonlocal problem (1.1).

The following theorem is a direct consequence of Theorem 3.2.

Theorem 3.3. Assume that conditions (H1), (H2) and (H) are satisfied for each r > 0. If

‖g(u)‖

‖u‖
→ 0, ‖u‖ → ∞, (3.4)

‖f(t, x)‖

‖x‖
→ 0, ‖x‖ → ∞ (3.5)

for all t ∈ [0, T ], then the nonlocal problem (1.1) has at least one mild solution.

Remark 3.4. It is easy to see that if there exist constants L1, L2 > 0 and α, β ∈ [0, 1) such

that

‖g(u)‖ ≤ L1(1 + ‖u‖)α,

‖f(t, x)‖ ≤ L2(1 + ‖x‖)β,

then conditions (3.4) and (3.5) are satisfied.
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Next, we will give special types of nonlocal item g which is neither Lipschitz nor compact,

but satisfies the condition (H).

We give the following assumptions.

(H3) g : C([0, T ], X) → X is a continuous mapping which maps Wr into a bounded set,

and there is a δ = δ(r) ∈ (0, T ) such that g(u) = g(v) for any u, v ∈ Wr with u(s) = v(s),

s ∈ [δ, T ].

(H4) g : (C([0, T ], X), ‖ · ‖L1) → X is continuous.

Corollary 3.5. Assume that conditions (H1)-(H3) are satisfied. Then the nonlocal problem

(1.1) has at least one mild solution on [0, T ] provided that

M [‖u0‖ + sup
u∈Wr

‖g(u)‖+
T q

Γ(1 + q)
sup

s∈[0,T ],u∈Wr

‖f(s, u(s))‖] ≤ r.

Proof. Let (QWr)δ = {u ∈ C([0, T ], X); u(t) = v(t) for t ∈ [δ, T ], u(t) = u(δ) for t ∈

[0, δ), where v ∈ QWr}. From the proof of Theorem 3.2, we know that (QWr)δ is pre-compact in

C([0, T ], X). Moreover, by condition (H3), g(convQWr) = g(conv(QWr)δ) is also pre-compact

in C([0, T ], X). Thus, all the hypotheses in Theorem 3.2 are satisfied. Therefore, there is at

least one mild solution of nonlocal problem (1.1).

Corollary 3.6. Let conditions (H1) and (H2) be satisfied. Suppose that g(u) =
∑p

j=1 cju(tj),

where cj are given positive constants, and 0 < t1 < t2 < · · · < tp ≤ T . Then the nonlocal

problem (1.1) has at least one mild solution on [0, T ] provided that

M [‖u0‖ +

p
∑

j=1

cjr +
T q

Γ(1 + q)
sup

s∈[0,T ],u∈Wr

‖f(s, u(s))‖] ≤ r.

Proof. It is easy to see that the mapping g with g(u) =
∑p

j=1 cju(tj) satisfies condition (H3).

And all the conditions in Corollary 3.5 are satisfied. So the conclusion holds.

Corollary 3.7. Assume that conditions (H1), (H2) and (H4) are satisfied. Then the nonlocal

problem (1.1) has at least one mild solution on [0, T ] provided that

M [‖u0‖ + sup
u∈Wr

‖g(u)‖+
T q

Γ(1 + q)
sup

s∈[0,T ],u∈Wr

‖f(s, u(s))‖] ≤ r.
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Proof. According to Theorem 3.2, we should only to prove that the hypothesis (H) is satisfied.

For arbitrary ǫ > 0, there exists 0 < δ < T such that
∫ δ

0
‖u(s)‖ ds < ǫ for all u ∈ QWr. Let

(QWr)δ = {u ∈ C([0, T ], X); u(t) = v(t) for t ∈ [δ, T ], u(t) = u(δ) for t ∈ [0, δ), where v ∈

QWr}. From the proof of Theorem 3.2, we know that (QWr)δ is pre-compact in C([0, T ], X),

which implies that (QWr)δ is pre-compact in L1([0, T ], X). Thus, QWr is pre-compact in

L1([0, T ], X) as it has an ǫ-net (QWr)δ. By condition g : (C([0, T ], X), ‖·‖L1) → X is continuous

and convQWr ⊆ (L)convQWr, it follows that condition (H) is satisfied, where (L)convB denotes

the convex and closed hull of B in L1([0, T ], X). Therefore, the nonlocal problem (1.1) has at

least one mild solution on [0, T ].

Remark 3.8. Our results extend some recent ones about the fractional differential equations

with nonlocal conditions, since neither the Lipschitz continuity nor the compactness assumption

on the nonlocal item is required.
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