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Abstract. In this paper we consider nonlinear Choquard equation

−∆u + V(x)u = (Iα ∗ F(u)) f (u) in RN ,

where V ∈ C(RN), Iα denotes the Riesz potential, f (t) = |t|p−2t + |t|q−2t for all t ∈
R, N > 5 and α ∈ (0, N − 4). Under suitable conditions on V, we obtain that the
Choquard equation with doubly critical growth nonlinearity, i.e., p = (N + α)/N, q =
(N + α)/(N − 2), has a nonnegative ground state solution by variational methods.
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1 Introduction and main results

In this paper we consider nonlinear Choquard equation

− ∆u + V(x)u = (Iα ∗ F(u)) f (u) in RN , (1.1)

where N > 5, α ∈ (0, N − 4), Iα is the Riesz potential given by

Iα(x) =
Γ((N − α)/2)

2απN/2Γ(α/2)|x|N−α
, x ∈ RN \ {0},

Γ denotes the Gamma function, F(t) = |t|p/p + |t|q/q, f (t) = |t|p−2t + |t|q−2t for all t ∈ R,
and the potential function V ∈ C(RN) and satisfies

(V) there exist V0, V∞ > 0 such that V0 6 V(x) 6 V∞ for all x ∈ RN , and lim|x|→∞ V(x) = V∞.

In the case F(t) = |t|p, f (t) = |t|p−2t for all t ∈ R, and V = 1, the Choquard equation (1.1)
reduces to the general Choquard equation

− ∆u + u = (Iα ∗ |u|p)|u|p−2u in RN . (1.2)
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When N = 3, α = 2, and p = 2, the equation (1.2) has appeared in many interesting physical
models and is known as the well-known Choquard–Pekar equation [6, 15], the Schrödinger–
Newton equation [2, 3, 10, 18], and the stationary Hartree equation. In this case, the existence
of ground states of equation (1.2) was obtained in [6, 8, 9] by variational methods.

In view of the Hardy–Littlewood–Sobolev inequality, see Lemma 2.1 below, it can be shown
that the energy functional corresponding to (1.2), for every α ∈ (0, N), is well defined on
H1(RN) and belongs to C1 if

N + α

N
6 p 6

N + α

N − 2
,

where (N + α)/N is called the lower critical exponent and (N + α)/(N − 2) is called the
upper critical exponent. V. Moroz and J. Van Schaftingen established the existence of ground
state solutions to the Choquard equation (1.2) in [11] if p is in the subcritical range, namely
p ∈ ((N + α)/N, (N + α)/(N− 2)), and some qualitative properties. By the Pohožaev identity
[4, 5, 12], the Choquard equation (1.2) has no nontrivial ground state solution when p 6
(N + α)/N or p > (N + α)/(N − 2). For the more content of the equation (1.2), we refer
the interested reader to the guide [14].

When V is a positive constant, F ∈ C1 and satisfies

(F1) there exists a positive constant C such that

|tF
′
(t)| 6 C(|t|(N+α)/N + |t|(N+α)/(N−2)), t ∈ R,

(F2) limt→∞ F(t)/|t|(N+α)/(N−2) = 0 and limt→0 F(t)/|t|(N+α)/N = 0,

(F3) there exists a constant t0 ∈ R \ {0} such that F(t0) 6= 0,

Moroz and Van Schaftingen [13] proved the existence of ground state to the equation (1.1).
J. Seok [17] acts against the subcriticality condition (F2), and consider that F is doubly critical,
i.e.,

F(t) =
1
p
|t|p + 1

q
|t|q, p =

N + α

N
, q =

N + α

N − 2
.

The functional
∫

RN (Iα ∗ F(u))F(u) contains two terms
∫

RN (Iα ∗ |u|p)|u|p and
∫

RN (Iα ∗ |u|q))|u|q.
For the related critical problems involving only a single critical exponent, we refer to [1,12,16].
However, few work concerns the case that F is doubly critical. J. Seok cleverly estimated
the energy, overcome the lack of compactness, and proved that the equation (1.1) admits a
nontrivial solution under appropriate assumptions on α and N in radial space H1

r (R
N). Two

natural questions arise. Does the solution has the least energy among nontrivial solutions of
equation (1.1) in H1(RN)? Furthermore, does the equation (1.1) has ground state solution in
H1(RN) if V is not a constant? To the best of our knowledge, there are no results on these
questions. The present paper is devoted to these aspects and answers these questions. Our
main result is as follows.

Theorem 1.1. Let N > 5, α ∈ (0, N − 4), the potential V satisfy the condition (V), and f (t) =

|t|p−2t + |t|q−2t for all t ∈ R, where p = (N + α)/N and q = (N + α)/(N − 2). Then the equation
(1.1) has a nonnegative ground state solution provided V(x) < V∞ for all x ∈ RN .

We say that a function u ∈ H1(RN) is a solution to (1.1) if J′(u) = 0, for the definition of J,
see (2.2) below. The solution u obtained in Theorem 1.1 is a ground state solution in the sense
that it minimizes the corresponding energy functional J among all nontrivial solutions.
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Since the appearance of the potential V breaks down the invariance under translations in
RN , we cannot use the translation invariant argument directly. To overcome this challenge,
we need use the comparison arguments between the minimax level of the energy functional
corresponding to (1.1) and that to the limit equation

− ∆u + V∞u = (Iα ∗ F(u)) f (u) in RN . (1.3)

Thus, we first need to study the existence of ground state solution to the equation (1.3). The
result is stated as follows.

Theorem 1.2. Let N > 5, α ∈ (0, N − 4), f (t) = |t|p−2t + |t|q−2t for all t ∈ R, where p =

(N + α)/N and q = (N + α)/(N − 2). Then the equation (1.3) has a nonnegative ground state
solution.

The proof of Theorem 1.2 relies on two ingredients: the nontrivial nature of solution to the
equation (1.3) up to translation under the strict inequality

c < min
{

1
2

(
1− 1

p

)
(pVp

∞Sp
1 )

1/(p−1),
1
2

(
1− 1

q

)
(qSq

2)
1/(q−1)

}
obtained by a concentration-compactness argument (Lemma 3.2) and the proof of the latter
strict inequality (Lemma 3.1).

The rest of this paper is organized as follows. We give some preliminaries in Section 2.
Theorems 1.2 and 1.1 are proved in Sections 3 and 4, respectively.

Throughout this paper we always use the following notations. The letters Ci, i = 1, 2, . . .
and C are positive constants which may change from line to line. R+ = [0, ∞). BR(y) denotes
the open ball centered at y with radius R in RN . For each s ∈ [1, ∞), Ls(RN) denotes the
Lebesgue space with the norm |u|s =

(∫
RN |u|s

)1/s, u ∈ Ls(RN).

2 Preliminaries

In this section, we give some preliminaries. When V satisfies the condition (V), the following
lemmas are all set up.

Let H1(RN) be the usual Sobolev space. According to the conditions of the function V, we
can define an equivalent norm on H1(RN),

(u, v) =
∫

RN
(∇u · ∇v + Vuv), ‖u‖ = (u, u)1/2, u, v ∈ H1(RN).

H1(RN) is embedded continuously into Ls(RN) for each s ∈ [2, 2∗]. Thus, for each s ∈ [2, 2∗],
there exists a positive constant Cs such that

|u|s 6 Cs‖u‖, u ∈ H1(RN). (2.1)

The energy functional J associated to the equation (1.1) is defined by

J(u) =
1
2

∫
RN

(|∇u|2 + Vu2)− 1
2

∫
RN

(Iα ∗ F(u))F(u), u ∈ H1(RN). (2.2)

By the Hardy–Littlewood–Sobolev inequality, see Lemma 2.1 below, we know that J is well
defined on H1(RN) and belongs to C1, and its derivative is given by

〈J′(u), v〉 =
∫

RN
(∇u · ∇v + Vuv)−

∫
RN

(Iα ∗ F(u)) f (u)v, u, v ∈ H1(RN).
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Therefore, a weak solution of the equation (1.1) corresponds to a critical point of the energy
functional J.

We consider the following constraint minimization problem

c := inf
N

J, (2.3)

where N denotes the Nehari manifold

N = {u ∈ H1(RN) \ {0} : I(u) := 〈J′(u), u〉 = 0},

I(u) = ‖u‖2 −
∫

RN

[
Iα ∗

(
1
p
|u|p + 1

q
|u|q

)]
(|u|p + |u|q), u ∈ H1(RN), (2.4)

and N is C1.
To study the constraint minimization problem related with (1.1), we need to recall the

following well-known Hardy–Littlewood–Sobolev inequality, see [7].

Lemma 2.1 (Hardy–Littlewood–Sobolev inequality). Let r, s > 1 and µ ∈ (0, N) with

1
r
+

µ

N
+

1
s
= 2.

Then there exists a sharp constsnt C(N, µ, r) > 0 such that for all u ∈ Lr(RN) and v ∈ Ls(RN),∣∣∣∣∫
RN

∫
RN

u(x)v(y)
|x− y|µ dxdy

∣∣∣∣ 6 C(N, µ, r)|u|r|v|s. (2.5)

The sharp constant satisfies that

C(N, µ, r) 6
N

N − µ
(|SN−1|/N)µ/N 1

rs

((
µ/N

1− 1/r

)µ/N

+

(
µ/N

1− 1/s

)µ/N
)

.

If r = s = 2N/(2N − µ), then

C(N, µ, r) = C(N, µ) = πµ/2 Γ(N/2− µ/2)
Γ(N − µ/2)

(
Γ(N/2)

Γ(N)

)−1+µ/N

,

and there is equality in (2.5) if and only if v = Cu and

u(x) = A(γ2 + |x− a|2)−(2N−µ)/2

for some A ∈ C, 0 6= γ ∈ R and a ∈ RN .
Notice that, when µ = N − α, by the Hardy–Littlewood–Sobolev inequality, for each u ∈

H1(RN), the integral ∫
RN

∫
RN

|u(x)|β|u(y)|θ
|x− y|N−α

dxdy

is well defined if

β, θ ∈
[

N + α

N
,

N + α

N − 2

]
.

Let
Φ(u) =

∫
RN

(Iα ∗ |u|β)|u|θ , u ∈ H1(RN),

where α ∈ (0, N), and β, θ ∈ [(N + α)/N, (N + α)/(N − 2)]. By the Hardy–Littlewood–
Sobolev and the Hölder inequalities, a standard analysis shows that the following properties
hold.
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Lemma 2.2. If {un} ⊂ H1(RN) is a sequence converging weakly to u in H1(RN) as n → ∞, then
we have

Φ(u) 6 lim inf
n→∞

Φ(un). (2.6)

〈Φ′(un), v〉 → 〈Φ′(u), v〉, v ∈ H1(RN). (2.7)

Proof. Assume that {vn} is an arbitrary subsequence of {un}. Since vn → u in Ls
loc(R

N) for
s ∈ [1, 2∗), there exists a subsequence {wn} of {vn} such that wn → u a.e. on RN .

By Fatou’s lemma, we have Φ(u) 6 lim infn→∞ Φ(wn). Thus, (2.6) holds.
Next, we will prove (2.7). Using the Hardy–Littlewood–Sobolev inequality and the sym-

metry property of convolution, we deduce that, for β, θ ∈ [(N + α)/N, (N + α)/(N − 2)],∫
RN
|(Iα ∗ |wn|β)|wn|θ−2wnv− (Iα ∗ |u|β)|u|θ−2uv|

6
∫

RN
|(Iα ∗ |wn|β)(|wn|θ−2wn − |u|θ−2u)v|+

∫
RN
|Iα ∗ (|wn|β − |u|β)|u|θ−2uv|

6 C|wn|β2βN/(N+α)
|(|wn|θ−2wn − |u|θ−2u)v|2N/(N+α) +

∫
RN
|(Iα ∗ |u|θ−2uv)(|wn|β − |u|β)|.

Set 2N/(N + α) = r. Since
{ ∣∣|wn|θ−2wn − |u|θ−2u

∣∣r } is bounded in Lθ/(θ−1)(RN) and
|wn|θ−2wn → |u|θ−2u a.e. on RN , it follows from |v|r ∈ Lθ(RN) that |(|wn|θ−2wn − |u|θ−2u)v|r
→ 0. Further, since {wn} is bounded in Lβr(RN), we see that

C|wn|β2βN/(N+α)
|(|wn|θ−2wn − |u|θ−2u)v|2N/(N+α) → 0. (2.8)

Since Iα ∗ |u|θ−2uv ∈ Lr/(r−1)(RN), {|wn|β − |u|β} is bounded in Lr(RN) and |wn|β → |u|β a.e.
on RN , we see that ∫

RN
|(Iα ∗ |u|θ−2uv)(|wn|β − |u|β)| → 0. (2.9)

It follows from (2.8) and (2.9) that 〈Φ′(wn), v〉 → 〈Φ′(u), v〉. Thus, (2.7) is true.

Lemma 2.3. For each u ∈ H1(RN) \ {0}, there exists a unique tu > 0 such that tuu ∈ N . Moreover,
J(tuu) = maxt∈R+ J(tu).

Proof. For each u ∈ H1(RN) \ {0}, the function g(t) := J(tu) takes the form C1t2 − C2t2p −
C3tp+q − C4t2q for all t ∈ R+. By Remark 2.4 below, we see that g has a unique positive
critical point tu corresponding to its maximum, i.e., g′(tu) = 0 and g(tu) = maxR+ g. Hence,
I(tuu) = tug′(tu) = 0 and J(tuu) = maxt∈R+ J(tu).

Remark 2.4. Let a, b, c be positive constants. By elementary calculation one obtains that the
function

g(t) = t2 − at2p − btp+q − ct2q, t ∈ R+,

has a unique positive critical point t0 with g′(t) > 0 for all t ∈ (0, t0), and g′(t) < 0 for all
t ∈ (t0, ∞). Thus, g takes the maximum at t = t0.

Lemma 2.5. There exist positive constants δ and ρ such that ‖u‖ > δ and 〈I′(u), u〉 6 −ρ for all
u ∈ N .
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Proof. Because of the definition of N , by (2.4), the Hardy–Littlewood–Sobolev inequality and
(2.1), we can derive that

‖u‖2 6
1
p

∫
RN

(Iα ∗ (|u|p + |u|q))(|u|p + |u|q)

6 C1‖u‖2p + C2‖u‖p+q + C3‖u‖2q, u ∈ N . (2.10)

Since p, q > 1, there exists a positive constant δ such that ‖u‖ > δ for all u ∈ N .
Furthermore, by (2.4) and (2.10), we have that

−〈I′(u), u〉 = 2(p− 1)
p

∫
RN

(Iα ∗ |u|p)|u|p +
2(q− 1)

q

∫
RN

(Iα ∗ |u|q)|u|q

+
(p + q− 2)(p + q)

pq

∫
RN

(Iα ∗ |u|p)|u|q

>
2(p− 1)

p

[∫
RN

(Iα ∗ |u|p)|u|p +
∫

RN
(Iα ∗ |u|q)|u|q + 2

∫
RN

(Iα ∗ |u|p)|u|q
]

> 2(p− 1)‖u‖2 > 2(p− 1)δ2.

Set ρ = 2(p− 1)δ2. The proof is completed.

To obtain a (PS)c sequence of the energy functional J, we show that the functional has the
mountain pass geometry.

Lemma 2.6. The functional J satisfies the mountain pass geometry, that is,

(i) there exist r, η > 0 such that J(u) > η for all u ∈ ∂Br = {u ∈ H1(RN) : ‖u‖ = r}, and
J(u) > 0 for all u with 0 < ‖u‖ 6 r;

(ii) there exists u0 ∈ H1(RN) such that ‖u0‖ > r and J(u0) < 0.

Proof. (i) By the Hardy–Littlewood–Sobolev inequality and (2.1), we derive that

J(u) >
1
2
‖u‖2 − C1‖u‖2p − C2‖u‖p+q − C3‖u‖2q.

Then (i) follows if r > 0 is small enough.
(ii) For any given u ∈ H1(RN) \ {0}, the function g(t) := J(tu) take the form C1t2−C2t2p−

C3tp+q − C4t2q for all t ∈ R+. Since g(0) = 0 and limt→∞ g(t) = −∞, there exists t0 > 0 large
enough such that (ii) holds for u0 = t0u.

We define
c1 = inf

γ∈Γ
max
t∈[0,1]

J(γ(t)),

where Γ = {γ ∈ C([0, 1], H1(RN)) : γ(0) = 0, J(γ(1)) < 0}. Then it follows from Lemma 2.6
(i) that c1 > 0. Furthermore, we can show that the minimax value c1 also can be characterized
by c = c1 = c2, where c is defined in (2.3), and

c2 = inf
H1(RN)\{0}

max
t∈R+

J(tu).

According to Lemma 2.6 and [19, Theorem 2.8, p.41], there is a (PS)c sequence {un} ⊂ H1(RN),
that is,

J′(un)→ 0, J(un)→ c.
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Lemma 2.7. Let {un} ⊂ H1(RN) be a (PS)c sequence of J. Then {un} is bounded in H1(RN).

Proof. Since {un} ⊂ H1(RN) is a (PS)c sequence, we have that

c + o(1) + o(1)‖un‖ = J(un)−
1

2p
I(un) >

1
2

(
1− 1

p

)
‖un‖2.

Because of p > 1, the above inequality induce that {un} is bounded.

Lemma 2.8. Let {un} ⊂ H1(RN) be a (PS)c sequence of J and un ⇀ u in H1(RN). If u 6= 0, then
the equation (1.1) has a nonnegative ground state solution of the equation (1.1).

Proof. Since un ⇀ u in H1(RN), it follows from (2.7) that J′(u) = 0. Because u 6= 0, we know
that u ∈ N is a nonzero critical point of J. Using (2.6), we obtain

c 6 J(u)− 1
2

I(u)

=
p− 1
2p2

∫
RN

(Iα ∗ |u|p)|u|p +
q− 1
2q2

∫
RN

(Iα ∗ |u|q)|u|q +
p + q− 2

2pq

∫
RN

(Iα ∗ |u|p)|u|q

6 lim inf
n→∞

[
p− 1
2p2

∫
RN

(Iα ∗ |un|p)|un|p +
q− 1
2q2

∫
RN

(Iα ∗ |un|q)|un|q

+
p + q− 2

2pq

∫
RN

(Iα ∗ |un|p)|un|q
]

= lim inf
n→∞

[
J(un)−

1
2

I(un)

]
= c,

which implied that J(u) = c.
Consider w = |u|. An easy computation shows that w ∈ N and J(w) = J(u) = c. It

follows from the Lagrange multiplier theorem that J′(w) = λI′(w) for some λ ∈ R. Hence,
λ〈I′(w), w〉 = 〈J′(w), w〉 = 0. By Lemma 2.5, we know that 〈I′(w), w〉 6 −ρ. Thus, λ = 0,
which implies that w is a nonnegative solution of the equation (1.1). Since J(w) = c, it is a
nonnegative ground state solution to the equation (1.1).

3 Proof of Theorem 1.2

Before giving the proof of Theorem 1.1, we need give the proof of Theorem 1.2. In this section,
V = V∞.

The following two inequalities are special cases of the Hardy–Littlewood–Sobolev inequal-
ity. The first one is

S1

(∫
RN

(Iα ∗ |u|(N+α)/N)|u|(N+α)/N
)N/(N+α)

6
∫

RN
u2, u ∈ H1(RN). (3.1)

The second one is

S2

(∫
RN

(Iα ∗ |v|(N+α)/(N−2))|v|(N+α)/(N−2)
)(N−2)/(N+α)

6
∫

RN
|∇v|2, v ∈ H1(RN). (3.2)

By Lemma 2.1 and [1, Lemma 2.2], we see that the best constants S1 and S2 are achieved
if and only if uλ(x) = C1λN/2/(λ2 + |x|2)N/2 for all x ∈ R, and vλ(x) = C2λ(N−2)/2/
(λ2 + |x|2)(N−2)/2 for all x ∈ R, respectively. The next lemma comes from [17], for reader’s
convenience, we give a detailed proof.
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Lemma 3.1. There exists u0 ∈ H1(RN) \ {0} such that

sup
t∈R+

J(tu0) < min
{

1
2

(
1− 1

p

)
(pVp

∞Sp
1 )

1/(p−1),
1
2

(
1− 1

q

)
(qSq

2)
1/(q−1)

}
.

Proof. Let us define two functions

uλ(x) := C1
λN/2

(λ2 + |x|2)N/2 , vλ(x) := C2
λ(N−2)/2

(λ2 + |x|2)(N−2)/2
, x ∈ RN , λ > 0,

which are the extremal functions of inequalities (3.1) and (3.2), respectively. Since N > 5,
uλ, vλ ∈ H1(RN). By computing, we have that for each λ > 0

uλ(x) = λ−N/2u1(x/λ), vλ(x) = λ−(N−2)/2v1(x/λ), x ∈ RN ,

|uλ|2 = |u1|2, |vλ|2 = λ|v1|2, (3.3)

|∇uλ|2 = λ−1|∇u1|2, |∇vλ|2 = |∇v1|2, (3.4)

∫
RN

(Iα ∗ |uλ|p)|uλ|p =
∫

RN
(Iα ∗ |u1|p)|u1|p, (3.5)∫

RN
(Iα ∗ |uλ|p)|uλ|q = λ−q

∫
RN

(Iα ∗ |u1|p)|u1|q, (3.6)∫
RN

(Iα ∗ |uλ|q)|uλ|q = λ−2q
∫

RN
(Iα ∗ |u1|q)|u1|q, (3.7)∫

RN
(Iα ∗ |vλ|p)|vλ|p = λ2p

∫
RN

(Iα ∗ |v1|p)|v1|p,∫
RN

(Iα ∗ |vλ|p)|vλ|q = λp
∫

RN
(Iα ∗ |v1|p)|v1|q,∫

RN
(Iα ∗ |vλ|q)|vλ|q =

∫
RN

(Iα ∗ |v1|q)|v1|q.

The constants C1 and C2 are chosen to satisfy

∫
RN

u2
1 =

∫
RN

(Iα ∗ |u1|p)|u1|p,
∫

RN
|∇v1|2 =

∫
RN

(Iα ∗ |v1|q)|v1|q. (3.8)

Let sλ > 0 and tλ > 0 satisfy

J(sλuλ) = max
s∈R+

J(suλ), J(tλvλ) = max
t∈R+

J(tvλ). (3.9)

Then there exist s̄λ > sλ and t̄λ > tλ such that J(s̄λuλ) < 0 and J(t̄λvλ) < 0. Thus, by defining
γ1(t) = ts̄λuλ and γ2(t) = tt̄λvλ for all t ∈ [0, 1], we see that

c 6 min
{

max
t∈[0,1]

J(γ1(t)), max
t∈[0,1]

J(γ2(t))
}

= min{J(sλuλ), J(tλvλ)}.
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It follows from (3.9), (3.3)–(3.7) that

0 =
d
dt

[J(tuλ)]

∣∣∣∣
t=sλ

= sλ

∫
RN
|∇uλ|2 + sλ

∫
RN

V∞u2
λ −

s2p−1
λ

p

∫
RN

(Iα ∗ |uλ|p)|uλ|p

−
(p + q)sp+q−1

λ

pq

∫
RN

(Iα ∗ |uλ|p)|uλ|q −
s2q−1

λ

q

∫
RN

(Iα ∗ |uλ|q)|uλ|q (3.10)

=
sλ

λ2

∫
RN
|∇u1|2 + sλ

∫
RN

V∞u2
1 −

s2p−1
λ

p

∫
RN

(Iα ∗ |u1|p)|u1|p

−
(p + q)sp+q−1

λ

pqλq

∫
RN

(Iα ∗ |u1|p)|u1|q −
s2q−1

λ

qλ2q

∫
RN

(Iα ∗ |u1|q)|u1|q,

which implies that

0 6
1

λ2

∫
RN
|∇u1|2 +

∫
RN

V∞u2
1 −

s2p−2
λ

p

∫
RN

(Iα ∗ |u1|p)|u1|p. (3.11)

Let s∞ = lim supλ→∞ sλ. Suppose that s∞ = ∞. Then we get a contradiction by (3.11). Thus
s∞ < ∞. Taking again λ→ ∞ in (3.10), we obtain

s∞

∫
RN

V∞u2
1 =

s2p−1
∞

p

∫
RN

(Iα ∗ |u1|p)|u1|p,

which from (3.8) implies s∞ = (pV∞)1/(2p−2). Furthermore, we can prove that limλ→∞ sλ =

(pV∞)1/(2p−2). Hence,

J(sλuλ) =
s2

λ

2

∫
RN
|∇uλ|2 +

s2
λ

2

∫
RN

V∞u2
λ −

s2p
λ

2p2

∫
RN

(Iα ∗ |uλ|p)|uλ|p

−
sp+q

λ

pq

∫
RN

(Iα ∗ |uλ|p)|uλ|q −
s2q

λ

2q2

∫
RN

(Iα ∗ |uλ|q)|uλ|q

=
s2

λ

2λ2

∫
RN
|∇u1|2 +

s2
λ

2

∫
RN

V∞u2
1 −

s2p
λ

2p2

∫
RN

(Iα ∗ |u1|p)|u1|p

−
sp+q

λ

pqλq

∫
RN

(Iα ∗ |u1|p)|u1|q −
s2q

λ

2q2λ2q

∫
RN

(Iα ∗ |u1|q)|u1|q

6
1
2

(
V∞s2

λ −
s2p

λ

p2

) ∫
RN

u2
1 −

1
λq

[
sp+q

λ

pq

∫
RN

(Iα ∗ |u1|p)|u1|q −
s2

λ

2λ2−q

∫
RN
|∇u1|2

]
.

Note that the function f (s) := V∞ p2s2 − s2p, s ∈ R+, attains its maximum at s = s∞. This
shows that

1
2

(
V∞s2

λ −
s2p

λ

p2

) ∫
RN

u2
1 6

1
2

(
1− 1

p

)
(pVp

∞Sp
1 )

1/(p−1).

It follows from 4 + α < N that q < 2 and

lim
λ→∞

[
sp+q

λ

pq

∫
RN

(Iα ∗ |u1|p)|u1|q −
s2

λ

2λ2−q

∫
RN
|∇u1|2

]
=

sp+q
∞

pq

∫
RN

(Iα ∗ |u1|p)|u1|q > 0.
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Thus,

J(sλuλ) <
1
2

(
1− 1

p

)
(pVp

∞Sp
1 )

1/(p−1)

for sufficiently large λ > 0.
Similarly we have

0 =
d
dt

[J(tvλ)]

∣∣∣∣
t=tλ

= tλ

∫
RN
|∇vλ|2 + tλ

∫
RN

V∞v2
λ −

t2p−1
λ

p

∫
RN

(Iα ∗ |vλ|p)|vλ|p

−
(p + q)tp+q−1

λ

pq

∫
RN

(Iα ∗ |vλ|p)|vλ|q −
t2q−1
λ

q

∫
RN

(Iα ∗ |vλ|q)|vλ|q (3.12)

= tλ

∫
RN
|∇v1|2 + tλλ2

∫
RN

V∞v2
1 −

t2p−1
λ λ2p

p

∫
RN

(Iα ∗ |v1|p)|v1|p

−
(p + q)tp+q−1

λ λp

pq

∫
RN

(Iα ∗ |v1|p)|v1|q −
t2q−1
λ

q

∫
RN

(Iα ∗ |v1|q)|v1|q,

which implies that

0 6
∫

RN
|∇v1|2 + λ2

∫
RN

V∞v2
1 −

t2q−2
λ

q

∫
RN

(Iα ∗ |v1|q)|v1|q. (3.13)

Let t0 := lim supλ→0 tλ. Then we can get that t0 < ∞ by (3.13). Taking again λ → 0 in (3.12),
we get

t0

∫
RN
|∇v1|2 =

t2q−1
0
q

∫
RN

(Iα ∗ |v1|q)|v1|q,

which implies t0 = q1/(2q−2). Furthermore, we can prove that limλ→0 tλ = q1/(2q−2). Thus,

J(tλvλ) =
t2
λ

2

∫
RN
|∇vλ|2 +

t2
λ

2

∫
RN

V∞v2
λ −

t2p
λ

2p2

∫
RN

(Iα ∗ |vλ|p)|vλ|p

−
tp+q
λ

pq

∫
RN

(Iα ∗ |vλ|p)|vλ|q −
t2q
λ

2q2

∫
RN

(Iα ∗ |vλ|q)|vλ|q

=
t2
λ

2

∫
RN
|∇v1|2 +

t2
λλ2

2

∫
RN

V∞v2
1 −

t2p
λ λ2p

2p2

∫
RN

(Iα ∗ |v1|p)|v1|p

−
tp+q
λ λp

pq

∫
RN

(Iα ∗ |v1|p)|v1|q −
t2q
λ

2q2

∫
RN

(Iα ∗ |v1|q)|v1|q

6
1
2

(
t2
λ −

t2q
λ

q2

) ∫
RN
|∇v1|2 − λp

[
tp+q
λ

pq

∫
RN

(Iα ∗ |v1|p)|v1|q −
t2
λλ2−p

2

∫
RN

V∞v2
1

]
.

Note that the function g(t) := q2t2 − t2q, t ∈ R+, attains its maximum at t = t0. Hence,

1
2

(
t2
λ −

t2q
λ

q2

) ∫
RN
|∇v1|2 6

1
2

(
1− 1

q

)
(qSq

2)
1/(q−1).

It follows from p < 2 that

lim
λ→0

[
tp+q
λ

pq

∫
RN

(Iα ∗ |v1|p)|v1|q −
t2
λλ2−p

2

∫
RN

V∞v2
1

]
=

tp+q
0
pq

∫
RN

(Iα ∗ |v1|p)|v1|q > 0.
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Thus,

J(tλvλ) <
1
2

(
1− 1

q

)
(qSq

2)
1/(q−1)

for sufficiently small λ.

The next lemma establishes an important information involving the (PS)c sequence which
will be crucial later on.

Lemma 3.2. Assume that {un} ⊂ H1(RN) is a (PS)c sequence of J. Then there exists σ > 0 and a
sequence {yn} ⊂ RN such that

lim sup
n→∞

∫
B1(yn)

u2
n > σ.

Proof. Assuming the contrary that

sup
y∈RN

∫
B1(y)

u2
n → 0,

it follows that
un → 0 in Ls(RN), s ∈ (2, 2∗).

Choose t and τ close to 2N/(N + α) satisfying

t <
2N

N + α
< τ,

1
t
+

N − α

N
+

1
τ
= 2.

By the Hardy–Littlewood–Sobolev inequality, we know that for all n,∫
RN

∫
RN

|un(x)|p|un(y)|q
|x− y|N−α

dxdy 6 C|un|ppτ|un|qqt,

from which it follows that∫
RN

∫
RN

|un(x)|p|un(y)|q
|x− y|N−α

dxdy→ 0, n→ ∞.

Since {un} is a (PS)c sequence, we get that

c =
1
2
‖un‖2 − 1

2p2

∫
RN

(Iα ∗ |un|p)|un|p −
1

2q2

∫
RN

(Iα ∗ |un|q)|un|q + o(1), (3.14)

‖un‖2 =
1
p

∫
RN

(Iα ∗ |un|p)|un|p +
1
q

∫
RN

(Iα ∗ |un|q)|un|q + o(1). (3.15)

If un → 0 in H1(RN) as n → ∞, it follows from (3.14) that c = 0, which is a contradiction.
Thus,

lim sup
n→∞

‖un‖ > 0. (3.16)

By virtue of (3.1), (3.2) and (3.15), we obtain that

V∞S1

(∫
RN

(Iα ∗ |un|p)|un|p
)1/p

+ S2

(∫
RN

(Iα ∗ |un|q)|un|q
)1/q

6
1
p

∫
RN

(Iα ∗ |un|p)|un|p +
1
q

∫
RN

(Iα ∗ |un|q)|un|q + o(1). (3.17)
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Let
a := lim sup

n→∞

∫
RN

(Iα ∗ |un|p)|un|p, b := lim sup
n→∞

∫
RN

(Iα ∗ |un|q)|un|q,

both of which are finite since {un} is bounded. Passing to a limit in (3.17), we have that

V∞S1a1/p + S2b1/q 6
a
p
+

b
q

. (3.18)

Moreover, by (3.15) and (3.16), we obtain a+ b > 0. If a < (pV∞S1)
p/(p−1) and b < (qS2)q/(q−1),

then it follows from (3.18) that

0 6
a
p
+

b
q
−V∞S1a1/p − S2b1/q = a1/p

(
1
p

a(p−1)/p −V∞S1

)
+ b1/q

(
1
q

b(q−1)/q − S2

)
< 0.

This is a contradiction. Thus, a > (pV∞S1)
p/(p−1) or b > (qS2)q/(q−1). By (3.14) and (3.15)

again, we have

c =
1

2p

(
1− 1

p

) ∫
RN

(Iα ∗ |un|p)|un|p +
1
2q

(
1− 1

q

) ∫
RN

(Iα ∗ |un|q)|un|q + o(1).

It follows that either c > 2−1(1− 1/p)(pVp
∞Sp

1 )
1/(p−1) or c > 2−1(1− 1/q)(qSq

2)
1/(q−1), which

contradicts to fact stated in Lemma 3.1.

Proof of Theorem 1.2. By Lemma 3.1, there exists a (PS)c sequence {un} ⊂ H1(RN) with

0 < c < min
{

1
2

(
1− 1

p

)
(pVp

∞Sp
1 )

1/(p−1),
1
2

(
1− 1

q

)
(qSq

2)
1/(q−1)

}
.

By Lemma 3.2, there exist σ > 0 and a sequence {yn} ⊂ RN such that

lim sup
n→∞

∫
B1(yn)

u2
n > σ.

Since J and J′ are both invariant by translation, it follows that {vn} ⊂ H1(RN) is still a (PS)c

sequence and

lim sup
n→∞

∫
B1(0)

v2
n > σ, (3.19)

where vn(·) = un(·+ yn) for all n. It follows from Lemma 2.7 that {vn} is bounded. We may
assume that vn ⇀ v in H1(RN). Thus, v 6= 0 by (3.19) and Lemma 2.8 implies the desired
results. The proof is completed.

4 Proof of Theorem 1.1

In this section, the potential function V < V∞ for all x ∈ RN . When V = V∞, we denote
J,N , c, I and ‖ · ‖ by J∞,N∞, c∞, I∞ and ‖ · ‖V∞ , respectively. Firstly, we present a key estimate
for c.

Lemma 4.1. One has that c < c∞.
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Proof. By Theorem 1.2, there exists a function u ∈ N∞ such that J∞(u) = c∞ and J′∞(u) = 0.
Since V < V∞ for all x ∈ RN , we have that

I(u) = I∞(u) +
∫

RN
(V −V∞)u2 < 0.

Thus, according to Remark 2.4, there exists a positive number tu < 1 such that tuu ∈ N .
Hence,

c∞ = J∞(u) > J∞(tuu) = J(tuu) +
1
2

∫
RN

(V∞ −V)|tuu|2 > c.

The proof is completed.

Now, we ready to prove our main result Theorem 1.1.

Proof of Theorem 1.1. Let {un} ⊂ H1(RN) be a (PS)c sequence. It follows from c > 0 that there
exists δ > 0 such that ‖un‖ > δ for sufficiently large n. Using Lemma 2.7, we can assume that
un ⇀ u. To prove Theorem 1.1, by Lemma 2.8, we only need to show that u 6= 0. Suppose, by
contradiction, that u = 0. Then un → 0 in Ls

loc(R
N) for all s ∈ [1, 2∗). Since

∫
RN

(V∞ −V)u2
n =

∫
BR

(V∞ −V)u2
n +

∫
Bc

R

(V∞ −V)u2
n

6 V∞

∫
BR

u2
n + ε(R)|un|22,

where ε(R) = supBc
R
(V∞ −V) → 0 as R → ∞, we obtain that

∫
RN (V∞ −V)u2

n → 0 as n → ∞.
Consequently,

I∞(un) = I(un) +
∫

RN
(V∞ −V)u2

n = o(1). (4.1)

For each n, according to Lemma 2.3, there exists tn > 0 such that tnun ∈ N∞. It follows from
Lemma 2.5 that there exists δ∞ > 0 such that ‖tnun‖V∞ > δ∞ for all n. Thus, lim infn→∞ tn > 0
because ‖un‖V∞ is upper-bounded. Now we prove that {tn} is bounded. Otherwise, we
suppose that lim supn→∞ tn = ∞. Without loss of generality, we may assume that tn → ∞ as
n→ ∞. Since {tnun} ⊂ N∞, we have that for sufficiently large n,

t2
n‖un‖2

V∞
=

t2p
n

p

∫
RN

(Iα ∗ |un|p)|un|p +
(p + q)tp+q

n

pq

∫
RN

(Iα ∗ |un|p)|un|q +
t2q
n

q

∫
RN

(Iα ∗ |un|q)|un|q

> t2p
n

(
1
p

∫
RN

(Iα ∗ |un|p)|un|p +
p + q

pq

∫
RN

(Iα ∗ |un|p)|un|q +
1
q

∫
RN

(Iα ∗ |un|q)|un|q
)

= t2p
n (‖un‖2 + o(1)) > t2p

n (δ2 + o(1)),

which deduce a contradiction. Since {tnun} ⊂ N∞, it follows from (4.1) that

1
p
(t2(p−1)

n − 1)
∫

RN
(Iα ∗ |un|p)|un|p +

1
q
(t2(q−1)

n − 1)
∫

RN
(Iα ∗ |un|q)|un|q

+
p + q

pq
(tp+q−2

n − 1)
∫

RN
(Iα ∗ |un|p)|un|q = o(1).
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Since ‖un‖ > δ for sufficiently large n, we can assume limn→∞ tn = 1. Thus, we have that

c + o(1) = J(un)−
1
2

I(un)

=
p− 1
2p2

∫
RN

(Iα ∗ |un|p)|un|p +
q− 1
2q2

∫
RN

(Iα ∗ |un|q)|un|q

+
p + q− 2

2pq

∫
RN

(Iα ∗ |un|p)|un|q

=
p− 1
2p2

∫
RN

(Iα ∗ |tnun|p)|tnun|p +
q− 1
2q2

∫
RN

(Iα ∗ |tnun|q)|tnun|q

+
p + q− 2

2pq

∫
RN

(Iα ∗ |tnun|p)|tnun|q + o(1)

= J∞(tnun)−
1
2

I∞(tnun) + o(1)

= J∞(tnun) + o(1) > c∞ + o(1),

which contradict to Lemma 4.1. Thus, u 6= 0. The proof is completed.
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