EXACT MULTIPLICITY OF POSITIVE SOLUTIONS
IN SEMIPOSITONE PROBLEMS WITH
CONCAVE-CONVEX TYPE NONLINEARITIES

SUDHASREE GADAM AND JOSEPH A. IAlA

Abstract. We study the existence, multiplicity, and stability of positive solutions to:

—u''(z) = Af(u(z)) for z € (—1,1), A >0,
w(=1) =0 = (D),

where f : [0,00) — R is semipositone (f(0) < 0) and superlinear (lim¢—oo f(t)/t = 00). We consider the case
when the nonlinearity f is of concave-convex type having exactly one inflection point. We establish that f should
be appropriately concave (by establishing conditions on f) to allow multiple positive solutions. For any A > 0, we
obtain the exact number of positive solutions as a function of f(t)/t and establish how the positive solution curves
to the above problem change. Also, we give examples where our results apply. This work extends the work in [1]
by giving a complete classification of positive solutions for concave-convex type nonlinearities.

1. INTRODUCTION

We study the positive solutions to the two point boundary value problem:

(1.1) —u"(x) = Af(u(x)) for x € (=1,1), A >0,
(1.2) w(=1) = 0 = u(1),

where f :[0,00) — R is a twice differentiable function such that:

(1.3) f(0) < 0 (semipositone), lim )

; = oo (superlinear), and f has a unique positive zero 3.
— 00

We define F' by F(t) = f(f f(s)ds, and we observe that by (1.3):
(1.4) F has a unique positive zero § > 3.
We also assume that f has exactly one inflection point ¢* with:

(1.5) () <0on (0, t*), f’(t) >0on (t*, oo), and t* > f.
Since (@)’ = tf'(tzigf(” and (tf'(t) — f(t)) =tf"(t) with f(0) <0, it follows from (1.5) that either:
(1.5)1 (f(t)/t) >0 for allt >0, or

(1.5)2 (f(t)/t) >0 for t € (0,t1) U (ta,00) and (f(t)/t)" <0 for t € (t1,t2)
for some t1,ts with 0 < t; < t* < to.
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For future reference we define:

1
(1.6) H(t) = F(t) — 5t (1)
and observe that:

(1.7) H' (1) = 5 (F(1)/1)"

Finally, for a positive solution of (1.1)-(1.2), we define:

p= sup u(z).
(_Ll)

We refer the reader to [2, 3] where the classification (1.5)1, (1.5)2 helps in giving a complete description of
positive solution curves for concave nonlinearities. In [7], Shi and Shivaji consider (1.5)2 and obtain a similar
result to Theorem 1 section (2) with reasonably different methods from ours.

We also note that in [9], Wang considers the positone problem (f(0) > 0) with f initially convex and
then concave. Finally, semipositone problems occur in several harvesting models (see [4]) and have been
extensively studied in [1-3] and [5-8].

Our main results are:

Theorem 1.

(1) If f satisfies (1.3)-(1.5) and (1.5)1, then there exists \* with 0 < X\* < oo such that (1.1)-(1.2) has
no positive solutions for X > \* and has a unique positive solution for A € (0, \*] (see Fig. 1).

/O Figure 1

>\*

In addition, p = py is a decreasing function of X with py : (0, \*] — [0, 00) such that py« = 0 and
hm+ pr = Fo00.

—

(2) If f satisfies (1.3)-(1.5), (1.5)2, and H(t*) > 0, then there exist A1, Ag, \* with 0 < A\; < A2 < 00 and
A1 < A < 00 such that (1.1)-(1.2) has no positive solutions for A > max{A2, \*} and has a unique
positive solution for X < Ay while for X = Ay it has exactly two positive solutions. Also, px» = 6 and
/\11151+ px = +oo.

SUBCASE A: If Ay < X* then for A € (A1, A2) (1.1)-(1.2) has exactly three positive solutions while for
A = Ay it has exactly two positive solutions. Finally, if A € (Aa, \*] then (1.1)-(1.2) has exactly one

positive solution (see Fig. 2A).
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/O Figure 2A

%1 %2 X

SUBCASE B: If Ao > A* then for A € (A, \*] (1.1)-(1.2) has exactly three positive solutions while for
A€ (A, A\a) (1.1)-(1.2) has exactly two positive solutions. Finally, for A\ = Ao the problem (1.1)-(1.2)
has exactly one positive solution (see Fig. 2B).

/O Figure 2B

Ay XN X

This paper is organized as follows. In Section 2, we study the variations of the positive solutions with respect
to the parameters A and p. We prove Theorem 1 in Section 3. In Section 4 we give a family of examples
which satisfies the hypotheses of Theorem 1.

2. FIRST AND SECOND VARIATIONS WITH RESPECT TO PARAMETERS

We first observe that any positive solution of (1.1)-(1.2) must be symmetric about the origin. To see this,
let g € (—1, 1) be the point at which u attains its maximum. Denote u(z¢) = p > 0. Thus «/(z¢) = 0 and it
follows that u(zo+x) and u(zg—x) satisfy the differential equation (1.1) as well as the same initial conditions
at xg. Therefore, by uniqueness of solutions of initial value problems, we must have u(zg + ) = u(xo — z).
So assuming without loss of generality that x¢ > 0, we see then that 0 = u(1) = u(2z¢ — 1) and since u > 0
on (—1,1), we must have 2o — 1 = —1 - i.e. 9 = 0 and thus v is symmetric about the origin.

With this result, for any p > 0 and any A > 0 we define u(x, A, p) to be the solution to the initial value
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problem:
(2.1) u’(x) + Af(u(z)) =0, A >0,
(2.2) uw(0) = p >0, u'(0) =0,

where ’ denotes differentiation with respect to . Observing that u(—x, A, p) also solves (2.1) and (2.2), it
follows from the uniqueness of solutions of initial value problems that u(—z, A, p) = u(x, A, p). Thus we see
that the set of positive solutions of (1.1)-(1.2) is precisely the set of solutions of (2.1)-(2.2) for which:

(2.3) u(z, A\, p) >0 for =€ (0,1) and u(1, A, p) =0.

We now prove some elementary properties of positive solutions of (1.1)-(1.2) (and hence of (2.1)-(2.3) for
some p > 0). Multiplying (2.1) by «/(z), integrating over (0, z), and using (2.2) yields:

1
(2.4) W @)+ AF(u(@)) = AF(p).
Evaluating this at x = 1 gives:

1 / 2

(25 0< LI/ = AF (o).
Since for p > 0 we have F(p) > 0 if and only if p > 6 (by (1.4)), we see from (2.5) that:
(2.6) positive solutions of (1.1)-(1.2) satisfy p > 6, and
(2.7) positive solutions of (1.1)-(1.2) satisfy u'(1) < 0 if p > 6 and u/(1) = 0 if p = 6.

Also observe that if w is a positive solution to (2.1)-(2.3), then u”(0) = —Af(p) < 0 (by (1.1), (1.3), and
(2.6)) and therefore v’ < 0 on (0,¢€) for some € > 0. In fact v/(z) < 0 on (0,1) for if v/(z1) = 0 at some
first 21 € (0,1) then 0 < u(z1) < p while from (2.4) and (2.5) we have F(u(z1)) = F(p) > 0. Thus by (1.4)
B <0 <wu(zry) < p. But this is impossible since F' is increasing for > § (by (1.3)) and thus:

(2.8) positive solutions of (1.1)-(1.2) satisfy u’(z) < 0 on (0, 1).

Next we observe that u(xd, A, p) and u(z, \d?, p) satisfy the same initial value problem and so by uniqueness
of solutions of initial value problems we have:

u(zd, \, p) = u(z, A\d?, p).
After differentiating this with respect to d and setting d = 1, we obtain:

(2.9) zu'(z,\, p) = 2)\%(30, A, p).

Next let v denote the solution to the corresponding linearized problem of (1.1):

(2.10) v"(z) + A (u(z))v(x) = 0,

(2.11) v(0) =1, 2'(0) =0,

and let w denote the solution to the problem:

(2.12) w”(z) + M (u(@))w(z) + Af" (u(z))v? (z) = 0,

(2.13) w(0) =0, w'(0) = 0.

That is, v and w are the first and second derivatives of u with respect to p - i.e. v = g—Z(,T,)\,p) and

2
w= g—p;‘(z,/\,p).

Now observe that by multiplying (2.10) by «/(z) and integrating on (0, x) we obtain:

(2.14) w(z)v'(z) + Af (u(z))v(z) = Af(p)-
Similarly, multiplying (2.12) by w’(x) and integrating on (0, z) gives:
(2.15) W (@) () + M (u(@)w() + v (@) + Af (u(@)v? (@) = Af'(p).
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Lemma 2.1. Suppose [ satisfies (1.3). Let u(x, Ao, po) be a positive solution to (1.1)-(1.2). Then v(x) =

g—;j(x,)\o,po) has at most one zero in [0, 1].

Proof. We first observe that if v(zo) = 0 then v'(x¢) # 0 for if v'(x¢) = 0 then by uniqueness of solutions of
initial value problems, it follows that v = 0. On the other hand, v(0) =1 # 0.

Now on to the proof of the lemma. Suppose by the way of contradiction that x; and xo are the first
two consecutive zeros of v. Then by the remarks in the previous paragraph and since v(0) = 1, we have
v'(x1) < 0 and v/'(z2) > 0. Also by (2.14) it follows that u'(z2)v'(x2) = Ao f(po) and so we see that u'(x2)
and f(po) have the same sign. But since py > 6 (by (2.6)), it follows from (1.3)-(1.4) that f(po) > 0 and
hence u'(x2) > 0. But this contradicts (2.7)-(2.8). Hence, v(z) can have at most one zero on [0,1]. O

Remark: Note that the above lemma does not rely on the concavity properties of f. [

Lemma 2.2. Suppose f satisfies (1.8)-(1.5). Let u(x, N, po) be a positive solution to (1.1)-(1.2) with
0 < po < t* and suppose also that v(1) = g—Z(l,)\o,po) =0. Then w(l) = g%‘(l,ko,po) > 0.

Proof. Recall that v = §% satisfies (2.10)-(2.11) and w = g;g satisfies (2.12)-(2.13). Multiplying (2.10) by

w and (2.12) by v, subtracting one from the other, integrating over (0, 1), and using v(1) = 0 we obtain:

1
(2.16) w(l)v'(1) = / o f” (u(z))w? () d.

0
Since v(1) = 0, it follows from lemma 2.1 that we have v > 0 on [0, 1) and it also follows from the uniqueness
of solutions to initial value problems that v'(1) < 0. Since 6 < pg < t* and u(z) is decreasing on (0,1) (by
(2.8)), it follows that u(z) < pg < t* on (0,1) and so by (1.5) we have f”(u(x)) < 0 on (0,1). These facts
and (2.16) imply w(1) > 0. This proves the lemma. O

Lemma 2.3. If f satisfies (1.3)-(1.5), (1.5)2, and H(t*) > 0, then the function defined by J : [0,00) — R,
J(t) = f/()F(t) — 2 f2(t) has exactly one positive zero, t**, and 0 < t* < t** < ts.

Proof. By (1.5), t* > 3. Combining this with the fact that H(¢*) > 0 implies F(t*) > 1¢* f(t*) > 0 (since
t* > ) and so F(t*) > 0 which implies t* > 6 (by (1.4)).

Next observe that J'(t) = f”(t)F(t) so J is increasing on (0,60) U (t*,00) and decreasing on (6,t*). Also,
observe J(#) < 0 so that J < 0 on [0,t*]. Hence J has at most one positive zero.

Also, J = f'H — fH’' hence J(t2) = f'(t2)H(t2) and f(t2) = taf'(t2) (by (1.5)2). Since to > ¢t* >
(by (1.5)2), we have taf’(t2) = f(t2) > 0 and so J(t2) > 0 because H has a maximum at ty and so
H(tz) > H(t*) > 0. Thus, J has exactly one positive zero, t**, and 6 < t* < t** < to. This completes the
proof of the lemma. [

Lemma 2.4. Suppose f satisfies (1.3)-(1.5) and (1.5). Let u(z, Ao, po) be a positive solution of (1.1)-(1.2)
with po > t** and suppose also that v(1) = g—Z(l,)\o,po) =0. Then w(l) = ‘3273(1, Ao, po) < 0.

Proof. We define:
E=1v"+ o f! (u)v?

and observe (by (2.10)) that:
E' = Xof"(u)u'v?.

Since py > t** > t*, examining the sign of E’ along with (1.5) and (2.8), we see that F is decreasing on
(0,z*) and increasing on (z*,1) where z* is the point at which u(z*) = t*.

Thus, F has exactly one local minimum and no local maxima on (0,1). Hence the maximum of E on [0,1]
occurs either at t =0 or z = 1.

Next, we see from lemma 2.3 that po > t** implies J(po) > 0. Using (2.4), (2.11), (2.14), and the fact that
v(1) = 0, we obtain:

=4 (po) = 0.
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Thus, for 2 € [0,1] we have v/ 4+ Ao f(u)v? = E(x) < E(0) = Ao f'(po). Hence, by (2.15):
w'w' + X f(uw)w >0 on [0,1].
Now solving (2.4) for v/, using (2.8) and substituting into the above inequality gives:

e W)
2 /Floo) - F(u)

Multiplying by the appropriate integrating factor and then integrating on (e, z) C (0, 1] for € > 0 we have:

w<0 on (0,1].

T 7q ERI F(u) dt
/ (we 2 ¢ Flpo)—F(w) )’ <0.
€

Now, for e small enough we have w(e) < 0 because by (2.12)-(2.13) we have w(0) = 0,w’(0) = 0, and
w”(0) = =Xof"(po) < 0 since pg > t** > t*. Therefore:

o Ra f(w) dt

w(z)e 2 VFGo-Fm < p(e) < 0.

Hence w(z) < 0 on (e, 1]. In particular, w(1) < 0. This completes the proof of the lemma. O

3. PROOF OF THEOREM 1

We begin by rewriting (2.4), and we obtain:

—u'(z)

V2(/F(p) — F(u(x))

=+vA on (0,1).
Thus, after integrating on (z,1) and using u(1) = 0 we obtain:

(3.1) ! dt V(L — ).

V2lo  EG)-F@)

Letting x — 0 gives:

(3.2)

G(p).

1 P dt
A= 7 / VE(p) - F(?)

Thus, given a positive solution of (1.1)-(1.2) (and hence of (2.1)-(2.3) for some p > ), we see that A and p
are related by equation (3.2).

Conversely, given A\g > 0, if there exists a py € [#,00) with G(pg) = VAo, then we can obtain a positive
solution of (1.1)-(1.2) as follows. Define K : [0, po] — R by:

K(x

T -
V3o VEGp) - F@)

Since pg > 6, it follows from (1.3)-(1.4) that 1/+/F(po) — F(t) is integrable on [0, po]. Thus K is continuous
on [0, po] while from (3.2) we have K(pg) = G(po) = v/Ao. Also:

>0 on [07/)0)
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Thus K is continuous and increasing on [0, po] and so K has an inverse. In addition,

(K~ '(2)) = V2VF(p) — F(K~1(x)).
Taking a hint from (3.1) which says a positive solution of (1.1)-(1.2) satisfies K (u(x)) = VA(1 —z), we define
u(z) = K1(Vo(1 — ).

It is then straightforward to show that u solves (2.1)-(2.3) with A = Ao and p = po.

Thus, we see that the set of A for which there is a positive solution of (1.1)-(1.2) is precisely those positive
A for which there is a solution - p - of G(p) = V/X. Therefore we now turn our attention to a study of the
function G' = v\ defined in (3.2).

We begin by changing variables in (3.2) and obtain:

1

/3G — Glo pdv
VF F(pv)
and from (1.3)-(1.4) it follows \/A(p) is a positive continuous function on [0, 00). Also, by (1.3)-(1.4):
1 YOy
A0) = G(9) = / A* = finite, positive.
v =F( 91}

In addition, y/A(p) is differentiable over (6, 00) and:

X (p) L [t H(p)— H(pv)
(3.3) =G'(p) = —/ dv

2/ () V2 Jo [F(p) — F(pv)]3/2

where H is given by (1.6).

Since u(z, A(p), p) is a positive solution of (1.1)-(1.2), we also have:
u(1,A(p), p) = 0.
Differentiating this with respect to p gives:

(3.4) O (1 M0 )V () + g—yu(mm) 0.

We now show that lirg+ N (p) = —oc0. We know from above that lim A(p) = A(f) = \* is positive and finite.
p—

p—0+

Also, p£%+ 9u(1,M(p), p) = hm L oxrt (1, A(0), ) = axyw/ (1,A(9),0) = 0 by (2.7) and (2.9). On the other

hand, (2.7) and (2.14) imply 111%1+ g—Z(l, Ap), p) = % < 0. It now follows from (3.4) that:
p—

(3.5) lim X (p) = —cc.

p—07T
We claim now that A'(p) < 0 for large p and lim A(p) =

p—r00
Since H' = 1(f —tf’) < 0 for p large and H” = —1tf"” < 0 for p > t*, it follows that pan;oH(p) = —o0.
Combining these facts, it follows that for large p we have H(p) < H(pv) for all v € (0, 1). Therefore, by (3.3)

(3.6) N (p) <0 for large p.
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Next, we rewrite v/\ as:
1/2 p dv 1 ! pdv

1
VAG) = Glp) = — __pdv
v2Jo  \/F(p)—F(pv) F(p) = F(pv)
From (1.5), f” > 0 for ¢ > ¢t* and from (1.3) f(t)/t — oo as t — oo, thus f(= F’) and f are positive for
large t and tlim F(t) = co. Therefore, for 0 < v < 1 and p large we have F(pv) < F(4p). And so by the

mean value theorem:

1

Flp) ~ Flpv) > Flp) ~ F(3p) > £ pf(50).

Also for % < v < 1 and large p, we have again by the mean value theorem:

Fip) ~ F(pv) = pf (30)(1 — ).

Combining these estimates into the first and second integrals above respectively gives:

1 [ P 1
Np) =Glp) < — | —L 4 — - .
ERECEE Y Sl Syt R
Thus, by the superlinearity of f - (1.3) - we see that
(3.7 lim A(p) = 0.

p—00

Consequently, since A(p) is continuous on [0, 00) and tends to 0 at infinity (by (3.7)), we see that A(p) is a
bounded function. Thus, (1.1)-(1.2) has no positive solutions for \ > [rgmx) Alp)-

Case (1.5); : It remains to prove that \'(p) < 0 for p € (6, 00). From (1.6) we have H'(t) = $[f(t) — tf'(t)]
and H"(t) = —3tf"(t). Since (1.5); holds we infer that H'(t) < 0 (in fact, H'(t) = 0 for at most one value
of t) and hence N (p) < 0 follows from (3.3).

This together with that A(p) is continuous on [f, 00) implies that A(p) has an inverse, py : (0, \*] — [0, 00)
and p) <0 on (0,00) with px- =6 and )\11:161+ px = oo. This completes the proof of Case (1.5);.

Case (1.5)3 : In view of (1.5)2 and (1.7) we have H'(t) < 0 on [0,%1) U (t2,00) and H'(t) > 0 on (¢1,t2).
Thus for p € (t*,t**) C (t1,t2) H is increasing and H(p) > H(t*) > 0. Also, since H(0) = 0 and H is
decreasing on (0, t1), it follows that H(pv) < H(p) for all v € (0,1) and all p € (t*,t**). Hence by (3.3):

(3.8) N(p) >0 for pe (t", ).

Combining this with (3.5) and (3.6) we see that A(p) has at least one local minimum on (6, t*) and at least
one local maximum on (£**,00). To complete the proof of theorem 1 we will show that these are the only
critical points of A(p). First, suppose pg € (0,t*) and X (pg) = 0. From (3.4) we see 6—p(1 Apo), po) = 0.

From lemma 2.2 we see that 2273(1, A(po), po) > 0. Differentiating (3.4) and evaluating at pg gives:

ou 0?u

(3.9) a)\(1 Alpo); po) " (po) + 82(1 A(po), po) = 0.

Since %(1, A(po), po) < 0 by (2.7) and (2.9), we see that A”(po) > 0. Hence, py must be a local minimum
of A(p). If there were a second critical point, p; € (6,t*), of A(p), the same argument shows that it too
would be a local minimum of A(p) and thus between py and p; there would be a local maximum, p2, with
A(p2) > 0 but this is clearly impossible. Thus, pg is the only critical point of A(p) on (6,¢*). Similarly,
suppose pg € (t**,00) and X (pg) = 0. Then as before (3.4) implies g—Z(l, A(po), po) = 0. Now using lemma
2.4 we see that gi/;;(l, A(po), po) < 0. And as above, using (3.9) we see that A”(pg) < 0. Hence, py must be
a local maximum of A(p) and as above this is the only critical point of A(p) on (¢**,00). This completes the

proof of theorem 1. [
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4. EXAMPLES

Consider f(t) = t3—3At>+ 6Bt —C where A, B, and C are positive. Then f is semipositone and superlinear.
Also, f has exactly one inflection point at t* = A. We have f’(t) = 3t> — 6At + 6B hence f’(t) > 0 for all
t if and only if 2B > A2%. Thus if 2B > A2, f has exactly one zero 3 and since we have f(t*) = f(A4) =
—2A% + 6AB — C, we see that t* > (3 if 6AB > 243 + C. Next, H(t) = F(t) — 3tf(t) = —1t* + 4¢3 — 1Ct,
H'(t) = —t3 + 3442 — 1C, and H"(t) = —3t> + 3At. Thus, H' has exactly one local maximum at t* = A. If
H'(A) > 0 then H' has two zeros, while H' < 0 if H'(A) < 0. Note that H'(A) > 0 if and only if A*> > C
and H(t*) = H(A) > 0 if and only if A> > 2C. Thus, (1.3)-(1.5) and (1.5); are satisfied if we choose
positive 4, B, C so that 6B > £ +242, C' > A® whereas (1.3)-(1.5) and (1.5)» are satisfied if 68 > & +2A2,
A3 >2C, and 2B > A2,
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