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Abstract. For an arbitrary noninvertible evolution family on the half-line and for
ρ : [0, ∞) → [0, ∞) in a large class of rate functions, we consider the notion of a ρ-
dichotomy with respect to a family of norms and characterize it in terms of two ad-
missibility conditions. In particular, our results are applicable to exponential as well as
polynomial dichotomies with respect to a family of norms. As a nontrivial application
of our work, we establish the robustness of general nonuniform dichotomies.
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1 Introduction

Among many methods used to study the asymptotic behavior of nonautonomous systems,
one of the most famous is the so-called admissibility method. This line of research in the
context of differential equations has a long history that goes back to the pioneering work of
Perron [26]. The main idea of Perron’s work was to characterize the asymptotic properties of
the linear differential equation

ẋ(t) = A(t)x(t), t ∈ J,

in terms of the (unique) solvability in O(J, X) of the equation

ẋ(t) = A(t)x(t) + f (t), t ∈ J,

for each test function f ∈ I(J, X), where J ∈ {[0, ∞), R}. Here X is a Banach space, while
I(J, X) – the input-space and O(J, X) – the output space are suitably constructed function
spaces. The milestones of this theory were grounded in the sixtieth in the remarkable works of
Massera and Schäffer [18–20] and respectively in the seventies in the outstanding monographs
of Coppel [10] and Daleckı̆i and Kreı̆n [11].

BCorresponding author. Email: ddragicevic@math.uniri.hr

https://doi.org/10.14232/ejqtde.2020.1.58
https://www.math.u-szeged.hu/ejqtde/
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Since then various authors obtained valuable contributions to this line of the research.
For the results dealing with characterizations of uniform exponential behavior in terms of
appropriate admissibility properties, we refer to the works of Huy [15], Latushkin, Randolph
and Schnaubelt [16], Van Minh, Räbiger and Schnaubelt [22], Van Minh and Huy [23], Preda,
Pogan and Preda [28, 29] as well as Sasu and Sasu [31–35]. For contributions dealing with
various concepts of nonuniform exponential behavior, we refer to [4, 5, 17, 21, 27, 30, 36] and
references therein. For a detailed description of this line of the research, we refer to [6].

We point out that all the above works deal with exponential behavior. Although this type
of behavior has a somewhat privileged role due to its connections with the hyperbolic smooth
dynamics, it is certainly not the only type of behavior that appears in the qualitative study
of nonautonomous differential equations. To the best of our knowledge, the study of di-
chotomies with not necessarily exponential rates of expansion and contraction was initiated
by Muldowney [24] and Naulin and Pinto [25]. More recently, in the context of nonuniform
asymptotic behavior such dichotomies have been studied by Barreira and Valls [1,3] and Bento
and Silva [8,9]. A special emphasis was devoted to the so-called polynomial dichotomies [2,7].
A complete characterization of polynomial dichotomies in terms of admissibility for evolution
families was obtained by Dragičević [12] (see also [13] for related results in the case of discrete
time) by building on the work of Hai [14], who considered polynomial stability.

The main objective of the present paper is to obtain similar results to that in [12] but
for a much wider class of dichotomies. More precisely, for a large class of rate functions
ρ : [0, ∞) → [0, ∞), we introduce the notion of a ρ-dichotomy with respect to a family of
norms. We then obtain a complete characterization of this concept in terms of appropriate
admissibility conditions. We point out that our results are new even in the particular case of
uniform ρ-dichotomies. Indeed, although the proofs use the somewhat standard techniques,
the major task accomplished in the present paper was to formulate appropriate admissibility
conditions for the general dichotomies we study. In addition, the obtained results are new
even for the class of polynomial dichotomies since in comparison to [12], we do not require
that our evolution family exhibits polynomial bounded growth property. Consequently, we
need to impose two admissibility conditions (rather than just one as in [12]) to characterize
polynomial dichotomies. We stress that in the present paper we also use different admissibility
spaces from those in [12].

The paper is organized as follows. In Section 2 we introduce the class of dichotomies we
study as well as input and output spaces we are going to use. In Section 3, we show that the
existence of ρ-dichotomies yields two types of admissibility properties. Then, in Section 4 we
obtain a converse result by showing that those admissibility properties imply the existence
of a ρ-dichotomy. Finally, in Section 5 we apply those results to establish the robustness of
ρ-dichotomies.

2 Preliminaries

2.1 Generalized dichotomies

Let X = (X, ‖·‖) be an arbitrary Banach space and let B(X) be the Banach algebra of all
bounded linear operators on X. A family T = {T(t, s)}t≥s≥0 of operators in B(X) is said to
be an evolution family on X if the following properties hold:

• T(t, t) = Id, for t ≥ 0;



Admissibility and general dichotomies for evolution families 3

• T(t, s)T(s, τ) = T(t, τ), for t ≥ s ≥ τ ≥ 0;

• for all s ≥ 0 and x ∈ X the mapping t 7→ T(t, s)x is continuous on [s, ∞) and the
mapping t 7→ T(s, t)x is continuous on [0, s].

In this paper we always assume that T = {T(t, s)}t≥s≥0 is an evolution family on X and
let ρ : [0, ∞)→ [0, ∞) be a strictly increasing function of class C1 such that

ρ(0) = 0 and lim
t→∞

ρ(t) = ∞.

In particular, observe that ρ is bijective. Furthermore, assume that {‖·‖t}t≥0 is a family of
norms on X such that:

• there exist C > 0 and ε ≥ 0 with

‖x‖ ≤ ‖x‖t ≤ Ceερ(t)‖x‖, for x ∈ X and t ≥ 0; (2.1)

• the mapping t 7→ ‖x‖t is continuous for each x ∈ X.

We say that the evolution family T admits a ρ-dichotomy with respect to the family of
norms ‖·‖t, t ≥ 0, if there exists a family {P(t)}t≥0 of projections on X satisfying

T(t, s)P(s) = P(t)T(t, s), for t ≥ s ≥ 0, (2.2)

such that
T(t, s)|Ker P(s) : Ker P(s)→ Ker P(t) is invertible for all t ≥ s ≥ 0, (2.3)

and there exist constants λ, D > 0 such that:

• for x ∈ X and t ≥ s ≥ 0,

‖T(t, s)P(s)x‖t ≤ De−λ(ρ(t)−ρ(s))‖x‖s; (2.4)

• for x ∈ X and 0 ≤ t ≤ s,

‖T(t, s)(Id− P(s))x‖t ≤ De−λ(ρ(s)−ρ(t))‖x‖s, (2.5)

where

T(t, s) :=
(

T(s, t)|Ker P(t)

)−1

: Ker P(s)→ Ker P(t),

for 0 ≤ t ≤ s.

In the following we recall the concept of ρ-nonuniform exponential dichotomy for evolution
families (see [1,3]) and establish its connection with the notion of ρ-dichotomy with respect to
a family of norms. An evolution family T is said to admit a ρ-nonuniform exponential dichotomy
if there exists a family {P(t)}t≥0 of projections on X satisfying (2.2) and (2.3), and there exist
constants λ, D > 0 and ε ≥ 0 such that

‖T(t, s)P(s)‖ ≤ De−λ(ρ(t)−ρ(s))+ερ(s), for t ≥ s ≥ 0, (2.6)

and
‖T(t, s)(Id− P(s))‖ ≤ De−λ(ρ(s)−ρ(t))+ερ(s), for 0 ≤ t ≤ s. (2.7)
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The concept of ρ-nonuniform exponential dichotomy includes as a special case the usual
exponential behavior when ρ(t) = t. Also, for ρ(t) = ln(t + 1) we obtain the concept of nonuni-
form polynomial dichotomy introduced independently by Barreira and Valls [2] and Bento and
Silva [7], and more general for ρ(t) =

∫ t
0 µ(t)dt, where µ : [0, ∞) → (0, ∞) is a continuous

function such that limt→∞
∫ t

0 µ(t)dt = ∞, we obtain the nonuniform version of the generalized
dichotomy in the sense of Muldowney [24].

Proposition 2.1. The following statements are equivalent:

1. T admits a ρ-nonuniform exponential dichotomy;

2. T admits a ρ-dichotomy with respect to a family of norms ‖ · ‖t, t ≥ 0 such that t 7→ ‖x‖t is
continuous for each x ∈ X.

Proof. Assume that T admits a ρ-nonuniform exponential dichotomy. For t ≥ 0 and x ∈ X,
set

‖x‖t = sup
τ≥t

eλ(ρ(τ)−ρ(t))‖T(τ, t)P(t)x‖+ sup
τ∈[0,t]

eλ(ρ(t)−ρ(τ))‖T(τ, t)(Id− P(t))x‖.

A simple computation shows that (2.1) holds for C = 2D. Moreover, by repeating the argu-
ments in the proof of [6, Proposition 5.6], one can show that t 7→ ‖x‖t is continuous for each
x ∈ X. Furthermore, for t ≥ s ≥ 0 and x ∈ X we have

‖T(t, s)P(s)x‖t = sup
τ≥t

eλ(ρ(τ)−ρ(t))‖T(τ, s)P(s)x‖

= sup
τ≥t

e−λ(ρ(t)−ρ(s))eλ(ρ(τ)−ρ(s))‖T(τ, s)P(s)x‖

≤ e−λ(ρ(t)−ρ(s)) sup
τ≥s

eλ(ρ(τ)−ρ(s))‖T(τ, s)P(s)x‖

≤ e−λ(ρ(t)−ρ(s))‖x‖s,

and thus (2.4) holds. Similarly, one can prove (2.5). Hence, the evolution family T admits a
ρ-dichotomy with respect to the family of norms ‖ · ‖t, t ≥ 0, defined above.

Conversely, assume that T admits a ρ-dichotomy with respect to a family of norms ‖ · ‖t

on X satisfying (2.1) for some C > 0 and ε ≥ 0. For t ≥ s ≥ 0 and x ∈ X we have

‖T(t, s)P(s)x‖ ≤ ‖T(t, s)P(s)x‖t

≤ De−λ(ρ(t)−ρ(s))‖x‖s

≤ DCeερ(s)e−λ(ρ(t)−ρ(s))‖x‖,

and thus (2.6) holds. Similarly, one can show (2.7). Therefore, the evolution family T admits
a ρ-nonuniform exponential dichotomy.

2.2 Admissible spaces

Let Y1 be the space of all Bochner measurable functions x : [0, ∞)→ X such that

‖x‖1 :=
∫ ∞

0
‖x(t)‖t dt < ∞,
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identifying functions that are equal Lebesque-almost everywhere. It is easy to show that
(Y1, ‖·‖1) is a Banach space (see [4, Theorem 1]). Moreover, consider the space Y∞ of all
continuous functions x : [0, ∞)→ X such that

‖x‖∞ := sup
t≥0
‖x(t)‖t < ∞.

One can easily prove that (Y∞, ‖·‖∞) is a Banach space. For a closed subspace Z ⊂ X, YZ
∞ is

the space of all x ∈ Y∞ such that x(0) ∈ Z. Obviously, YZ
∞ is a closed subspace of Y∞, therefore

it is also a Banach space.
We consider another Banach function space (Y′∞, ‖·‖′∞), which consists of all Bochner mea-

surable functions x : [0, ∞)→ X such that

‖x‖′∞ := ess sup
t≥0

‖x(t)‖t < ∞,

where ess sup is taken with respect to the Lebesgue measure on [0, ∞).

3 From dichotomy to admissibility

In this section we show that the existence of a ρ-dichotomy with respect to a family of norms
for an evolution family T = {T(t, s)}t≥s≥0 yields the admissibility of the pairs

(
YZ

∞, Y1
)
,(

YZ
∞, Y′∞

)
for a certain closed subspace Z ⊂ X.

Proposition 3.1. Assume that the evolution family T admits a ρ-dichotomy with respect to a family
of norms ‖·‖t, t ≥ 0, and set Z = Ker P(0). Then, for each y ∈ Y1 there exists a unique x ∈ YZ

∞ such
that

x(t) = T(t, s)x(s) +
∫ t

s
T(t, τ)y(τ) dτ, for t ≥ s ≥ 0. (3.1)

Proof. Take an arbitrary y ∈ Y1. For t ≥ 0, set

x(t) =
∫ t

0
T(t, s)P(s)y(s) ds−

∫ ∞

t
T(t, s)(Id− P(s))y(s) ds.

It follows from (2.4) and (2.5) that

‖x(t)‖t ≤
∫ t

0
‖T(t, s)P(s)y(s)‖t ds +

∫ ∞

t
‖T(t, s)(Id− P(s))y(s)‖t ds

≤ D
∫ t

0
e−λ(ρ(t)−ρ(s))‖y(s)‖s ds + D

∫ ∞

t
e−λ(ρ(s)−ρ(t))‖y(s)‖s ds

≤ D
∫ t

0
‖y(s)‖s ds + D

∫ ∞

t
‖y(s)‖s ds = D ‖y‖1,

for every t ≥ 0, and thus x ∈ Y∞. On the other hand, it is easy to check that x(0) ∈ Z.
Therefore, x ∈ YZ

∞. Moreover, for t ≥ s ≥ 0 we have

x(t)− T(t, s)x(s) =
∫ t

0
T(t, τ)P(τ)y(τ) dτ − T(t, s)

∫ s

0
T(s, τ)P(τ)y(τ) dτ

−
∫ ∞

t
T(t, τ)(Id− P(τ))y(τ) dτ

+T(t, s)
∫ ∞

s
T(s, τ)(Id− P(τ))y(τ) dτ

=
∫ t

s
T(t, τ)P(τ)y(τ) dτ +

∫ t

s
T(t, τ)(Id− P(τ))y(τ) dτ

=
∫ t

s
T(t, τ)y(τ) dτ,
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and therefore we conclude that (3.1) holds. In order to establish the uniqueness, it is sufficient
to consider the case when y = 0. Let x ∈ YZ

∞ such that

x(t) = T(t, s)x(s), for t ≥ s ≥ 0.

Then, from (2.5) we have

‖x(0)‖0 = ‖(Id− P(0))x(0)‖0 = ‖T(0, t)(Id− P(t))x(t)‖0

≤ De−λρ(t)‖x(t)‖t

≤ De−λρ(t)‖x‖∞,

for every t ≥ 0. Passing to the limit when t → ∞, we conclude that x(0) = 0, which implies
that x = 0.

Proposition 3.2. Assume that the evolution family T admits a ρ-dichotomy with respect to a family
of norms ‖·‖t, t ≥ 0, and set Z = Ker P(0). Then, for each y ∈ Y′∞ there exists a unique x ∈ YZ

∞ such
that

x(t) = T(t, s)x(s) +
∫ t

s
ρ′(τ)T(t, τ)y(τ) dτ, for t ≥ s ≥ 0. (3.2)

Proof. Take y ∈ Y′∞. For t ≥ 0, set

x(t) =
∫ t

0
ρ′(s)T(t, s)P(s)y(s) ds−

∫ ∞

t
ρ′(s)T(t, s)(Id− P(s))y(s) ds.

It follows from (2.4) and (2.5) that

‖x(t)‖t ≤
∫ t

0
ρ′(s)‖T(t, s)P(s)y(s)‖t ds +

∫ ∞

t
ρ′(s)‖T(t, s)(Id− P(s))y(s)‖t ds

≤ D
∫ t

0
ρ′(s)e−λ(ρ(t)−ρ(s))‖y(s)‖s ds + D

∫ ∞

t
ρ′(s)e−λ(ρ(s)−ρ(t))‖y(s)‖s ds

≤ D‖y‖′∞
( ∫ t

0
ρ′(s)e−λ(ρ(t)−ρ(s)) ds +

∫ ∞

t
ρ′(s)e−λ(ρ(s)−ρ(t)) ds

)
≤ 2D

λ
‖y‖′∞, for every t ≥ 0.

Since x(0) ∈ Z, we conclude that x ∈ YZ
∞. A simple computation shows that (3.2) holds. The

uniqueness part can be established as in the proof of Proposition 3.1.

4 From admissibility to dichotomy

The aim of this section is to prove that the admissibility of the pairs
(
YZ

∞, Y1
)
,
(
YZ

∞, Y′∞
)

for
a closed subspace Z ⊂ X yields the existence of a ρ-dichotomy with respect to the family of
norms {‖·‖t}t≥0. More precisely, our goal is to establish the following result.

Theorem 4.1. Assume that there exists a closed subspace Z ⊂ X such that:

(i) for each y ∈ Y1 there exists a unique x ∈ YZ
∞ satisfying (3.1);

(ii) for each y ∈ Y′∞ there exists a unique x ∈ YZ
∞ satisfying (3.2).

Then, the evolution family T admits a ρ-dichotomy with respect to the family of norms ‖·‖t, t ≥ 0.
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Proof. Let
TZ : D(TZ) ⊂ YZ

∞ → Y1, TZx = y,

where
D(TZ) =

{
x ∈ YZ

∞ : there exists y ∈ Y1 satisfying (3.1)
}

.

Furthermore, let
T′Z : D(T′Z) ⊂ YZ

∞ → Y′∞, T′Zx = y,

where
D(T′Z) =

{
x ∈ YZ

∞ : there exists y ∈ Y′∞ satisfying (3.2)
}

.

Lemma 4.2. The operators TZ : D(TZ)→ Y1, T′Z : D(T′Z)→ Y′∞ are well-defined, linear and closed.

Proof of the lemma. Assume that x ∈ YZ
∞ and y1, y2 ∈ Y1 such that

x(t) = T(t, τ)x(τ) +
∫ t

τ
T(t, s)yi(s) ds,

for t ≥ τ ≥ 0 and i ∈ {1, 2}. Hence,∫ t

τ
T(t, s)(y1(s)− y2(s)) ds = 0, for t > τ ≥ 0.

Dividing by t− τ and letting t− τ → 0, it follows from the Lebesgue differentiation theorem
that

y1(t) = y2(t) for almost every t ≥ 0.

We conclude that y1 = y2 in Y1. Thus, TZ is well-defined and, by definition it is linear.
We now show that TZ is closed. Let (xn)n∈N be a sequence in D(TZ) converging to x ∈ YZ

∞
such that yn = TZxn converges to y ∈ Y1. Then, for t ≥ τ ≥ 0 we have that

x(t)− T(t, τ)x(τ) = lim
n→∞

(xn(t)− T(t, τ)xn(τ)) = lim
n→∞

∫ t

τ
T(t, s)yn(s) ds.

On the other hand, we have∥∥∥∥ ∫ t

τ
T(t, s)yn(s) ds−

∫ t

τ
T(t, s)y(s) ds

∥∥∥∥ ≤ M
∫ t

τ
‖yn(s)− y(s)‖ ds

≤ M
∫ t

τ
‖yn(s)− y(s)‖s ds

≤ M‖yn − y‖1,

where M = M(t, τ) = sup{‖T(t, s)‖ : s ∈ [τ, t]} is finite by the Banach–Steinhaus theorem.
Since yn → y in Y1, we conclude that

lim
n→∞

∫ t

τ
T(t, s)yn(s) ds =

∫ t

τ
T(t, s)y(s) ds,

and therefore (3.1) holds. We conclude that x ∈ D(TZ) and TZx = y. Therefore, TZ is a closed
linear operator. Similarly, one can show that T′Z is well-defined, linear and closed.
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By the assumption in Theorem 4.1, the linear operators TZ, T′Z are bijective, and by pre-
vious lemma and the Closed Graph Theorem they have bounded inverse GZ : Y1 → YZ

∞ and
G′Z : Y′∞ → YZ

∞, respectively.
For τ ≥ 0, set

S(τ) =
{

v ∈ X : sup
t≥τ

‖T(t, τ)v‖t < ∞
}

and U(τ) = T(τ, 0)Z.

Clearly, S(τ) and U(τ) are subspaces of X for each τ ≥ 0.

Lemma 4.3. For τ ≥ 0, we have that

X = S(τ)⊕U(τ). (4.1)

Proof of the lemma. Let τ ≥ 0 and take v ∈ X. Set

g(s) = χ[τ,τ+1](s)T(s, τ)v, s ≥ 0.

Clearly, g ∈ Y1. Since TZ is invertible, there exists h ∈ D(TZ) ⊂ YZ
∞ such that TZh = g. It

follows from (3.1) that
h(t) = T(t, τ)(h(τ) + v) for t ≥ τ + 1.

Since h ∈ Y∞, we conclude that h(τ) + v ∈ S(τ). Similarly, it follows from (3.1) that

h(τ) = T(τ, 0)h(0).

Since h(0) ∈ Z, we have that h(τ) ∈ U(τ) and thus

v = (h(τ) + v) + (−h(τ)) ∈ S(τ) + U(τ).

We have proved that X = S(τ) + U(τ).
Take now v ∈ S(τ) ∩U(τ). Then, there exists z ∈ Z such that v = T(τ, 0)z. We consider a

function h : [0, ∞)→ X, defined by

h(t) = T(t, 0)z for t ≥ 0.

Clearly, h ∈ YZ
∞. Since h(t) = T(t, s)h(s) for all t ≥ s ≥ 0, it follows that TZh = 0 and thus

h = 0. We conclude that v = h(τ) = 0, and hence S(τ) ∩U(τ) = {0}. This completes the
proof of the lemma.

Let P(τ) : X → S(τ) and Q(τ) : X → U(τ) be the projections associated with the decom-
position (4.1), with P(τ) + Q(τ) = Id. Observe that (2.2) holds. Indeed, observe that

T(t, τ)S(τ) ⊂ S(t) and T(t, τ)U(τ) ⊂ U(t), for t ≥ τ ≥ 0.

Hence, we have that for every x ∈ X and t ≥ τ ≥ 0,

P(t)T(t, τ)x = P(t)T(t, τ)P(τ)x + P(t)T(t, τ)Q(τ)x = T(t, τ)P(τ)x.

We conclude that (2.2) holds.

Lemma 4.4. For t ≥ τ ≥ 0, the restriction T(t, τ)|U(τ) : U(τ)→ U(t) is invertible.
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Proof of the lemma. Let t ≥ τ ≥ 0 and take x ∈ U(t). Then, there exists z ∈ Z such that
x = T(t, 0)z. Since T(τ, 0)z ∈ U(τ) and x = T(t, τ)T(τ, 0)z, we conclude that T(t, τ)|U(τ) is
surjective.

Let now x ∈ U(τ) such that T(t, τ)x = 0. Take z ∈ Z such that x = T(τ, 0)z. We define
u : [0, ∞) → X by u(s) = T(s, 0)z, s ≥ 0. Since u(s) = 0 for s ≥ t, we have that u ∈ YZ

∞ and
TZu = 0. Consequently, u = 0 and x = u(τ) = 0. This proves that T(t, τ)|U(τ) is also injective.
The proof of the lemma is completed.

Lemma 4.5. There exists M > 0 such that

‖P(τ)v‖τ ≤ M‖v‖τ, for all v ∈ X and τ ≥ 0. (4.2)

Proof of the lemma. Take v ∈ X and τ ≥ 0 . Moreover, given h > 0, we define a function
gh : [0, ∞)→ X by

gh(t) =
1
h

χ[τ,τ+h](t)T(t, τ)v.

Clearly, gh ∈ Y1 and thus there exists xh ∈ D(TZ) such that TZxh = gh. We have

‖P(τ)v‖τ = ‖xh(τ) + v‖τ ≤ ‖xh(τ)‖τ + ‖v‖τ ≤ ‖GZgh‖∞ + ‖v‖τ.

Moreover,

‖GZgh‖∞ ≤ ‖GZ‖ · ‖gh‖1 = ‖GZ‖
1
h

∫ τ+h

τ
‖T(t, τ)v‖t dt.

Letting h→ 0, we obtain
‖P(τ)v‖τ ≤ (1 + ‖GZ‖) ‖v‖τ,

and we conclude that (4.2) holds for M = 1 + ‖GZ‖.

Lemma 4.6. There exist constants λ, D > 0 such that

‖T(t, τ)v‖t ≤ De−λ(ρ(t)−ρ(τ))‖v‖τ, for t ≥ τ ≥ 0 and v ∈ S(τ). (4.3)

Proof of the lemma. Fix τ ≥ 0 and let v ∈ S(τ). We consider the function

u : [0, ∞)→ X, u(t) = χ[τ,∞)(t)T(t, τ)v.

Moreover, for any fixed h > 0, we define two functions ϕh : [0, ∞)→ R and gh : [0, ∞)→ X by

ϕh(t) =


0, 0 ≤ t ≤ τ,
1
h (t− τ), τ ≤ t ≤ τ + h,

1, t ≥ τ + h,

and
gh(t) =

1
h

χ[τ,τ+h](t) T(t, τ)v, t ≥ 0.

It is easy to show that gh ∈ Y1, ϕhu ∈ D(TZ) and TZ(ϕhu) = gh. We have

sup
t≥τ+h

‖u(t)‖t = sup
t≥τ+h

‖ϕh(t)u(t)‖t ≤ ‖ϕhu‖∞ = ‖GZgh‖∞

≤ ‖GZ‖ · ‖gh‖1

= ‖GZ‖
1
h

∫ τ+h

τ
‖u(s)‖s ds.
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Hence, letting h→ 0 we obtain the inequality

‖u(t)‖t ≤ ‖GZ‖ · ‖v‖τ, for every t ≥ τ.

Thus,
‖T(t, τ)v‖t ≤ ‖GZ‖ · ‖v‖τ, for every t ≥ τ. (4.4)

Let us take t ≥ τ and v ∈ S(τ) such that T(t, τ)v 6= 0, thus T(s, τ)v 6= 0 for all s ∈ [τ, t].
Let us consider x, y : [0, ∞)→ X defined by

y(s) = χ[τ,t](s)
T(s, τ)v
‖T(s, τ)v‖s

, s ≥ 0,

and

x(s) =


0, 0 ≤ s ≤ τ,∫ s

τ ρ′(r) T(s,τ)v
‖T(r,τ)v‖r

dr, τ < s ≤ t,∫ t
τ ρ′(r) T(s,τ)v

‖T(r,τ)v‖r
dr, s > t.

Note that y ∈ Y′∞ and ‖y‖′∞ = 1. Furthermore, since v ∈ S(τ) we get that

‖x(s)‖s ≤
∫ t

τ

ρ′(r)
‖T(r, τ)v‖r

dr ‖T(s, τ)v‖s ≤ at,τ,v sup
r≥τ

‖T(r, τ)v‖r < ∞,

for all s ≥ τ, where

at,τ,v =
∫ t

τ

ρ′(r)
‖T(r, τ)v‖r

dr < ∞,

and thus x ∈ YZ
∞. It is straightforward to show that T′Zx = y. Consequently,

‖x‖∞ = ‖G′Zy‖∞ ≤ ‖G′Z‖ · ‖y‖′∞ = ‖G′Z‖.

Therefore,

‖G′Z‖ ≥ ‖x‖∞ ≥ ‖x(t)‖t = ‖T(t, τ)v‖t

∫ t

τ

ρ′(r)
‖T(r, τ)v‖r

dr. (4.5)

From (4.4) it follows that

1
‖T(r, τ)v‖r

≥ 1
‖GZ‖ · ‖v‖τ

, for all r ∈ [τ, t],

and thus, from (4.5) we get

‖G′Z‖ · ‖GZ‖ · ‖v‖τ ≥ ‖T(t, τ)v‖t (ρ(t)− ρ(τ)), for t ≥ τ and v ∈ S(τ).

Consequently,

(t− τ)
∥∥∥T
(

ρ−1(t), ρ−1(τ)
)

v
∥∥∥

ρ−1(t)
≤ ‖G′Z‖ · ‖GZ‖ · ‖v‖ρ−1(τ),

for t ≥ τ and v ∈ S
(
ρ−1(τ)

)
. Let N0 ∈ N∗ such that N0 > e‖G′Z‖ · ‖GZ‖, and let t ≥ τ + N0.

Then,

N0

∥∥∥T
(

ρ−1(t), ρ−1(τ)
)

v
∥∥∥

ρ−1(t)
≤ (t− τ)

∥∥∥T
(

ρ−1(t), ρ−1(τ)
)

v
∥∥∥

ρ−1(t)

≤ ‖G′Z‖ · ‖GZ‖ · ‖v‖ρ−1(τ),
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which implies that there exists N0 ∈N∗ such that

‖T(ρ−1(t), ρ−1(τ))v‖ρ−1(t) ≤
1
e
‖v‖ρ−1(τ), (4.6)

for t ≥ τ with t− τ ≥ N0 and v ∈ S
(
ρ−1(τ)

)
. Take an arbitrary t ≥ τ with t− τ ≥ N0 and

write t− τ in the form

t− τ = kN0 + r, k = k(t, τ) ∈N∗ and r = r(t, τ) ∈ [0, N0).

Observing that

T
(

ρ−1(t), ρ−1(τ)
)

= T
(

ρ−1(t), ρ−1(τ + kN0)
) k−1

∏
j=0

T
(

ρ−1(τ + (k− j)N0), ρ−1(τ + (k− j− 1)N0)
)

,

it follows from (4.4) and (4.6) that

‖T
(

ρ−1(t), ρ−1(τ)
)

v‖ρ−1(t) ≤ ‖GZ‖ e−k ‖v‖ρ−1(τ)

≤ e ‖GZ‖ e−
1

N0
(t−τ) ‖v‖ρ−1(τ),

and thus (4.3) holds with λ = 1/N0 and D = e ‖GZ‖. The proof of the lemma is completed.

Lemma 4.7. There exist λ, D > 0 such that

‖T(t, τ)v‖t ≤ De−λ(ρ(τ)−ρ(t))‖v‖τ, for 0 ≤ t ≤ τ and v ∈ U(τ). (4.7)

Proof of the lemma. Take τ > 0 and z ∈ Z. We define a function u : [0, ∞)→ X by

u(t) = T(t, 0)z, for t ≥ 0.

For sufficiently small h > 0, we define ψh : [0, ∞)→ R,

ψh(t) =


1, 0 ≤ t ≤ τ − h,

− t−τ
h , τ − h ≤ t ≤ τ,

0, t ≥ τ.

Finally, we consider

gh : [0, ∞)→ X, gh = −1
h

χ[τ−h,τ] u.

It is easy to check that gh ∈ Y1, ψhu ∈ D(TZ) and TZ(ψhu) = gh. Hence,

sup
t∈[0,τ−h]

‖u(t)‖t = sup
t∈[0,τ−h]

‖ψh(t)u(t)‖t ≤ ‖ψhu‖∞ = ‖GZgh‖∞

≤ ‖GZ‖ · ‖gh‖1

= ‖GZ‖ ·
1
h

∫ τ

τ−h
‖u(s)‖s ds.

Letting h→ 0, we get

‖u(t)‖t ≤ ‖GZ‖ · ‖u(τ)‖τ, for 0 ≤ t ≤ τ,
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which implies

‖T(t, 0)z‖t ≤ ‖GZ‖ · ‖T(τ, 0)z‖τ, for z ∈ Z and 0 ≤ t ≤ τ. (4.8)

Take now z ∈ Z \ {0} and 0 ≤ t ≤ τ. We define x, y : [0, ∞)→ X by

y(s) =

{
− T(s,0)z
‖T(s,0)z‖s

, 0 ≤ s ≤ τ,

0, s > τ,

and

x(s) =

{∫ τ
s ρ′(r) T(s,0)z

‖T(r,0)z‖r
dr, 0 ≤ s ≤ τ,

0, s > τ.

Observe that y ∈ Y′∞ and ‖y‖′∞ = 1. Moreover, x ∈ YZ
∞ and it is easy to check that T′Zx = y.

Hence,
‖x‖∞ = ‖G′Zy‖∞ ≤ ‖G′Z‖.

Consequently, for each 0 ≤ s ≤ τ we have

‖G′Z‖ ≥ ‖T(s, 0)z‖s

∫ τ

s
ρ′(r)

1
‖T(r, 0)z‖r

dr.

Letting τ → ∞, we conclude that

‖G′Z‖ ≥ ‖T(s, 0)z‖s

∫ ∞

s
ρ′(r)

1
‖T(r, 0)z‖r

dr for s ≥ 0 and z ∈ Z \ {0}. (4.9)

Take now 0 ≤ t ≤ τ and z ∈ Z \ {0}. It follows from (4.8) and (4.9) that

1
‖T(ρ−1(t), 0)z‖ρ−1(t)

≥ 1
‖G′Z‖

∫ ∞

ρ−1(t)
ρ′(r)

1
‖T(r, 0)z‖r

dr

≥ 1
‖G′Z‖

∫ ρ−1(τ)

ρ−1(t)
ρ′(r)

1
‖T(r, 0)z‖r

dr

≥ 1
‖G′Z‖

∫ ρ−1(τ)

ρ−1(t)
ρ′(r)

1
‖GZ‖ · ‖T(ρ−1(τ), 0)z‖ρ−1(τ)

dr

=
τ − t

‖G′Z‖ · ‖GZ‖
· 1
‖T(ρ−1(τ), 0)z‖ρ−1(τ)

and thus
(τ − t)‖T(ρ−1(t), 0)z‖ρ−1(t) ≤ ‖GZ‖ · ‖G′Z‖ · ‖T(ρ−1(τ), 0)z‖ρ−1(τ).

We conclude that there exists N0 ∈N∗ such that

‖T(ρ−1(t), 0)z‖ρ−1(t) ≤
1
e
‖T(ρ−1(τ), 0)z‖ρ−1(τ),

for z ∈ Z and 0 ≤ t ≤ τ such that τ − t ≥ N0. Hence,

‖T(ρ−1(t), ρ−1(τ))v‖ρ−1(t) ≤
1
e
‖v‖ρ−1(τ),

for v ∈ U(ρ−1(τ)) and 0 ≤ t ≤ τ such that τ − t ≥ N0. By arguing as in the proof of
Lemma 4.6, we find that there exist λ, D > 0 such that

‖T(ρ−1(t), ρ−1(τ))v‖ρ−1(t) ≤ De−λ(τ−t)‖v‖ρ−1(τ),

for v ∈ U(ρ−1(τ)) and 0 ≤ t ≤ τ, which readily implies the conclusion of the lemma.
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In order to complete the proof of the theorem, it is sufficient to observe that (4.2), (4.3)
and (4.7) imply that (2.4) and (2.5) hold.

Remark 4.8. It is worth observing that in order to deduce the existence of a ρ-dichotomy we
imposed two admissibility conditions. In the following two examples we will illustrate that
this was necessary.

Example 4.9. We consider an evolution family T = {T(t, s)}t≥s≥0 given by

T(t, s) = Id, t ≥ s ≥ 0.

Furthermore, take Z = {0} and let ‖·‖t = ‖·‖ for t ≥ 0. Then for each y ∈ Y1, the unique
x ∈ YZ satisfying (3.1) is given by

x(t) =
∫ t

0
T(t, s)y(s) ds =

∫ t

0
y(s) ds, t ≥ 0.

Thus, the first assumption of Theorem 4.1 is fulfilled. On the other hand, T obviously doesn’t
admit a ρ-dichotomy with respect to the family of norms ‖·‖t, t ≥ 0.

The following example is a simple modification of [12, Example 1].

Example 4.10. Let X = R with the standard Euclidean norm |·|. Furthermore, let ‖·‖t = |·| for
t ≥ 0 and take Z = {0}. Furthermore, let ρ(t) = ln(1 + t) for t ≥ 0. We consider the sequence
(An)n∈N of operators on X (which can of course be identified with numbers) given by

An =

{
n if n = 2l for some l ∈N,

0 otherwise.

Furthermore, for t ≥ s ≥ 0 we define

T(t, s) =

{
Abtc−1 · · · Absc, btc ≥ bsc+ 1,

1, btc = bsc.

Then, T = {T(t, s)}t≥s≥0 is an evolution family. By arguing as in [12, Example 1], it is easy
to check that the second assumption of Theorem 4.1 is satisfied and T doesn’t admit a ρ-
dichotomy with respect to the family of norms ‖·‖t, t ≥ 0.

5 Robustness of generalized dichotomies

In this section we apply our main results to prove that the concept of ρ-dichotomy with respect
to a family {‖·‖t}t≥0 of norms on X persist under sufficiently small linear perturbations. As a
consequence, we establish the robustness property of ρ-nonuniform exponential dichotomy.

Theorem 5.1. Assume that the evolution family {T(t, s)}t≥s≥0 admits a ρ-dichotomy with respect to
a family {‖·‖t}t≥0 of norms on X satisfying

‖x‖ ≤ ‖x‖t ≤ Ceερ(t)‖x‖, for x ∈ X and t ≥ 0,

for some C > 0 and ε ≥ 0, such that the mapping t 7→ ‖x‖t is continuous for each x ∈ X. If
B : [0, ∞)→ B(X) is a strongly continuous operator-valued function such that

‖B(t)‖ ≤ δe−(ε+a)ρ(t)ρ′(t), t ≥ 0, (5.1)
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for some a > 0 and sufficiently small δ > 0, then the perturbed evolution family {U(t, s)}t≥s≥0

satisfying

U(t, s) = T(t, s) +
∫ t

s
T(t, τ)B(τ)U(τ, s) dτ, t ≥ s ≥ 0, (5.2)

admits a ρ-dichotomy with respect to the family of norms ‖·‖t, t ≥ 0.

Proof. Since {T(t, s)}t≥s≥0 admits a ρ-dichotomy with respect to the family of norms ‖·‖t,
t ≥ 0, it follows from Proposition 3.1 and Proposition 3.2 that there exists a closed subspace
Z ⊂ X such that the operators

TZ : D(TZ) ⊂ YZ
∞ → Y1 and T′Z : D(T′Z) ⊂ YZ

∞ → Y′∞,

defined in the proof of Theorem 4.1, are invertible and closed. We consider the graph norms:

‖x‖TZ := ‖x‖∞ + ‖TZx‖1, x ∈ D(TZ),

and
‖x‖T′Z

:= ‖x‖∞ + ‖T′Zx‖′∞, x ∈ D(T′Z).

Since TZ, T′Z are closed, it follows that (D(TZ), ‖ · ‖TZ),
(
D(T′Z), ‖ · ‖T′Z

)
are Banach spaces.

Furthermore,
TZ : (D(TZ), ‖ · ‖TZ)→ (Y1, ‖ · ‖1)

and
T′Z :

(
D(T′Z), ‖ · ‖T′Z

)
→
(
Y′∞, ‖ · ‖′∞

)
are bounded linear operators, denoted simply by TZ and T′Z, respectively.

We consider the linear operators D : D(TZ)→ Y1, D′ : D(T′Z)→ Y′∞ defined by

(Dx)(t) = B(t)x(t) and (D′x)(t) =
1

ρ′(t)
B(t)x(t), for t ≥ 0.

One can easy check that these operators are well-defined. Furthermore, for each x ∈ D(TZ)

we have

‖Dx‖1 =
∫ ∞

0
‖B(t)x(t)‖t dt

≤ C
∫ ∞

0
eερ(t)‖B(t)x(t)‖ dt

≤ δC
∫ ∞

0
e−aρ(t) ρ′(t) ‖x(t)‖ dt

≤ δC
a
‖x‖∞,

and thus
‖Dx‖1 ≤

δC
a
‖x‖TZ , x ∈ D(TZ). (5.3)

On the other hand, for x ∈ D(T′Z) we get

‖(D′x)(t)‖t =
1

ρ′(t)
‖B(t)x(t)‖t

≤ 1
ρ′(t)

Ceερ(t)‖B(t)x(t)‖

≤ δ Ce−aρ(t)‖x(t)‖
≤ δ C ‖x‖T′Z

,
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for all t ≥ 0, hence
‖D′x‖′∞ ≤ δ C ‖x‖T′Z

, x ∈ D(T′Z). (5.4)

We define now the linear operators

UZ : D(UZ)→ Y1, UZx = y,

where D(UZ) is the set of all functions x ∈ YZ
∞ such that there exists y ∈ Y1 satisfying

x(t) = U(t, s)x(s) +
∫ t

s
U(t, τ)y(τ) dτ, for t ≥ s ≥ 0,

and respectively,
U′Z : D(U′Z)→ Y′∞, U′Zx = y,

where D(U′Z) is the set of all functions x ∈ YZ
∞ such that there exists y ∈ Y′∞ satisfying

x(t) = U(t, s)x(s) +
∫ t

s
ρ′(τ)U(t, τ)y(τ) dτ, for t ≥ s ≥ 0.

Lemma 5.2. We have:
D(TZ) = D(UZ) and TZ = UZ + D, (5.5)

and respectively,
D(T′Z) = D(U′Z) and T′Z = U′Z + D′. (5.6)

Proof of the lemma. Take x ∈ D(UZ), that is x ∈ YZ
∞ such that there exists y ∈ Y1 with UZx = y.

Then, for t ≥ s ≥ 0 we have

x(t) = U(t, s)x(s) +
∫ t

s
U(t, τ)y(τ) dτ

= T(t, s)x(s) +
∫ t

s
T(t, τ)B(τ)U(τ, s)x(s) dτ +

∫ t

s
T(t, τ)y(τ) dτ

+
∫ t

s

∫ t

τ
T(t, r)B(r)U(r, τ)y(τ) dr dτ

= T(t, s)x(s) +
∫ t

s
T(t, r)y(r) dr +

∫ t

s
T(t, r)B(r)U(r, s)x(s) dr

+
∫ t

s

∫ r

s
T(t, r)B(r)U(r, τ)y(τ) dτ dr

= T(t, s)x(s) +
∫ t

s
T(t, r) (y(r) + B(r)x(r)) dr,

thus x ∈ D(TZ) and
TZx = y + Dx = (UZ + D)x.

Reversing the arguments, we conclude that (5.5) holds. Similarly, one can prove (5.6).

Now, we continue the proof of the theorem. From (5.5) and (5.3) we have

‖(UZ − TZ)x‖1 = ‖Dx‖1 ≤
δC
a
‖x‖TZ , for all x ∈ D(TZ) = D(UZ),

which implies that UZ : D(UZ) → Y1 is bounded. Since TZ is invertible, we obtain that UZ

is also invertible for sufficiently small δ > 0. Similarly, one can show that U′Z is invertible
for sufficiently small δ > 0. By Theorem 4.1 we conclude that the perturbed evolution family
{U(t, s)}t≥s≥0 admits a ρ-dichotomy with respect to the family of norms ‖ · ‖t, t ≥ 0.
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From Proposition 2.1 and Theorem 5.1 we are able now to establish the robustness property
of ρ-nonuniform exponential dichotomy.

Corollary 5.3. Assume that T = {T(t, s)}t≥s≥0 admits a ρ-nonuniform exponential dichotomy. If
B : [0, ∞) → B(X) is a strongly continuous operator-valued function satisfying (5.1) for some a > 0
and sufficiently small δ > 0, then the perturbed evolution family satisfying (5.2) admits also a ρ-
nonuniform exponential dichotomy.

Remark 5.4. We stress that the robustness of ρ-nonuniform exponential dichotomies was es-
tablished in [3, Theorem 1] using different techniques. However, we point out that we establish
robustness under a wider class of perturbations than those considered in [3, Theorem 1]. On
the other hand, we consider a smaller class of rate functions ρ.
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