
Electronic Journal of Qualitative Theory of Differential Equations
20XX, No. XX, 1–9; https://doi.org/10.14232/ejqtde.20XX.1.XX www.math.u-szeged.hu/ejqtde/

On discreteness of spectrum of a second order
differential operator

Sergey M. LabovskiyB

Plekhanov Russian University of Economics, 36 Stremyanny lane, Moscow, Russian Federation

Received 9 May 2020, appeared XX September 2020

Communicated by Leonid Berezansky
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1 Introduction

Let I = (a, b) where −∞ ≤ a < b ≤ +∞. The differential operator

Lu =
1
ρ

(
−(pu′)′ + qu

)
, x ∈ I = (a, b), (1.1)

was the first to be studied from the point of view of the properties of its spectrum, in particular,
the discreteness of the spectrum. Recall that the spectrum of an operator A acting in a Hilbert
space H is discrete if it consists only of eigenvalues of finite multiplicity [2]. Operator (1.1) is
studied in the space L2(I, ρ) of functions that are square integrable on I with positive weight ρ.

In the case (a, b) = (−∞, ∞), and ρ = 1 the operator Lu = −u′′+ qu has discrete spectrum,
if [3] limx→∞ q(x) = +∞. It is a sufficient condition. A. M. Molchanov obtained [11] the
following necessary and sufficient condition: for any δ > 0

lim
x→∞

∫ x+δ

x
q(x)dx = +∞. (1.2)

Note that Molchanov studied an operator in the n-dimensional space Rn. Here we consider
only the case when q = 0. In this case for the operator*

Lu(x) := − 1
ρ(x)

(p(x)u′)′, x ∈ I = (a, b), (1.3)

BEmail: labovski@gmail.com
*sign := means equal by definition
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a necessary and sufficient condition is obtained by I. Kac and M. G. Krein [6]. However,
the result in [6] is formulated in such a way that equivalence with the form proposed below
(Theorem 2.4) is not obvious (see section 7). Note also that the method in [6] pursued other
goals, and is more complicated. We use some method (see Lemma 5.2) close to the Glazman
splitting method [5]. The essential point here is a simpler proof of necessity (Lemma 4.1). As
test functions, sections G(x, s) of the Green function were chosen, where s→ a or s→ b. This
simplifies the proof of necessity (see below two-sided estimates (4.5) and (4.6)).

In this regard, we have to note the result of M. Sh. Birman [1, p. 148], [5, p. 93] for an
even-order equation on semiaxis [0, ∞). For the operator L0u = −(1/ρ)u′′ this condition has
the following form

lim
s→∞

s
∫ ∞

s
ρ(x) dx = 0. (1.4)

It is assumed that
∫ ∞

0 ρ(x) dx < ∞. If
∫ 1

0 ρ(x) dx = ∞, the condition

lim
s→0

s
∫ 1

s
ρ(x) dx = 0 (1.5)

together with (1.4) guarantees [10] discreteness of spectrum of −(1/ρ)u′′. The result of pre-
sented article was announced in [9] for a more general functional differential operator of the
form

Lu(x) := − 1
ρ(x)

(p(x)u′)′ +
∫ b

a
u(s)r(x, ds), x ∈ I = (a, b).

For simplicity, we omit the integral term here.

2 Assumptions. Conditions of discreteness

For the operator (1.3) assume that the functions p(x) and ρ(x) are measurable and positive
almost everywhere on a finite or infinite interval I := (a, b), −∞ ≤ a < b ≤ ∞. Assume that
1/p and ρ are locally on I integrable, that is, for any s1, s2, a < s1 < s2 < b∫ s2

s1

dx
p(x)

< ∞,
∫ s2

s1

ρ(x) dx < ∞.

Definition 2.1. If for some s ∈ I = (a, b)∫ s

a
ρ(x) dx = ∞,

∫ s

a

dx
p(x)

< ∞ (2.1)

then L has singularity at the point x = a by ρ(x). If for some s ∈ I = (a, b)∫ s

a

dx
p(x)

= ∞,
∫ s

a
ρ(x) dx < ∞ (2.2)

say that L has singularity at the point x = a by p(x). Similarly, we can define the singularity
at the right end of the interval.

Only one type of singularity at each end of the interval is allowed. It is clear that the sin-
gularity at the right end of the interval can be considered similarly to the left end. Moreover,
the singularity at the right end can be reduced to the singularity at the left end by the change
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of variable x = −x′. Therefore, one could consider the singularity only at the left end of the
interval. Assuming that

∫ b

s

dx
p(x)

< ∞ and
∫ b

s
ρ(x) dx < ∞ (a < s < b) (2.3)

and letting

Φ1(s) :=
∫ s

a

dx
p(x)

∫ b

s
ρ(x) dx, Φ2(s) :=

∫ s

a
ρ(x) dx

∫ b

s

dx
p(x)

we have the following theorem.

Theorem 2.2. For the spectrum of operator (1.3) to be discrete, it is necessary and sufficient that at
least one of relations

lim
s→a

Φ1(s) = 0 or lim
s→a

Φ2(s) = 0

be true.

Remark 2.3. If there is a singularity, then one of the integrals Φ1(s) or Φ2(s) does not exist.
Therefore, only one type of singularity is allowed.

However, it is more convenient to represent Theorem 2.2 in a simpler form (Theorem 2.4
below). For this, we consider both types of singularities at different ends of the interval si-
multaneously. The essence of the content of Theorem 2.2 will not change. So, we assume
that ∫ b

s
ρ(x) dx < ∞,

∫ s

a

dx
p(x)

< ∞, a < s < b (2.4)

but ∫ s

a
ρ(x) dx = ∞,

∫ b

s

dx
p(x)

= ∞. (2.5)

Let

Φ(s) :=
∫ s

a

dx
p(x)

∫ b

s
ρ(x) dx. (2.6)

Theorem 2.2 takes the following form.

Theorem 2.4. For discreteness of the spectrum of the operator (1.3), it is necessary and sufficient that

lim
s→a

Φ(s) = lim
s→b

Φ(s) = 0.

Proof. It follows from Lemma 5.3 and Section 3.

To simplify the notation, assume that a = 0 and b = l ≤ ∞ (l is the length of a string). We
use also the boundary condition

u(0) = 0. (2.7)

Condition (2.7) is not essential for the study of discreteness. It affects the estimate of the first
eigenvalue (lower boundary of the spectrum).



4 S. M. Labovskiy

3 Variational method

We use the following form of the variational method [8]. In the space L2(I, ρ) of square
integrable functions the scalar product is defined by ( f , g) :=

∫
I f (x)g(x)ρ(x) dx. Here I =

(a, b) = (0, l), l ≤ ∞. The bilinear form

[u, v] :=
∫ l

0
p(x)u′(x)v′(x) dx (3.1)

serves as a scalar product in Hilbert space W of all locally absolutely continuous on [0, l)
functions satisfying the boundary condition (2.7). Let T : W → L2(I, ρ) be defined by the
equality Tu(x) = u(x). Note that T(W) is dense in L2(I, ρ). The equation in variational form

[u, v] = ( f , Tv) (∀v ∈W), (3.2)

f ∈ L2(I, ρ) with respect to u has unique solution u = T∗ f . Equation (3.2) is equivalent to
equation Lu = f , where L := (T∗)−1.

If form [u, v] is defined by (3.1), operator L can be represented by (1.3) under boundary
conditions u(0) = 0, pu′

∣∣
x=l = 0. Thus, eigenvalue problem

Lu = λTu

has the representation

− 1
ρ
(pu′)′ = λu, u(0) = 0, pu′

∣∣
x=l = 0. (3.3)

Discreteness of spectrum of operator L is equivalent to compactness of the operator T. If
T is compact, the eigenvalue problem (3.3) has a system eigenfunctions un that forms an
orthogonal basis in the space W. The system Tun forms an orthogonal basis in L2(I, ρ).

4 Auxiliary inequalities

Let u ∈W and

Au :=
∫

I

|u(s)u′(s)|
ω(s)

ds,

where the positive parameter function ω will be defined below. By the Cauchy inequality

A2
u ≤

∫
I

u(s)2

ω(s)2
ds

p(s)
·
∫

I
p(s)u′(s)2 ds = Bu · [u, u], (4.1)

where Bu :=
∫

I
u(s)2

ω(s)2
ds

p(s) . Hence and since u(0) = 0

Bu = 2
∫

I

ds
ω(s)2 p(s)

∫ s

0
u(x)u′(x) dx = 2

∫
I

u(x)u′(x)dx
∫ l

x

ds
ω(s)2 p(s)

.

Let the function ω be chosen so that∫ l

x

ds
ω(s)2 p(s)

=
1

ω(x)
− 1

ω(l)
≤ 1

ω(x)
. (4.2)
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Then Bu ≤ 2
∫

I
|u(x)u′(x)|

ω(x) dx = 2Au. From here and (4.1) A2
u ≤ 2Au[u, u] and

Au ≤ 2[u, u]. (4.3)

From (4.2) we obtain − 1
ω2 p = − 1

ω2 ω′ and

ω(s) =
∫ s

0

dx
p(x)

. (4.4)

Lemma 4.1. Let 0 < c < l, 0 < d < l. The following inequalities hold:

sup
s∈[0,c]

(
Φ(s)−

∫ s

0

dx
p(x)

∫ l

c
ρ dx

)
≤ sup
‖u‖≤1

(Tu, Tu)[0,c] ≤ 4 sup
s∈[0,c]

Φ(s), (4.5)

sup
s∈[d,l)

Φ(s) ≤ sup
‖u‖≤1

(Tu, Tu)[d,l] ≤ Φ(d) + 4 sup
s∈[d,l)

Φ(s). (4.6)

Proof. The left inequality of (4.5). Let s ∈ (0, c], ω :=
∫ s

0
dx

p(x) and

u(x) :=


1√
ω

∫ x

0

dt
p(t)

, if 0 ≤ x ≤ s,
√

ω, if s < x < l.

Then [u, u] =
∫ s

0 p(x)(u′)2 = 1
ω

∫ s
0 p(x) dx

p(x)2 = 1,

(Tu, Tu)[0,c] ≥
∫ c

s
u2ρ dx = ω

∫ c

s
ρ dx = Φ(s)−

∫ s

0

dx
p(x)

∫ l

c
ρ dx.

The left inequality of (4.6). Let s ∈ [d, l), ω and u be defined by the same equalities. Then
[u, u] = 1,

(Tu, Tu)[d,l) ≥
∫ l

s
u2ρ dx = ω

∫ l

s
ρ dx = Φ(s).

The right inequality of (4.5). Let ‖u‖ ≤ 1. By virtue of (4.3) and (4.4)∫ c

0
(u(x))2ρ(x) dx =

∫ c

0

(
2
∫ x

0
u(s)u′(s) ds

)
ρ(x) dx

= 2
∫ c

0

u(s)u′(s)
ω(s)

(
ω(s)

∫ c

s
ρ(x) dx

)
ds

≤ 2 sup
0<s<c

Φ(s)
∫ c

0

u(s)u′(s)
ω(s)

ds ≤ 2 sup
0<s<c

Φ(s)Au ≤ 4 sup
0<s<c

Φ(s).

The right inequality of (4.6). Let ‖u‖ ≤ 1. We have∫ l

d
(u(x))2ρ(x) dx =

∫ l

d
ρ(x)

(
(u(d))2 + 2

∫ x

d
u(s)u′(s) ds

)
dx.

Since

(u(d))2 =

(∫ d

0
u′(s) ds

)2

≤
∫ d

0
p(s)(u′(s))2 ds

∫ d

0

ds
p(s)

≤
∫ d

0

ds
p(s)

we have

(u(d))2
∫ l

d
ρ dx ≤ Φ(d).
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For the second term, in view (4.3)

∫ l

d

(
2
∫ x

d
u(s)u′(s) ds

)
ρ(x) dx = 2

∫ l

d

u(s)u′(s)
ω(s)

(
ω(s)

∫ l

s
ρ(x) dx

)
ds

≤ 2 sup
d<s<l

Φ(s)
∫ d

0

u(s)u′(s)
ω(s)

ds ≤ 2 sup
d<s<l

Φ(s)Au ≤ 4 sup
d<s<l

Φ(s).

5 Boundedness and compactness

The boundedness of operator T and its action from space W to space L2(I, ρ) are necessary
for further investigation of the spectrum. The compactness of operator T, as mentioned in
Section 3, is equivalent to the discreteness of the spectrum of operator (1.3).

5.1 Boundedness

Since

(Tu, Tu) =
∫ l

0
u2ρ dx = 2

∫ l

0
ρ(x) dx

∫ x

0
u(s)u′(s) ds = 2

∫ l

0

u(s)u′(s)
ω(s)

ω(s)
∫ l

s
ρ(x) dx ds,

by virtue of (4.3) and (2.6)

(Tu, Tu) ≤ 4[u, u] sup
s∈(0,l)

ω(s)
∫ l

s
ρ(x) dx = 4[u, u] sup

s∈(0,l)
Φ(s). (5.1)

So, the boundedness of function Φ(s) guarantees the boundedness of operator T. It seems
this is necessary condition. Let λ0 be the lower boundary of spectrum of L. It satisfies the
representation

(λ0)
−1 = sup

u 6=0

(Tu, Tu)
[u, u]

.

From (5.1) we have the estimate
(λ0)

−1 ≤ 4 sup Φ(s).

5.2 Compactness

• Let (Tu, Tu)∆ :=
∫

∆ u2ρ dx. Below we will use ∆ = [0, c] and ∆ = [d, l).

Below we use the following compactness criterion [4, p. 268], [7, p. 318].

Theorem 5.1 (I. Gelfand). For the relative compactness of the set A in a Banach space E, it is necessary
and sufficient that for any sequence fn of linear functionals converging on each element of a Banach
space E, the convergence is uniform on the set A.

The following statement is closed to the localization principle [5].

Lemma 5.2. The condition

lim
c→0

sup
‖u‖≤1

(Tu, Tu)[0,c] = 0
∧

lim
d→l

sup
‖u‖≤1

(Tu, Tu)[d,l) = 0 (5.2)

is a necessary and sufficient condition for compactness of T.
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Proof. Necessity. Suppose ∃σ > 0, ∃cn → 0, ∃un such that ‖un‖ = 1 and

(Tun, Tun)∆n > σ,

where ∆n := [0, cn]. Let fn = χ∆n
1

‖Tun‖∆n
Tun (χ∆n is the characteristic function of the set ∆n).

Since
( fn, z)2 ≤ 1

‖Tun‖2
∆n

∫ cn

0
u2

nρ dx
∫ cn

0
z2ρ dx =

∫ cn

0
z2ρ dx → 0

( fn, z) converges for any z ∈ L2(I, ρ). But the following contradicts Theorem 5.1:

( fn, Tun) =
1

‖Tun‖∆n

∫ cn

0
u2

nρ dx =

√∫ cn

0
u2

nρ dx >
√

σ.

The necessity of the second condition in (5.2) is proved in exactly the same way.
Sufficiency. Let fn ∈ L2(I, ρ) be a sequence such that ( fn, z) → 0 for any z ∈ L2(I, ρ). We

have to show that fn(Tu) = ( fn, Tu)→ 0 uniformly on [u, u] ≤ 1. First,(∫ c

0
fn(x)u(x)ρ(x) dx

)2

≤
∫ c

0
fn(x)2ρ(x) dx

∫ c

0
u(x)2ρ(x) dx ≤ C

∫ c

0
u(x)2ρ(x) dx.

From here and by virtue of (5.2)

lim
c→0

∫ c

0
fn(x)u(x)ρ(x) dx = 0

uniformly on the set {(u, n) : [u, u] ≤ 1, n = 1, 2, . . .}. Similarly,

lim
d→l

∫ l

d
fn(x)u(x)ρ(x) dx = 0

uniformly on the set {(u, n) : [u, u] ≤ 1, n = 1, 2, . . .}.
Therefore, it suffices to establish for any α, β ∈ (0, l) uniform on [u, u] ≤ 1 convergence of

the sequence
∫ β

α fn(x)u(x)ρ(x) dx. We have∫ β

α
fn(x)u(x)ρ(x) dx =

∫ β

α
fn(x)

(
u(α) +

∫ x

α
u′(s) ds

)
ρ(x) dx.

The first term converges uniformly since
∫ β

α fn(x)ρ(x) dx converges and

(u(α))2 =

(∫ α

0
u′(x) dx

)2

≤
∫ α

0
p(x)(u′(x))2 dx

∫ α

0

dx
p(x)

≤ [u, u]
∫ α

0

dx
p(x)

.

Let us estimate the second term:(∫ β

α
fn(x)

(∫ x

α
u′(s) ds

)
ρ(x) dx

)2

=

(∫ β

α
u′(s) ds

∫ β

s
fn(x)ρ(x) dx

)2

≤
∫ β

α
p(s)(u′(s))2 ds

∫ β

α
(ϕn(s))2 ds ≤

∫ l

α
(ϕn(s))2 ds,

where ϕn(s) = (p(s))−1/2
∫ β

s fn(x)ρ(x) dx. Note, that ϕn(s) = ( fn, zs) where zs(x) = 0, if
x /∈ [s, l], and zs(x) = (p(s))−1/2, if x ∈ [s, l]. Thus ϕn(s) = ( fn, zs)→ 0 for all s ∈ I.

Since

(ϕn(s))2 ≤ 1
p(s)

∫ β

s
ρ(x) dx

∫ β

s
( fn(x))2ρ(x) dx ≤ ‖ fn‖2 1

p(s)

∫ β

s
ρ(x) dx

by virtue of the Lebesgue theorem
∫ β

α (ϕn(s))2 ds→ 0.
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Lemma 5.3. The condition lims→0 Φ(s) = 0 and lims→l Φ(s) = 0 is a necessary and sufficient
condition for compactness of the operator T.

Proof. It follows from Lemma 5.2 and from inequalities (4.5) and (4.6). For example, consider
in detail the proof of the necessity of condition lims→0 Φ(s) = 0. The compactness of operator
T implies (5.2). Suppose lims→0 Φ(s) = 0 is not true. Then there are ε > 0 and sn → 0 such
that Φ(sn) ≥ ε. Let c > 0. For some sn < c

Φ(sn)−
∫ sn

0

dx
p(x)

∫ l

c
ρ(x)dx ≥ ε/2.

From (4.5) we have sup‖u‖≤1(Tu, Tu)[0,c] ≥ ε/2. Since c is arbitrary, this contradicts (5.2).
The other three statements are proved similarly.

6 Example. Laguerre polynomials

Consider equation xy′′+(1− x)y′+ ny = 0 generating the Laguerre polynomials. Multiplying
by e−x, we get

(xe−xy′)′ + ne−xy = 0.

In this case p(x) = xe−x, ρ(x) = e−x. Let’s verify the discreteness conditions for the interval
(0, ∞). At the point x = 0 it is ∫ 1

s

dx
p(x)

∫ s

0
ρ(x) dx → 0

when s→ 0. It is so since
∫ s

0 e−x dx = O(s) and
∫ 1

s
ex

x dx ∼
∫ 1

s
dx
x = − ln s.

At the x = ∞ we have to check∫ s

1

dx
p(x)

∫ ∞

s
ρ(x) dx → 0,

when s → ∞, that is
∫ s

1
ex

x dx · e−s → 0. For arbitrary ε > 0 take A > 0 such that 1/A < ε/2.
Then ∫ s

1

ex

x
dx · e−s ≤

∫ A

1

ex

x
dx · e−s + ε/2.

7 Criterion formulation in the article by Krein and Kac

Article [6] discusses equation

y′′ + λρy = 0, 0 ≤ x < L,

in which the generalized density is considered to be the derivative dM/dx, L ≤ +∞. L is
considered the length of the string, and M is its mass.

Spectrum discreteness criterion: for the spectrum of the string to be discrete, it is necessary
and sufficient that in case L = ∞ condition

lim
x→∞

x(M(∞)−M(x)) = 0

is fulfilled, and in case M(L) = ∞ the dual condition

lim
x→L

M(x)(L− x).

In the first case, it is assumed that M(L) < ∞, and in the second L < ∞.
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