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Abstract. In this paper, we study the Cauchy problem for linear and nonlinear Boussi-
nesq type equations that include the general differential operators. First, by virtue
of the Fourier multipliers, embedding theorems in Sobolev and Besov spaces, the ex-
istence, uniqueness, and regularity properties of the solution of the Cauchy problem
for the corresponding linear equation are established. Here, Lp-estimates for a solu-
tion with respect to space variables are obtained uniformly in time depending on the
given data functions. Then, the estimates for the solution of linearized equation and
perturbation of operators can be used to obtain the existence, uniqueness, regularity
properties, and blow-up of solution at the finite time of the Cauchy for nonlinear for
same classes of Boussinesq equations. Here, the existence, uniqueness, Lp-regularity,
and blow-up properties of the solution of the Cauchy problem for Boussinesq equations
with differential operators coefficients are handled associated with the growth nature
of symbols of these differential operators and their interrelationships. We can obtain
the existence, uniqueness, and qualitative properties of different classes of improved
Boussinesq equations by choosing the given differential operators, which occur in a
wide variety of physical systems.
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1 Introduction

The aim of this paper is to investigate the existence, uniqueness, and quality properties of the
solution of the Cauchy problem for the following improved Boussinesq equation

utt + L0utt + L1u = L2 f (u), x ∈ Rn, t ∈ (0, T), (1.1)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), (1.2)
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where u(x, t) is the complex-valued unknown function, f (u) = f (x, t, u) is the given nonlinear
function, Li are differential operators with constant coefficients, ϕ(x) and ψ(x) are the given
initial value functions.

Here, we find the sufficient conditions depending on the qualifications and mutual rele-
vance of the elliptic operators included in the equation to ensure that there exists a unique
solution of the problem, being Lp-regular and blow up infinite time. By choosing the opera-
tors Li we obtain different classes of Boussinesq type equations which occur in a wide variety
of physical systems, such as in the propagation of longitudinal deformation waves in an elas-
tic rod, a hydro-dynamical process in plasma, in materials science which describe spinodal
decomposition and in the absence of mechanical stresses (see [2, 6, 9, 18, 21, 30–32]). We think
this article is useful in the context of Lp-regularity theory of improved Boussinesg equations.
For the first time here, the existence, uniqueness, Lp-regularity, and blow-up properties of
solution (at the finite time) of the Cauchy problem for these type Boussinesq equations are
established depending on the symbol of the differential operators and their orders, contained
in the equation. We can obtain different classes of Boussinesq equations, by choosing these
differential operators, which occur in a wide variety of physical systems. Moreover, in this
paper, the method of proofs naturally differs from those used in previous works. Indeed,
since the problem includes a general differential operator in the leading part, we need some
extra mathematics tools for deriving considered conclusions.

For example, if we choose L0 = L1 = L2 = −∆, where ∆ is n-dimensional Laplace, we
obtain the Cauchy problem for the Boussinesq equation

utt − ∆utt − ∆u = ∆ f (u), x ∈ Rn, t ∈ (0, T), (1.3)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x). (1.4)

Let
L0 = L1 = L2 = A1 = ∑

|α|=2
aαDα,

where aα are real numbers. Then the problem (1.1)–(1.2) is reduced to the Cauchy problem
for the following Boussinesq equation

utt + A1utt + A1u = A1 f (x, t, u), x ∈ R2, t ∈ (0, T), (1.5)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),

here
ϕ, ψ ∈Ws

p
(
R2), s >

2
p

, p ∈ (1, ∞).

Now let
L0 = L1 = L2 = A2 = ∑

|α|=4
aαDα,

where aα are real numbers, α = (α1, α2, α3), αk are natural numbers and |α| = ∑3
k=1 αk.

Then we get the following Boussinesq equation

utt + A2utt + A2u = A2 f (x, t, u), x ∈ R3, t ∈ (0, T), (1.6)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x).

where
ϕ, ψ ∈Ws

p
(
R3), s >

3
p

, p ∈ (1, ∞).
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Finally, let
L0 = ∑

|α|=4
a0αDα, L1 = ∑

|α|=2
a1αDα, L2 = ∑

|α|=4
a2αDα,

where aαi are real numbers, α = (α1, α2, α3), αk are natural numbers and |α| = ∑3
k=1 αk.

The problem (1.1)–(1.2) reduced to Cauchy problem for the following Boussinesq equation

utt + L0utt + L1u = L2 f (x, t, u), x ∈ R3, t ∈ (0, T), (1.7)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),

where
ϕ, ψ ∈Ws,p(R3), s >

3
p

, p ∈ (1, ∞).

By using the general result for (1.1)–(1.2), we obtain the existence, uniqueness, Lp-regularity,
and blow-up properties of the solutions of the problems (1.5), (1.6) and (1.7).

The equation (1.3) arises in different situations (see [18, 30]). For example, for n = 1 it
describes a limit of a one-dimensional nonlinear lattice [32], shallow-water waves [12, 31] and
the propagation of longitudinal deformation waves in an elastic rod [4]. Rosenau [23] derived
the equations governing dynamics of one, two and three-dimensional lattices. One of those
equations is (1.3). Note that, the existence of solutions and regularity properties for different
wave type equations are considered e.g. in [1, 7, 8, 14, 15, 17, 20, 22, 24, 29, 33]. In this respect
we can show new results e.g. [1, 7, 8, 14, 15, 22, 29, 33]. In [27] and [28] the existence of the
global classical solutions and the blow-up of the solutions of the initial value problem (1.3)–
(1.4) are studied. In this paper, we obtain the existence, uniqueness of solution and regularity
properties of the problem (1.1)–(1.2). The strategy is to express the Boussinesq equation as an
integral equation. To treat the nonlinearity as a small perturbation of the linear part of the
equation, the contraction mapping theorem is used. Also, a priori estimates on Lp norm of
solutions of the linearized version are utilized. The key step is the derivation of the uniform
estimate of the solutions of the linearized Boussinesq equation. The methods of harmonic
analysis, operator theory, interpolation of Banach spaces and embedding theorems in Sobolev
spaces are the main tools implemented to carry out the analysis.

2 Definitions and background

In order to state our results precisely, we introduce some notations and some function spaces.
Let E be a Banach space. Lp(Ω; E) denotes the space of strongly measurable E-valued func-
tions that are defined on the measurable subset Ω ⊂ Rn with the norm

‖ f ‖Lp
= ‖ f ‖Lp(Ω;E) =

(∫
Ω
‖ f (x)‖p

Edx
) 1

p

, 1 ≤ p < ∞,

‖ f ‖L∞(Ω:E) = ess sup
x∈Ω

‖ f (x)‖E.

Let R, C denote the sets of all real and complex numbers, respectively. For E = C the
Lp(Ω; E) denotes by Lp(Ω). Let m be a positive integer. Wm

p (Ω) denotes the Sobolev space, i.e.
space of all functions u ∈ Lp(Ω) that have the generalized derivatives ∂mu

∂xm
k
∈ Lp(Ω), 1 ≤ p ≤ ∞

with the norm

‖u‖Wm
p (Ω) = ‖u‖Lp(Ω) +

n

∑
k=1

∥∥∥∥∂mu
∂xm

k

∥∥∥∥
Lp(Ω)

< ∞.
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Let F denotes the Fourier transform defined by

û(ξ) = Fu = (2π)−
n
2

∫
Rn

e−ixξu(x)dx for u ∈ S(Rn; E) and x, ξ ∈ Rn.

Let S(Rn) denote the Schwartz class, i.e., the space of rapidly decreasing smooth functions on
Rn, equipped with its usual topology generated by seminorms. Let S′(Rn) denote the space
of all continuous linear operators L : S(Rn) → C, equipped with the bounded convergence
topology. Recall S(Rn) is norm dense in Lp(Rn) when 1 ≤ p < ∞. Let 1 ≤ p ≤ q < ∞.
A function Ψ ∈ L∞(Rn) is called a Fourier multiplier from Lp(Rn) to Lq(Rn) if the map
u→ F−1Ψ(ξ)Fu for u ∈ S(Rn) is well defined and extends to a bounded linear operator

T : Lp(R
n)→ Lq(R

n).

Let Ls
p(R

n), −∞ < s < ∞ denotes Liouville–Sobolev space of order s which is defined as:

Ls
p = Ls

p(R
n) = (I − ∆)−

s
2 Lp(R

n)

with the norm

‖u‖Ls
p
=
∥∥∥(I − ∆)

s
2 u
∥∥∥

Lp(Rn)
=

∥∥∥∥F−1
(

1 + |ξ|2
) s

2 û
∥∥∥∥

Lp(Rn)

< ∞.

It clear that L0
p(R

n) = Lp(Rn). It is known that Lm
p (R

n) = Wm
p (R

n) for the positive integer m
(see e.g. [26, § 15].

Let L∗q(E) denote the space of all E-valued function space such that

‖u‖L∗q (E) =

(∫ ∞

0
‖u(t)‖q

E
dt
t

) 1
q

< ∞, 1 ≤ q < ∞, ‖u‖L∗∞(E) = sup
t∈(0,∞)

‖u(t)‖E.

Here, F denotes the Fourier transform. Fourier-analytic representation of Besov space on
Rn are defined as:

Bs
p,q(R

n) =

{
u ∈ S′(Rn) : ‖u‖Bs

p,q(R
n) =

∥∥∥F−1tκ−s
(

1 + |ξ|
κ
2

)
e−t|ξ|2 Fu

∥∥∥
L∗q(Lp(Rn))

,

|ξ|2 =
n

∑
k=1

ξ2
k , ξ = (ξ1, ξ2, . . . , ξn),p ∈ (1, ∞), q ∈ [1, ∞], κ > s

}
.

Here,
Xp = Lp(Rn), 1 ≤ p ≤ ∞, Ys,p = Ls,p(Rn),

Ys,p
1 = Ls

p(R
n) ∩ L1(R

n), Ys,p
∞ = Ls,p(Rn) ∩ L∞(R

n),

It should be note that, the norm of Besov space does not depends on κ (see e.g. [25, § 2.3].
For p = q the space Bs

p,q(R
n) will be denoted by Bs

p(R
n).

Definition 2.1. For any T > 0 the function u ∈ C2([0, T
]
; Y2,s,p

∞
)

satisfies the equation (1.1)–
(1.2) a.e. in Rn

T = Rn × (0, T) is called the continuous solution or the strong solution of the
problem (1.1)–(1.2). If T < ∞, then u(x, t) is called the local strong solution of the problem
(1.1)–(1.2). If T = ∞, then u(x, t) is called the global strong solution of (1.1)–(1.2).



Regularity properties and blow-up of the solutions for improved Boussinesq equations 5

Sometimes we use one and the same symbol C without distinction in order to denote
positive constants which may differ from each other even in a single context. When we want
to specify the dependence of such a constant on a parameter, say α, we write Cα.

The paper is organized as follows: In Section 1, some definitions and background are
given. In Section 2, we obtain the existence of a unique solution and priory estimates for
the solution of the linearized problem (1.1)–(1.2). In Section 3, we show the existence and
uniqueness of the local strong solution of the problem (1.1)–(1.2). Section 4 is devoted to
the existence of the global solution. In Section 5 the blow-up properties of the solution are
derived. In Section 6 we show some applications of the problem (1.1)–(1.2).

Sometimes we use one and the same symbol C without distinction in order to denote
positive constants which may differ from each other even in a single context. When we want
to specify the dependence of such a constant on a parameter, say h, we write Ch.

3 Estimates for linearized equation

In this section, we make the necessary estimates for solutions of the Cauchy problem for the
following linear Boussinesq equation

utt + L0utt + L1u = L2g(x, t), x ∈ Rn, t ∈ (0, T), (3.1)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),

where
Liu = ∑

|α|=2mi

aiαDαu, aiα ∈ R, i = 0, 1, 2,

α = (α1, α2, . . . , αn), αk are natural numbers, |α| = ∑n
k=1 αk and mi are positive integers. Let

Li(ξ) = ∑
|α|=2mi

aiα(iξ1)
α1(iξ2)

α2 . . . (iξn)
αn , i = 0, 1, 2, (3.2)

Q = Q(ξ) = L1(ξ)[1 + L0(ξ)]
−1, L(ξ) = L2(ξ)[1 + L0(ξ)]

−1.

Condition 3.1. Assume that L1(ξ) 6= 0, L0(ξ) 6= −1 and there exist positive constants M1 and
M2 depend only on aiα such that∣∣∣Q 1

2 (ξ)
∣∣∣ ≤ M1

(
1 + |ξ|2

) ν
2
,
∣∣∣L(ξ)Q 1

2 (ξ)
∣∣∣ ≤ M2

(
1 + |ξ|2

) ν
2

(3.3)

for all ξ ∈ Rn and a real number ν.

Remark 3.2. It is not hard to see that if ν ≥ m1 −m0, then the first inequality verified. More-
over, if ν ≥ m1 + 2m2 − (2m0)

3
2 , then the second inequality holds.

First we need the following lemmas.

Lemma 3.3. Suppose that Q(ξ) 6= 0 for each ξ ∈ Rn. Then problem (3.1) has a strong solution.

Proof. Since L0, L1 and L2 are differential operators with constant coefficients, by using of
Fourier transform and in view of (3.2), we get from (3.1):

ûtt(ξ, t) + Q(ξ)û(ξ, t) = L(ξ)ĝ(ξ, t),

û(ξ, 0) = ϕ̂(ξ), ût(ξ, 0) = ψ̂(ξ), ξ ∈ Rn, t ∈ (0, T),
(3.4)
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where û(ξ, t) is a Fourier transform of u(x, t) with respect to x. By using the variation of
constants we get that there exists a solution of the problem (3.4) that can be written as the
following

û(ξ, t) = C(ξ, t)ϕ̂(ξ) + S(ξ, t)ψ̂(ξ) + Og(ξ), (3.5)

here,
C(ξ, t) = cos

(
Q

1
2 t
)

, S(ξ, t) = Q−
1
2 sin

(
Q

1
2 t
)

,

Φ̂(ξ, t) = L(ξ)Q−
1
2 (ξ) sin

(
Q

1
2 t
)

, Og = Og(ξ) =
∫ t

0
Φ̂(ξ, t− τ)ĝ(ξ, τ)dτ.

From (3.5) we get that the solution of the problem (3.1) can be expressed as

u(x, t) = S1(t)ϕ(x) + S2(t)ψ(x) +
∫ t

0
F−1Og(ξ)dξ, t ∈ (0, T), (3.6)

where F−1 denotes the inverse Fourier transformation, S1(t) and S2(t) are linear operators
defined by

S1(t)ϕ = (2π)−
n
2

∫
Rn

eixξC(ξ, t)ϕ̂(ξ)dξ,

S2(t)ψ = (2π)−
n
2

∫
Rn

eixξS(ξ, t)ψ̂(ξ)dξ.

Theorem 3.4. Assume that the Condition 3.1 holds and

s > n
(

2
q
+

1
p

)
+ ν if ν ≥ 0, s > n

(
2
q
+

1
p

)
if ν < 0 (3.7)

for p ∈ [1, ∞] and for a q ∈ [1, 2]. Then for ϕ, ψ, g(·, t) ∈ Ys,p
1 for t ∈ (0, T) and g(x, ·) ∈

L1(0, T; Ys,p
1

)
for x ∈ Rn problem (3.1) has a unique solution u(x, t) satisfies the following estimate

‖u‖X∞
+ ‖ut‖X∞

≤ C
[
‖ϕ‖Ys,p + ‖ϕ‖X1

+ ‖ψ‖Ys,p + ‖ψ‖X1
+
∫ t

0

(
‖g(·, τ)‖Ys,p + ‖g(·, τ)‖X1

)
dτ

]
(3.8)

uniformly with respect to t ∈ [0, T].

Proof. Let N ∈N and

ΠN = {ξ : ξ ∈ Rn, |ξ| ≤ N}, Π′N = {ξ : ξ ∈ Rn, |ξ| ≥ N}.

It is clear to see that

‖u‖X∞
≤
∥∥∥F−1C(ξ, t)ϕ̂(ξ)

∥∥∥
X∞

+
∥∥∥F−1S(ξ)ψ̂(ξ, t)

∥∥∥
X∞

≤
∥∥∥∥∫

Rn
eixξC(ξ, t)ϕ(x)dx

∥∥∥∥
L∞(ΠN)

+

∥∥∥∥∫
Rn

eixξS(ξ, t)ψ(x)dx
∥∥∥∥

L∞(ΠN)

+
∥∥∥F−1C(ξ, t)ϕ̂(ξ)

∥∥∥
L∞(Π′N)

+
∥∥∥F−1S(ξ, t)ψ̂(ξ)

∥∥∥
L∞(Π′N)

+
∥∥∥F−1C(ξ, t)Og(ξ)

∥∥∥
L∞(Π′N)

+
∥∥∥F−1Og(ξ)

∥∥∥
L∞(Π′N)

(3.9)
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Using Minkowski’s inequality for integrals and uniformly boundedness of C(ξ, t), S(ξ, t) on
ΠN we have∥∥∥∥∫

Rn
eixξC(ξ, t)ϕ(x)dx

∥∥∥∥
L∞(ΠN)

+

∥∥∥∥∫
Rn

eixξS(ξ, t)ψ(x)dx
∥∥∥∥

L∞(ΠN)

≤ C
[
‖ϕ‖X1

+ ‖ψ‖X1

]
. (3.10)

It is clear to see that∥∥∥F−1C(ξ, t)ϕ̂(ξ)
∥∥∥

L∞(Π′N)
+
∥∥∥F−1S(ξ, t)ψ̂(ξ)

∥∥∥
L∞(Π′N)

=

∥∥∥∥F−1
(

1 + |ξ|2
)− s

2 C(ξ, t)
(

1 + |ξ|2
) s

2
ϕ̂(ξ)

∥∥∥∥
L∞(Π′N)

+

∥∥∥∥F−1
(

1 + |ξ|2
)−s

S(ξ, t)(1 + |ξ|)
s
2 ψ̂(ξ)

∥∥∥∥
L∞(Π′N)

. (3.11)

By using (3.5) and (3.3) we get the estimates

sup
ξ∈Rn,t∈[0,T]

|ξ|
∣∣∣∣|α|+ n

p Dα

[(
1 + |ξ|2

)− s
2 C(ξ, t)

]∣∣∣∣ ≤ C2,

sup
ξ∈Rn,t∈[0,T]

|ξ|
∣∣∣∣|α|+ n

p Dα

[(
1 + |ξ|2

)− s
2 S(ξ, t)

]∣∣∣∣ ≤ C2,
(3.12)

uniformly in t ∈ [0, T] for s > n
p , α = (α1, α2, . . . , αn), αk ∈ {0, 1}, ξ ∈ Rn and ξ 6= 0.

Let we show that G(·, t), V(·, t) ∈ B
n
q +

1
p

q,1 (Rn; E) for some q ∈ (1, 2) and for all t ∈ [0, T],
where

G(ξ, t) =
(

1 + |ξ|2
)− s

2 Q
1
2 (ξ)C(ξ, t), V(·, t) =

(
1 + |ξ|2

)− s
2 S(ξ, t).

By embedding properties of Sobolev and Besov spaces it sufficient to derive that G, V ∈

W
n( 1

q+
1
p )+ε

q (Rn) for some ε > 0. Indeed by construction of solution, by Condition 3.1 and
by (3.3) we get G ∈ Lq(Rn). Let σ > n

( 1
q + 1

p

)
. For deriving the embedding relating G ∈

Wσ+ε
q (Rn), it sufficient to show

(
1 + |ξ|2

) σ
2 G(·, t) ∈ Lσ(R

n) for all t ∈ [0, T].

Indeed, in view of (3.3), (3.12) the function
(
1+ |ξ|2

) σ
2 G(ξ, t) is uniformly bounded for ξ ∈ Rn

and s > σ. By virtue of (3.3), (3.12) and by assumption (3.7) we have

∫
Rn

(
1 + |ξ|2

) σ
2 q
|G(ξ, t)|qdξ .

∫
Rn

(
1 + |ξ|2

)− (s−σ)
2 q
|C(ξ, t)|qdξ

.
∫

Rn

(
1 + |ξ|2

)−( s−σ
2 )q

dξ < ∞.

In a similar way we obtain the following

∫
Rn

(
1 + |ξ|2

) σ
2 q
|V(ξ, t)|qdξ .

∫
Rn

(
1 + |ξ|2

)−( s−σ
2 )q
|S(ξ, t)|qdξ < ∞.
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By the Fourier multiplier theorem [10, Theorem 4.3], from (3.12) we get that the func-
tions

(
1 + |ξ|2

)− s
2 Q

1
2 (ξ)C(ξ, t),

(
1 + |ξ|2

)− s
2 L(ξ)Q

1
2 (ξ)S(ξ, t) are Lp(Rn) → L∞(Rn) Fourier

multipliers. Then by Minkowski’s inequality for integrals from (3.10) and (3.11) we obtain∥∥∥F−1C(ξ, t)ϕ̂(ξ)
∥∥∥

L∞(Π′N)
+
∥∥∥F−1S(ξ, t)ψ̂(ξ)

∥∥∥
L∞(Π′N)

≤ C[‖ϕ‖Ys,p + ‖ψ‖Ys,p ]. (3.13)

Moreover, by using the representation of Φ̂(ξ, t) in (3.5) and the estimate (3.3) we get the
uniform estimate

sup
ξ∈Rn,t∈[0,T]

|ξ|
∣∣∣∣|α|+ n

p Dα

[(
1 + |ξ|2

)− s
2
Φ̂(ξ, t)

]∣∣∣∣ ≤ C3. (3.14)

By reasoning as the above and in view of (3.3) we get that the function
(
1 + |ξ|2

)− s
2 Og(ξ)

is a Lp(Rn)→ L∞(Rn) Fourier multiplier, i.e. we have the following uniform estimate∥∥∥∥F−1
∫ t

0
Φ̂(ξ, t− τ)ĝ(ξ, τ)dτ

∥∥∥∥
X∞

≤ C
∫ t

0

(
‖g(·, τ)‖Ys + ‖g(·, τ)‖X1

)
dτ.

Hence, from (3.9)–(3.11), we deduced the following

‖u‖X∞
≤C

[
‖ϕ‖Ys,p + ‖ϕ‖X1

+ ‖ψ‖Ys,p + ‖ψ‖X1
+
∫ t

0

(
‖g(·, τ)‖Ys,p + ‖g(·, τ)‖X1

)
dτ

]
. (3.15)

By differentiating from (3.5) we get

ût(ξ, t) = −Q
1
2 (ξ) sin

(
Q

1
2 t
)

ϕ̂(ξ) + cos
(

Q
1
2 t
)

ψ̂(ξ)

+
∫ t

0
Q

1
2 (ξ)L(ξ) sin

(
Q

1
2 (ξ, t− τ)

)
ĝ(ξ, τ)dτ, t ∈ (0, T). (3.16)

By using (3.3) and (3.16) in a similar way, we get

‖ut‖X∞
≤ C

[
‖ϕ‖Ys,p + ‖ϕ‖X1

+ ‖ψ‖Ys,p + ‖ψ‖X1
+
∫ t

0

(
‖g(·, τ)‖Ys,p + ‖g(·, τ)‖X1

)
dτ

]
(3.17)

Then from (3.15) and (3.17), we obtain the estimate (3.8). Let us now show that problem (3.1)
has a unique solution u ∈ C(1)([0, T]; Ys,p). Let us admit it is the opposite. So let us assume
that the problem (3.1) has two solutions u1, u2 ∈ C(1)([0, T]; Ys,p). Then by linearity of (3.1),
we get that υ = u1 − u2 is also a solution of the corresponding homogenous equation

υtt + L0υtt + L1υ = 0, υ(x, 0) = 0, υt(x, 0) = 0, x ∈ Rn, t ∈ (0, T).

Moreover, by (3.8) we have the following estimate

‖υ‖X∞
≤ 0.

The above estimate implies that υ = 0.

Remark 3.5. In view of Remark 3.2 we see that the assumption (3.7) is satisfied if ν ≥ 0 and

s > n
(

2
q
+

1
p

)
+ max

{
m1 −m0, m1 + 2m2 − (2m0)

3
2

}
.

By reasoning as in Theorem 3.4 we obtain
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Theorem 3.6. Let the Condition 3.1 hold. Then for ϕ, ψ, g(·, t) ∈ Ys,p for t ∈ (0, T), g(x, ·) ∈
L1(0, T; Ys,p

1

)
for x ∈ Rn problem (3.1) has a unique solution u(x, t) and the following uniform

estimate holds

‖u‖Ys,p + ‖ut‖Ys,p ≤ C
[
‖ϕ‖Ys,p + ‖ψ‖Ys,p +

∫ t

0
‖g(., τ)‖Ys,p dτ

]
. (3.18)

Proof. From (3.5) we have the following uniform estimate∥∥∥∥F−1
(

1 + |ξ|2
) s

2 û
∥∥∥∥

Xp

+

∥∥∥∥F−1
(

1 + |ξ|2
) s

2 ût

∥∥∥∥
Xp

≤ C
{∥∥∥F−1(1 + |ξ|)

s
2 C(ξ, t)ϕ̂

∥∥∥
Xp

+
∥∥∥F−1(1 + |ξ|)

s
2 S(ξ, t)ψ̂

∥∥∥
Xp

+
∫ t

0

∥∥∥(1 + |ξ|) s
2 Φ̂(ξ, t− τ)ĝ(·, τ)

∥∥∥
Xp

dτ

}
. (3.19)

By Condition 3.1 and by virtue of Fourier multiplier theorems (see e.g. [10, Theorem 4.3], we
get that C(ξ, t), S(ξ, t) and Φ̂(ξ, t) are Fourier multipliers in Lp(Rn) uniformly with respect to
t ∈ [0, T]. So, the estimate (3.19) by using Minkowski’s inequality for integrals implies (3.18).

The uniqueness of (3.3) is obtained by reasoning as in Theorem 3.4.

4 Initial value problem for nonlinear equation

In this section, we will show the local existence and uniqueness of solution for the Cauchy
problem (1.1)–(1.2).

For the study of the nonlinear problem (1.1)–(1.2) we need the following lemmas

Lemma 4.1 (Nirenberg’s inequality [19]). Assume that u ∈ Lp(Ω), Dmu ∈ Lq(Ω), p, q ∈ (1, ∞).
Then for i with 0 ≤ i ≤ m, m > n

q we have

∥∥∥Diu
∥∥∥

r
≤ C‖u‖1−µ

p

n

∑
k=1
‖Dm

k u‖µ
q , (4.1)

where
1
r
=

i
m

+ µ

(
1
q
− m

n

)
+ (1− µ)

1
p

,
i
m
≤ µ ≤ 1.

Lemma 4.2 ([19]). Assume that u ∈Wm
p (Ω)∩ L∞(Ω) and f (u) possesses continuous derivatives up

to order m ≥ 1. Then f (u)− f (0) ∈Wm
p (Ω) and

‖ f (u)− f (0)‖p ≤
∥∥∥ f

(1)
(u)
∥∥∥

∞
‖u‖p,

∥∥∥Dk f (u)
∥∥∥

p
≤ C0

k

∑
j=1

∥∥∥ f (j)(u)
∥∥∥

∞
‖u‖j−1

∞

∥∥∥Dku
∥∥∥

p
, 1 ≤ k ≤ m, (4.2)

where C0 ≥ 1 is a constant.

Let

E0 =
(
Ys,p, Xp

)
1

2p ,p = B
s
(

1− 1
2p

)
p (Rn).
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Remark 4.3. By using a result by J. Lions and I. Petree (see e.g. [25, § 1.8]) we obtain that the
map u → u(t0), t0 ∈ [0, T] is continuous and surjective from W2

p
(
0, T; Ys,p, Xp

)
onto E0 and

there is a constant C1 such that

‖u(t0)‖E0
≤ C1‖u‖W2

p(0,T;Ys,p,Xp), 1 ≤ p ≤ ∞.

Let
C(m)(p) = C(m)

(
[0, T]; Ys,p

∞
)
.

First all of, we define the space Y(T) = C
(
[0, T]; Ys,p

∞
)

equipped with the norm defined by

‖u‖Y(T) = max
t∈[0,T]

‖u‖Ys,p + max
t∈[0,T]

‖u‖X∞
, u ∈ Y(T).

It is easy to see that Y(T) is a Banach space. For ϕ, ψ ∈ Ys,p, let

M = ‖ϕ‖Ys,p + ‖ϕ‖X∞
+ ‖ψ‖Ys,p + ‖ψ‖X∞

.

Condition 4.4. Assume:

(1) The Condition 3.1 holds, ϕ, ψ ∈ Ys,p
1 and s > n

(
2
q +

1
p

)
+ ν if ν ≥ 0, s > n

(
2
q +

1
p

)
if ν < 0

for p ∈ [1, ∞] and for a q ∈ [1, 2];

(2) (2) the function u→ f̂ (ξ, t, u): Rn × [0, T]× E0 → C is a measurable in (ξ, t) ∈ Rn × [0, T]
for u ∈ E0; moreover, f̂ (ξ, t, u) is continuous in u ∈ E0 and f̂ (ξ, t, u) ∈ C([s]+1)(E0; C)
uniformly for ξ ∈ Rn and t ∈ [0, T].

The main aim of this section is to prove the following result.

Theorem 4.5. Let the Condition 4.4 hold. Then problem (1.1)–(1.2) has a unique strong solution
u ∈ C(2)(p), where T0 is a maximal time that is appropriately small relative to M. Moreover, if

sup
t∈[0, T0)

(
‖u‖Ys,p + ‖u‖X∞

+ ‖ut‖Ys,p + ‖ut‖X∞

)
< ∞ (4.3)

then T0 = ∞.

Proof. First, we are going to prove the existence and the uniqueness of the local strong solution
of (1.1)–(1.2) by contraction mapping principle. Consider a map G on Y(T) such that G(u) is
the operator defined by

G(u) = G(u)(x, t) = S1(t)ϕ(x) + S2(t)ψ(x) + O(u), (4.4)

where

O(u) =
∫ t

0
F−1

[
S(ξ, t− τ)L(ξ) f̂ (u)(ξ, τ)

]
dτ, t ∈ (0, T). (4.5)

From Lemma 4.2 we know that f (u) ∈ Lp
(
0, T; Ys,p

∞
)

for any T > 0. From Lemma 4.2 it is
easy to see that the map G is well defined for f ∈ C(2)(X0; C). We put

Q(M; T) =
{

u | u ∈ Y(T), ‖u‖Y(T) ≤ M + 1
}

.

First, by reasoning as in [12] let us prove that the map G has a unique fixed point in
Q(M; T). From Lemma 4.2 it is easy to see that the map G is well defined for f ∈ C(2)(X0; C).
Let

W(u) = F−1[S(ξ, t− τ)L(ξ) f (u)](x, τ).
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By assumption (2) of Condition 4.4 and by virtue [10, Theorem 4.3], the function U(ξ, t− τ)L(ξ)
is a Fourier multiplier theorem in Xp, i.e. if f (u) ∈ Xp, then W(u) ∈ Xp.

First, by reasoning as in [12] let us prove that the map G has a unique fixed point in
Q(M; T). For this aim, it is sufficient to show that the operator G maps Q(M; T) into Q(M; T)
and G : Q(M; T) → Q(M; T) is strictly contractive if T is appropriately small relative to M.
Consider the function W(ξ): [0, ∞)→ [0, ∞) defined by

W(σ) = max
|ξ|≤σ

{∣∣∣W(1)
(ξ)
∣∣∣, ∣∣∣W(2)

(ξ)
∣∣∣,. . . ,

∣∣∣W([s])
(ξ)
∣∣∣}, σ ≥ 0.

It is clear to see that the function W(σ) is continuous and nondecreasing on [0, ∞). From
Lemma 4.2 we have

‖W(u)‖Y2,p ≤
∥∥∥W(1)(u)

∥∥∥
X∞
‖u‖Xp

+
∥∥∥W(1)(u)

∥∥∥
X∞
‖Du‖Xp

+ C0

[∥∥∥W(1)(u)
∥∥∥

X∞
‖u‖Xp

+ · · ·+
∥∥∥W([s])(u)

∥∥∥
X∞
‖u‖X∞

∥∥∥D[s]u
∥∥∥

Xp

]
≤ 2C0W(M + 1)(M + 1)‖u‖Ys,p . (4.6)

By using Theorem 3.4 we obtain from (4.5):

‖G(u)‖X∞
≤ ‖ϕ‖X∞

+ ‖ψ‖X∞
+
∫ t

0
‖W(x, τ, u(τ))‖X∞

, (4.7)

‖G(u)‖Y2sp ≤ ‖ϕ‖Ys,p + ‖ψ‖Ys,p +
∫ t

0
‖W(x, τ, u(τ))‖Y2,p dτ. (4.8)

Thus, from (4.6)–(4.8) and Lemma 4.2 we get

‖G(u)‖Y(T) ≤ M + T(M + 1)
[
1 + 2C0(M + 1) f̄ (M + 1)

]
.

If T satisfies
T ≤

{
(M + 1)

[
1 + 2C0(M + 1) f̄ (M + 1)

]}−1, (4.9)

then
‖Gu‖Y(T) ≤ M + 1.

Therefore, if (4.9) holds, then G maps Q(M; T) into Q(M; T). Now, we are going to prove that
the map G is strictly contractive. Assume T > 0 and u1, u2 ∈ Q(M; T) given. We get

G(u1)− G(u2) =
∫ t

0
[W(u1)(x, τ)−W(u2)(x, τ)]dτ, t ∈ (0, T).

By using the assumption (3) and the mean value theorem, we obtain

W(u1)−W(u2) = W(1)(u2 + η1(u1 − u2))(u1 − u2),

D[W(u1)−W(u2)] = W(2)(u2 + η2(u1 − u2))(u1 − u2)Dξu1 + W(1)(u2)
(

Du1 − Dξu2
)
,

D2
[

f̂ (u1)− f̂ (u2)
]
= W(3)(u2 + η3(u1 − u2))(u1 − u2)(Du1)

2

+ W(2)(u2)(Du1 − Du2)(Du1 + Du2)

+ W(2)(u2 + η4(u1 − u2))(u1 − u2)D2u1 + W(1)(u2)
(

D2u1 − D2u2
)
,
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where 0 < ηi < 1. Thus, using Hormander’s and Nirenberg’s inequality, we have

‖W(u1)−W(u2)‖X∞
≤W(M + 1)‖u1 − u2‖X∞

, (4.10)

‖(u1)−W(u2)‖Xp
≤W(M + 1)‖u1 − u2‖Xp

,

‖D[W(u1)−W(u2)]‖Xp
≤ (M + 1)W(M + 1)‖u1 − u2‖X∞

+ W(M + 1)‖W(u1)−W(u2)‖Xp
, (4.11)

∥∥D2[W(u1)−W(u2)]
∥∥

Xp

≤ (M + 1)W(M + 1)‖u1 − u2‖X∞

∥∥D2u1
∥∥2

Y2,p

+ W(M + 1)‖D(u1 − u2)‖Y2,p‖D(u1 + u2)‖Y2,p

+ W(M + 1)‖u1 − u2‖X∞

∥∥D2u1
∥∥

Xp
+ W(M + 1)‖D(u1 − u2)‖Xp

≤ C2W(M + 1)‖u1 − u2‖X∞
‖u1‖X∞

∥∥D2u1
∥∥

Xp

+ C2W(M + 1)‖u1 − u2‖X∞

∥∥D2(u1 − u2)
∥∥

Xp
‖u1 + u2‖X∞

∥∥D2(u1 + u2)
∥∥

Xp

+ (M + 1)W(M + 1)‖u1 − u2‖X∞
+ W(M + 1)

∥∥D2(u1 − u2)
∥∥

Xp

≤ 3C2(M + 1)2W(M + 1)‖u1 − u2‖X∞
+ 2C2(M + 1)W(M + 1)

∥∥D2(u1 − u2)
∥∥

Xp
. (4.12)

In a similar way, we have∥∥∥D[s][W(u1)−W(u2)]
∥∥∥

Xp
≤ C1‖u1 − u2‖X∞

+ C2

∥∥∥D[s](u1 − u2)
∥∥∥

Xp
. (4.13)

From (4.10)–(4.13), using Minkowski’s inequality for integrals, Fourier multiplier theorem in
Xp spaces and Young’s inequality, we obtain

‖G(u1)− G(u2)‖Y(T) ≤
∫ t

0
‖u1 − u2‖X∞

dτ +
∫ t

0
‖u1 − u2‖Ys,p dτ

+
∫ t

0
‖W(u1)−W(u2)‖X∞

dτ +
∫ t

0
‖W(u1)−W(u2)‖Ys,p dτ

≤ T
[
1 + C1(M + 1)2W(M + 1)

]
‖u1 − u2‖Y(T),

where C1 is a constant. If T satisfies (4.9) and the following inequality

T ≤ 1
2

[
1 + C1(M + 1)2W(M + 1)

]−1
, (4.14)

then

‖Gu1 − Gu2‖Y(T) ≤
1
2
‖u1 − u2‖Y(T).

That is, G is a contractive map. By contraction mapping principle we know that G(u) has
a fixed point u(x, t) ∈ Q(M; T) that is a solution of (1.1)–(1.2). From (3.6) we get that u is a
solution of the following integral equation

u(t, x) = S1(t)ϕ(x) + S2(t)ψ(x) + +
∫ t

0
W(u)(x, τ)dτ, t ∈ (0, T).
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Let us show that this solution is a unique in Y(T). Let u1, u2 ∈ Y(T) be two solutions of
the problem (1.1)–(1.2). Then

u1 − u2 =
∫ t

0
[W(u1)(x, τ)−W(u2)(x, τ)]dτ. (4.15)

By the definition of the space Y(T), we can assume that

‖u1‖X∞
≤ C1(T), ‖u1‖X∞

≤ C1(T).

Hence, by Minkowski’s inequality for integrals and Theorem 3.6 we obtain from (4.15)

‖u1 − u2‖Ys,p ≤ C2(T)
∫ t

0
‖u1 − u2‖Y2,p dτ. (4.16)

From (4.16) and Gronwall’s inequality, we have ‖u1 − u2‖Ys,p = 0, i.e. problem (1.1)–(1.2)
has a unique solution which belongs to Y(T). That is, we obtain the first part of the assertion.
Now, let [0, T0) be the maximal time interval of existence for u ∈ Y(T0). It remains only to
show that if (4.3) is satisfied, then T0 = ∞. Assume contrary that, (4.3) holds and T0 < ∞. For
T ∈ [0, T0), we consider the following integral equation

υ(x, t) = S1(t)u(x, T) + S2(t)ut(x, T) +
∫ t

0
W(υ)(x, τ)dτ, t ∈ (0, T). (4.17)

By virtue of (4.3), for T′ > T we have

sup
t∈[0 , T)

(
‖u‖Ys,p + ‖u‖X∞

+ ‖ut‖Ys,p + ‖ut‖X∞

)
< ∞.

By reasoning as in the first part of the theorem and by the contraction mapping principle,
there is a T∗ ∈ (0, T0) such that for each T ∈ [0, T0) the equation (4.17) has a unique solution
υ ∈ Y(T∗). The estimates (4.9) and (4.14) imply that T∗ can be selected independently of
T ∈ [0, T0). Set T = T0 − T∗

2 and define

ũ(x, t) =

u(x, t), t ∈ [0, T],

υ(x, t− T), t ∈
[

T, T0 +
T∗
2

]
By construction ũ(x, t) is a solution of the problem (1.1)–(1.2) on

[
T, T0 +

T∗
2

]
and in view

of local uniqueness, ũ(x, t) extends u. This is against to the maximality of [0, T0), i.e. we
obtain T0 = ∞.

From [27], we have

Lemma 4.6. Let s ≥ 0, f ∈ C[s]+1(R) with f (0) = 0. Then for any u ∈ Ys,p ∩ L∞, we have f (u) ∈
Ys,p ∩ X∞. Moreover, there is some constant A(M) depending on M such that for all u ∈ Ys,p ∩ L∞

with ‖u‖X∞
≤ M,

‖ f (u)‖Ys,p ≤ C(M)‖u)‖Ys,p .

By using Lemma 4.1 and properties of convolution operators we obtain

Corollary 4.7. Let s ≥ 0, f ∈ C[s]+1(R) with f (0) = 0. Moreover, assume Φ ∈ L∞(Rn). Then for
any u ∈ Ys,p ∩ L∞, we have f (u) ∈ Ys,p ∩ X∞. Moreover, there is some constant A(M) depending on
M such that for all u ∈ Ys,p ∩ L∞ with ‖u‖X∞

≤ M,

‖Φ ∗ f (u)‖Ys,p ≤ C(M)‖u)‖Ys,p .
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Lemma 4.8. Let s ≥ 0, f ∈ C[s]+1(R). Then for for any M there is some constant K(M) depending
on M such that for all u, υ ∈ Ys,p ∩ X∞ with ‖u‖X∞

≤ M, ‖υ‖X∞
≤ M, ‖u‖Ys,p ≤ M, ‖υ‖Ys,p ≤ M,

‖ f (u)− f (υ‖Ys,p ≤ K(M)‖u− υ‖Ys,p , ‖ f (u)− f (υ‖X∞
≤ K(M)‖u− υ‖X∞

.

By reasoning as in [27, Lemma 3.4] and [5, Lemma X 4] we have, respectively

Corollary 4.9. Let s > n
p , f ∈ C[s]+1(R). Then for any M there is a constant K(M) depending on M

such that for all u, υ ∈ Ys,p with ‖u‖Ys,p ≤ M, ‖υ‖Ys,p ≤ M,

‖ f (u)− f (υ‖Ys,p ≤ K(M)‖u− υ‖Ys,p .

Lemma 4.10. If s > 0, then Ys,p
∞ is an algebra. Moreover, for f , g ∈ Ys,p

∞ ,

‖ f g‖Ys,p ≤ C
[
‖ f ‖X∞

+ ‖g‖Ys,p + ‖ f ‖Ys,p + ‖g‖X∞

]
.

By using Corollary 4.7 and Lemma 4.10 we obtain

Lemma 4.11. Let s ≥ 0, f ∈ C[s]+1(R) and f (u) = O
(
|u|γ+1) for u → 0, γ ≥ 1 be a positive

integer. If u ∈ Ys,p
∞ and ‖u‖X∞

≤ M, then

‖ f (u)‖Ys,p ≤ C(M)
[
‖u‖Ys,p‖u‖γ

X∞

]
,

‖ f (u)‖X1
≤ C(M)‖u‖p

Xp
‖u‖γ−1

X∞
.

The solution in Theorems 4.2–4.4 can be extended to a maximal interval [0, Tmax), where
finite Tmax is characterized by the blow-up condition

lim sup
T→Tmax

‖u‖Ys,p(A;E) = ∞.

Lemma 4.12. Let the Condition 4.4 hold and u be a solution of (1.1)–(1.2). Then there is a global
solution if for any T < ∞, we have

sup
t∈[0,T]

(
‖u‖Ys,p

∞
+ ‖ut‖Ys,p

∞

)
< ∞. (4.18)

Proof. Indeed, by reasoning as in the second part of the proof of Theorem 4.5, by using a
continuation of local solution of (1.1)–(1.2) and assuming contrary that, (4.18) holds and T0 <

∞, then we obtain contradiction, i.e. we get T0 = Tmax = ∞.

5 Conservation of energy and global existence.

Consider the problem for p = 2. Let us denote Ys,2 by Ws. We prove the following results.

Condition 5.1. Assume the Condition 4.4 holds for p = 2. Let L0 = L1 = L2 = −L and L be
a negative symmetric operator in L2(Rn). Suppose (I − L)−1, A = L(I − L)−1 are bounded in
L2(Rn) and assume

ψ ∈ L2(R
n), (Au, u) ∈ L2(Rn), Φ(·) ∈ L1(Rn),

where (u, υ) denotes the inner product in L2(Rn).
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Let

F(u) = A[ f (u)− u], Φ(η) =
∫ η

0
F(σ)dσ.

Remark 5.2. Note that if −L is self-adjoint positive operator in L2(Rn), then the operators
(I − L)−1, A are bounded in L2(Rn).

Lemma 5.3. Let the Condition 4.4 hold and let u ∈ C(2)([0, T]; Ws) be solution of (1.1)–(1.2) for any
t ∈ [0, T). Then the energy

E(t) = ‖ut‖2 + 2
∫

Rn
Φ(u)dx (5.1)

is constant.

Proof. By use of (1.1) and in view of Condition 4.4, it follows from straightforward calculation
that

d
dt

E(t) = 2(utt, ut) + 2
∫

Rn
Φu(u)utdx = 2(utt + Au− A f (u), ut) = 0.

Hence, we obtain the assertion.

By using the above lemmas we obtain the following results.

Theorem 5.4. Assume the Condition 5.1 is satisfied and ϕ, ψ ∈ Ys,2
∞ . Moreover, there is some k > 0

so that
Φ(s) ≥ −k|s|2, for all s ∈ R. (5.2)

Then there is some T > 0 such that problem (1.1)–(1.2) has a global solution

u ∈ C(2)([0, T]; Ws).

Proof. Since r > 2 + n
2 , by Theorem 4.5 we get local existence in u ∈ C(2)([0, T]; Ws) for some

T > 0. Assume that u exists on [0, T). By assumption (5.2), we obtain

E(t) = ‖ut‖2 + 2
∫

Rn
Φ(u)dx ≤ E(0) + 2k‖u(·, t)‖2. (5.3)

for all t ∈ [0, T). By properties of norms in Hilbert spaces and by the Cauchy–Schwarz
inequality, from (5.3) we get

d
dt
‖u(·, t)‖2

Ws ≤ 2‖ut(·, t)‖Ws‖u(·, t)‖Ws

≤ ‖ut(·, t)‖2
Ws + ‖u(·, t)‖2

Ws ≤ CE(0) + (2Ck + 1)‖u(t)‖2
Ws .

Gronwall’s lemma implies that ‖u(·, t)‖Ws is bounded in [0, T). But, since s > n
2 , we

conclude that ‖u(t)‖L∞ also is bounded in [0, T). By Lemma 4.12 this implies a global solution.

6 Blow up in finite time

We will use the following lemma to prove blow up in finite time.
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Lemma 6.1 ([11]). Suppose H(t), t ≥ 0 is a positive, twice differentiable function satisfying

H(2)H − (1 + ν)
(

H(1)
)2
≥ 0 for ν > 0.

If H(0) > 0 and H(1)(0) > 0, then H(t)→ ∞ when t→ t1 for some

t1 ≤ H(0)
[
νH(1)(0)

]−1
.

We rewrite the energy identity as

E(t) = ‖ut‖2 + 2
∫

Rn
Φ(u)dx = E(0),

where
Φ(η) =

∫ η

0
F(σ)dσ, A = L(I − L)−1. (6.1)

We prove here the following result.

Theorem 6.2. Assume the Condition 5.1 is satisfied and ϕ, ψ ∈ Ys,2
∞ . Let u ∈ C(2)([0, T]; Ws) be

solution of (1.1)–(1.2) for any t ∈ [0, T). Suppose there are some positive numbers ν, t0 and b such
that

σF(σ) ≤ 2(1 + 2ν)Φ(σ) for all σ ∈ R (6.2)

and
E(0) = ‖ut‖2 + 2

∫
Rn

Φ(u)dx < 0. (6.3)

Then the solution u of the problem (1.1)–(1.2) blows up in finite time.

Proof. Assume that there is a global solution. Let

H(t) = ‖u‖2 + b(t + t0)
2.

for some positive b and t0 that will be determined later. We have

H(1)(t) = 2(u, ut) + 2b(t + t0),

H(2)(t) = 2‖ut‖2 + 2(u, utt) + 2b.
(6.4)

Hence, from (1.1)we get

(u, utt) = −(u, AF(u)) = −
∫

Rn
uAF(u)dx. (6.5)

From (6.2)–(6.3) and (6.5) we deduced

(u, utt) ≥ −2(1 + ν)
∫

Rn
Φ(u)dx = 2(1 + ν)

[
‖ut‖2 − E(0)

]
. (6.6)

From (6.4) and (6.6), we obtain

H(2)(t) ≥ 2‖ut‖2 + 2(1 + ν)
[

E(0)− ‖ut‖2
]
+ 2b. (6.7)

On the other hand, in view of the Cauchy–Schwarz inequality, we have(
H(1)(t)

)2
= [2(u, ut) + 2b(t + t0)]

2

≤ 4
[
‖u‖2‖ut‖2 + b2(t + t0)

2
(
‖u‖2 + ‖ut‖2

)]
+ 4b2(t + t0)

2. (6.8)
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Hence, combining (6.4), (6.7) and (6.8) we obtain

H(2)H − (1 + ν)
(

H(1)
)2

≥
[
2‖ut‖2 + 4(1 + ν)‖ut‖2 − 2(1 + 2ν)E(0) + 2b

][
‖u‖2 + b(t + t0)

2
]

− 4(1 + ν)
[
‖u‖2‖ut‖2 + b2(t + t0)

2
(
‖u‖2 + ‖ut‖2

)]
+ 4b2(t + t0)

2

= − 2(1 + 2ν)[b + E(0)]H(t).

Hence, if we choose b ≤ −E(0), this gives

H(2)H − (1 + ν)
(

H(1)
)2
≥ 0.

Moreover,
H(1)(0) = 2(ϕ, ψ) + 2b(t0) ≥ 0

for sufficiently large t0. According to Lemma 6.1, this implies that H(t), and thus ‖u(t)‖2

blows up in finite time contradicting the assumption that the global solution exists.

7 Applications

In this section we give some application of Theorem 4.5.

1. Let
L0 = L1 = L2 = A1 = ∑

|α|=2
aαDα,

where aα are real numbers.
Then the problem (1.1)–(1.2) is reduced to the Cauchy problem for the following Boussi-

nesq equation

utt + A1utt + A1u = A1 f (x, t, u), x ∈ R2, t ∈ (0, T),

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),
(7.1)

Let
Xp = Lp

(
R2), 1 ≤ p ≤ ∞, Ys,p = Ls

p
(
R2).

Assumption 7.1. Assume that A2(ξ) 6= 0, A2(ξ) 6= −1 for all ξ = (ξ1, ξ2) ∈ R2. Let ϕ,
ψ ∈ Ys,p ∩ X1 and

M = ‖ϕ‖Ys,p + ‖ϕ‖X1
+ ‖ψ‖Ys,p + ‖ψ‖X1

.

It is not hard to see that Assumtion 7.1 implies Condition 3.1. Hence, from Theorem 4.5
we obtain:

Theorem 7.2. Suppose that the Assumption 7.1 holds. Let s > 2
( 2

q + 1
p

)
for p ∈ [1, ∞] and for

a q ∈ [1, 2]. Assume that the function u → f (x, t, u): R2 × [0, T] × B
s(1− 1

2p )
p

(
R2) → Lp

(
R2)

is measurable in (x, t) ∈ R2 × [0, T] for u ∈ B
s(1− 1

2p )
p

(
R2). Moreover, f (x, t, u) is continuous in

u ∈ B
s(1− 1

2p )
p

(
R2) and

f (x, t, u) ∈ C(3)
(

B
s(1− 1

2p )
p

(
R2))
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uniformly with respect to (x, t) ∈ R2 × [0, T]. Then for ϕ, ψ ∈ Ys,p ∩ X1 problem (7.1) has a unique
local strong solution u ∈ C(2)

(
[0, T0); Ys,p

∞
)
, where T0 is a maximal time interval that is appropriately

small relative to M. Moreover, if

sup
t∈[0,T0)

(
‖u‖Ys,p + ‖u‖X∞

+ ‖ut‖Ys,p + ‖ut‖X∞

)
< ∞

then T0 = ∞.

2. Let
L0 = L1 = L2 = A2 = ∑

|α|=4
aαDα,

where aα are real numbers, α = (α1, α2, α3), αk are natural numbers and

|α| =
3

∑
k=1

αk.

Then the problem (1.1)–(1.2) is reduced to the Cauchy problem for the following
Boussinesq equation

utt + A2utt + A2u = A2 f (x, t, u), x ∈ R3, t ∈ (0, T), (7.2)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x).

where
ϕ, ψ ∈ Ls

p
(
R3), s >

3
p

, p ∈ [1, ∞].

Assumption 7.3. Assume that A2(ξ) 6= 0, A2(ξ) 6= −1 for all ξ = (ξ1, ξ2, ξ3) ∈ R3. Let ϕ,
ψ ∈ Ys,p ∩ X1 and

M = ‖ϕ‖Ys,p + ‖ϕ‖X1
+ ‖ψ‖Ys,p + ‖ψ‖X1

.

It is clear to see that if Assumption 7.1 holds, then Condition 3.1 is satisfied.
Let

Xp = Lp
(
R3), 1 ≤ p ≤ ∞, Ys,p = Ls

p
(
R3).

Hence, from Theorem 4.5 we obtain:

Theorem 7.4. Suppose that the Assumption 7.3 holds. Let s > 3
( 2

q + 1
p

)
for p ∈ [1, ∞] and for

a q ∈ [1, 2]. Suppose that the function u → f (x, t, u): R3 × [0, T] × B
s(1− 1

2p )
p

(
R3) → Lp

(
R3)

is measurable in (x, t) ∈ R3 × [0, T] for u ∈ B
s
(

1− 1
2p

)
p

(
R3). Moreover, f (x, t, u) is continuous in

u ∈ B
s
(

1− 1
2p

)
p

(
R3) and

f (x, t, u) ∈ C(3)
(

B
s(1− 1

2p )
p

(
R3))

uniformly with respect to (x, t) ∈ R3 × [0, T]. Then problem (7.2) has a unique local strong solution

u ∈ C(2)([0, T0); Ys,p
∞
)
,

where T0 is a maximal time interval that is appropriately small relative to M. Moreover, if

sup
t∈[0 , T0)

(
‖u‖Ys,p + ‖u‖X∞

+ ‖ut‖Ys,p + ‖ut‖X∞

)
< ∞

then T0 = ∞.
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3. Let
L0 = ∑

|α|=4
a0αDα, L1 = ∑

|α|=2
a1αDα, L2 = ∑

|α|=4
a2αDα,

where aαi are real numbers, α = (α1, α2, α3), αk are natural numbers and

|α| =
3

∑
k=1

αk.

Then the problem (1.1)–(1.2) is reduced to Cauchy problem for the following Boussinesq
equation

utt + L0utt + L1u = L2 f (x, t, u), x ∈ R3, t ∈ (0, T), (7.3)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),

where
ϕ, ψ ∈ Ls,p(R3), p ∈ [1, ∞].

Hence, from Theorem 4.5 we obtain:

Theorem 7.5. Assume that the Condition 3.1 is satisfied. Let ϕ, ψ ∈ Ys,p ∩ X1 and

M = ‖ϕ‖Ys,p + ‖ϕ‖X1
+ ‖ψ‖Ys,p + ‖ψ‖X1

for s > 3
( 2

q + 1
p

)
+ ν, p ∈ [1, ∞] and for a q ∈ [1, 2]. Suppose that the function u → f (x, t, u):

R3 × [0, T]× B
s(1− 1

2p )
p

(
R3) → Lp

(
R3) is measurable in (x, t) ∈ R3 × [0, T] for u ∈ B

s(1− 1
2p )

p
(
R3).

Moreover, f (x, t, u) is continuous in u ∈ B
s(1− 1

2p )
p

(
R3) and

f (x, t, u) ∈ C(3)
(

B
s(1− 1

2p )
p

(
R3))

uniformly with respect to (x, t) ∈ R3 × [0, T]. Then problem (7.3) has a unique strong solution

u ∈ C(2)([0, T0); Ys,p
∞
)
,

where T0 is a maximal time interval that is appropriately small relative to M. Moreover, if

sup
t∈[0 , T0)

(
‖u‖Ys,p + ‖u‖X∞

+ ‖ut‖Ys,p + ‖ut‖X∞

)
< ∞

then T0 = ∞.
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