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Abstract. In this paper, we consider the quasilinear Schrodinger system in RN (N > 3):

—Au+ A(x)u — %A(uz)u = Dj_aﬁ|u|"‘2u|v|ﬁ,
—Av+ Bv — %A(UZ)U = “2_58|u”‘|v|/520,

where o, > 1,2 < a4+ < %, B > 0 is a constant. By using a constrained

minimization on Nehari-PohoZaev set, for any given integer s > 2, we construct a non-
radially symmetrical nodal solution with its 2s nodal domains.

Keywords: quasilinear Schrodinger system, Nehari-PohoZaev set, non-radially sym-
metrical nodal solutions.
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1 Introduction

We study the following quasilinear Schrodinger system

1 2
—Au+ A(X)u — ZAu?)u = “ lu|*2u|ov|P,
2 a+ B (1.1)
1 2\, 218 x|, |B—2 ‘
Av + Bo ZA(U Jo = a+ﬁ|u| |o|P~%o,

where u(x) — 0, v(x) — 0 as |x| — oo, N >3, u := u(x), v := v(x) be real valued functions
on RV, a, B>12<a+pB< %, B > 0is a constant. In the last two decades, much attention
has been devoted to the quasilinear Schrodinger equation of the form

1
—Au+V(x)u— EuA(uZ) = |ulP~2u, x € RV, (1.2)
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The equation (1.2) is related to the existence of standing waves of the following quasilinear
Schrodinger equation

0z = —Az+V(x)z —1(|z]*)z — %Ag(|z|2)g’(|zlz)z, x € RV, (1.3)

where V is a given potential, / and g are real functions. The equation (1.3) has been used as
models in several areas of physics corresponding to various types of g. The superfluid film
equation in plasma physics has this structure for g(s) = s [9]. In the case g(s) = (1 + s)z, the
equation (1.3) models the self-channeling of a high-power ultra short laser in matter [19]. The
equation (1.3) also appears in fluid mechanics [9,10], in the theory of Heidelberg ferromag-
netism and magnus [11], in dissipative quantum mechanics and in condensed matter theory
[14]. When considering the case g(s) = s, one obtains a corresponding equation of elliptic
type like (1.2). For more detailed mathematical and physical interpretation of equations like
(1.2), we refer to [1,3,4,12,18,21] and the references therein.

In recent years, there has been increasing interest in studying problem (1.2), see for ex-
amples, [5,6,8,15,16,24,25] and the references therein. More precisely, by the Mountain Pass
Theorem and the principle of symmetric criticality, Severo [22] obtained symmetric and non-
symmetric solutions for quasilinear Schrodinger equation (1.2). In [13], when 4 < p < %,
Liu, Wang and Wang established the existence results of a positive ground state solution and
a sign-changing ground state solution were given by using the Nehari method for (1.2). Based
on the method of perturbation and invariant sets of descending flow, Zhang and Liu [27]
studied the nonautonomous case of (1.2), they obtained the existence of infinitely many sign-
changing solutions for 4 < p < . With the help of Nehari method and change of variables,
Deng, Peng and Wang [7] considered

—Au+V(x)u — uA(u?) = Alu|P~2u + \u|%’2u, x € RN, (1.4)

and proved that (1.4) has at least one pair of k-node solutions if either N > 6 and 4 < p < %
or3 < N < 6and % < g < 2N In addition, problem (1.4) still has at least one pair

N-2
of k-node solutions if 3 < N < 6,4 < g < 2%122 ) and A sufficiently large. Note that
all sign-changing solutions obtained in [7,13,27] are only valid for 4 < p < . When

2 < p < 7%, Ruiz and Siciliano [20] showed equation (1.2) has a ground states solution via

Nehari-PohoZaev type constraint and concentration-compactness lemma, Wu and Wu [26]
obtained the existence of radial solutions for (1.2) by using change of variables.

It is natural to pose a series of interesting questions: whether we can find an unified
approach to obtain sign-changing solutions for the full subcritical range of 2 < & + B < 572
Further, whether we can extend these results to system of the quasilinear Schrodinger system?
To answer these two questions, we adopt an action of finite subgroup G of O(2) from Szulkin
and Waliullah [23] and look for the existence of non-radially symmetrical nodal solutions for
quasilinear Schrodinger system (1.1).

Before stating our main results, we make the following assumptions:
(Al) A€ Cl(RN,IR+),0 < Ap < A(.’X) < Ao = hrn|x|ﬁooA(x) < —+o0;
(A2) VA(x)-x € L®(RN), (a + B —2)A(x) — VA(x) - x > 0;

N+2 1 .
(A3) the map s — s¥++F A(sNFaF x) is concave for any x € RY;
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(As) A(x) is radially symmetric with respect to the first two coordinates, that is to say, if
(x1,%2,%3,...,xXN), (y1,¥2,3,---,yn) € RN and x3 + x3 = y3 + 13, then

A(x1,%2,23,...,2N) = A(Y1,Y2,23, ..., ZN)-

It is worth noting that (A;) is used to derive the existence of a strongly convergent subse-
quence, while for the system, we only need one such kind of condition in our equations, which
seems to be a different phenomenon due to the coupling of 1 and v. (Ay)-(A3) once appeared
in [20,26] to obtain the existence of ground states solutions for the quasilinear Schrodinger
equation.

Our main result reads as follows.

Theorem 1.1. Assume that (A1)—(Aa) hold. For any given integer s > 2, the problem (1.1) possesses
a non-radially symmetrical nodal solution with its 2s nodal domains.

Corollary 1.2. If A(x) is a positive constant, one can still obtain the same results as Theorem 1.1 for
system (1.1).

Remark 1.3. Since s € N is arbitrary, the solution we obtained in Theorem 1.1 is actually a
result of multiplicity.

Remark 1.4. As a main novelty with respect to some results in [7,13,27], we are able to deal

with exponents « + B € (2, #;) and obtain the existence and multiplicity of nodal solution

without any radial symmetry.

The rest of the paper is organized as follows. In Section 2, we establish some preliminary
results. Theorem 1.1 is proved in Section 3.

2 Preliminaries

Throughout this paper, ||u|/; and |u, denote the usual norms of H'(RN) and L’(RN) for
r > 1, respectively. C and C; (i = 1,2,...) denote (possibly different) positive constants and
f]RN g denotes the integral f]RN ¢(z)dz. The — and — denote strong convergence and weak
convergence, respectively.

Let H'(RYN) be the usual Sobolev space, define X := H x H with

H:= {u € H'(RV) | /Nuz\Vu\z < —i-OO}.
R

The term f]RN u?|Vu|? is not convex and H is not even a vector space. So, the usual min-max
techniques cannot be directly applied, nevertheless H is a complete metric space with distance
dp(u,w) = ||u — w||gm + |Vu? — Va?|s.

Define
dx ((1,0), (w,v)) == |Ju — w|m + |[Vu? = V@ + [[o — v|| g + |V — Vv,

Then we call (1,v) € X is a weak solution of (1.1) if for any ¢y, ¢ € CF(RY),

2a|u!“‘2u|v|ﬁ) )
14 12)Vuv Vul? 4 A(xyu — 2 HOR ) o) o,
Jo (5895501 + (w90 + A~ 270 o,
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and

2 &7 B—2
./]RN ((1+UZ)VUV(P2—|— (U!VU|2+BU— ,B|ull f}% v) (p2> =0.

Hence there is a one-to-one correspondence between solutions of (1.1) and critical points of
the following functional I : X — R defined by

1
I(u,0) = E/IRN(yW|2+ V0|2 + A(x)u? + Bo?)
2.1
+1/ (uz\Vu]2+02]Vv\2)—2/ lu|*|v|P. &y
2 JRN a+p JrRN

For any ¢1,¢2 € CP(RY), (u,0) € X, and (u,0) + (91, 92) € X, we compute the Gateaux
derivative

<I’(u,l)), (4’1, q02)> = /]RN((]_ + 1,[2)Vuvq01 + (1 —|—Z)2>VUV§02 + M‘Vu’Z(Pl

2

+U‘Vz)|2§02 + A(x)upr + Bvq)z) . (xfﬁ /IRN |u|0‘*2u‘v‘5(m

2p
Ca+B R

ol olulp2

Then, (1,v) € X is a solution of (1.1) if and only if

(I'(u,0), (¢1,92)) =0, @1, g2 € CT(RY).

Motivated by [23], we recall that a subset U of a Banach space E is called invariant with
respect to an action of a group G (or G-invariant) if g C U for all ¢ € G, and a functional
I:U — Ris invariant (or G-invariant) if I(gu) = I(u) for all ¢ € G, u € U. The subspace

Ecg:={ucE|gu=u forall g e G}

is called the fixed point space of this action.

Let x = (y,z) = (y1,¥2,71,---,2n) € RN and let O(2) be the group of orthogonal transfor-
mations acting on R? by (g,y) — gy. For any positive integer s we define G; to be the finite
subgroup of O(2) generated by the two elements « and p in O(2), where « is the rotation in
the y-plane by the angle 27” and B is the reflection in the line y; = 0 if s = 2, and in the line

27i
S

y, = tan(71/s)y; for other s (so in complex notation w = y; + iys , aw = we’s, fw = we's ).
V g € G;, x € RN, gx := (gy,z). Define the action of G; on H!(RYN) by setting

(§(1,v))x == (gu, gv)x = (det(g)ug™"x, det(g)vg ™ x).

Define
V= {(u0) € X| (u,0)(gx) = (det(g)u(x),det(g)v(x)), g€ Gs},
M :={(u,0) € V\{(0,0)} | G(u,v) =0},
where G : X — R and

Gu,0) =5 [ (IVuP+|VoP)+ =2 [ (A +Be?

2(N+a+p)
2 24 .2 2y _ “lp|P
e |Vup + 2 Vo) - SR [ lullol.
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Let

= inf I(u,0). 2.2
" (u,ng)IEM (u U) @2)

Then our aim is to prove that m is achieved. In the rest of this section, we will give some
properties of the set M.
For any u € H'(RYN), we define u; : R* — H!(RV) by:

up(x) := tu(t 'x).
Lett € R" and (u,v) € X. We have that
I(ug,vp) = > / (|Vul> + |Vo]?) / )u? + Bov?
+ u?|Vul?> + v*|Vo|? —7/ ul*lolB.
[Vl |Vol7) Py RNHH
Denote hy,(t) := I(ug,v¢). Since a + f > 2, we see that hy,(t) > 0 for t > 0 small enough

and h,,(t) — —oo as t — oo, this implies that h,,(t) attains its maximum. Moreover,
hup(t) : Rt — Ris C! and

W) = NtNl/ (qu|2+\vU|2)+N+2tN+1/ (A(x)12 + Bo?
2 RN 2 RN
at P .
R

Lemma 2.1. If (u,v) € X is a weak solution of (1.1), then (u,v) satisfies the following P(u,v) = 0,
where

N-2
P(u,v) == T/ (IVul? + Vo2 + 2| Vul? + 02| Vo)
1 2
2 / Ju? + Bv?) E/]RN VA(x)-xu (2.3)
[ul“[ol.
(x+,B RN
Proof. The proof is standard, so we omit it here. O

The lemma below shows (2.2) is well defined.

Lemma 2.2. For any (u,v) € X and u,v # 0, the map h,, attains its maximum at exactly one point
E. Moreover, hy, is positive and increasing for t € [0, F| and decreasing for t > . Finally

m = inf maxI(ug,v;).
(nv)eXx t>0

Proof. For any t > 0, set s = tN**+F we obtain

NN 5 NN 5 NN+2ﬁ
. g N+at P g N+at+ 5 g N+a+ 2 )
huo(s) = 2 /]RN|Vu| + /RNva + /RNM V|
NN+42r/5 NN+<2H5
S +a 5 2 S +a ﬁ 2
+ 5 /]RNU ‘VZ)’ + 5 /]RNA(S Tat x)u

N+2

g N+atp 2s
B2 — 2 [ luftolf.
+ /RN 0~ o I
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This is a concave function by condition (A3) and we already know that it attains its maximum,
let f be the unique point at which this maximum is achieved. Notice that G(u;, v;) = th),(t),
then f is the unique critical point of h,, and h,, is positive and increasing for 0 < t < f and
decreasing for t > . In particular, € R is the unique value such that u; € M, and I(ug, vp)
reaches a global maximum for t = f. This finishes the proof. O

Lemma 2.3. m > 0.
Proof. For every (u,v) € M, it follows from (A,) that

I(u,0) = M"fﬁﬁ)/w(ywﬁ T |VoP)

L‘H 2 2 2 2 2
SNt B /RN(B” + 02| Vul? + 2| Vol?)
! 2
+2(I\]—|—0{—|—,B)/]RN((“+ﬁ_2)A(x)_VA(X)x)u
> 0.
The proof is complete. -

3 Proof of Theorem 1.1

We need the following variant of the Lions Lemma.

Lemma 3.1. If g € [2, +%5), {un} is bounded in X, rog > 0 is such that for all r > rg

lim sup /B((OZ) , luy |1 =0, (3.1)

n—oo 2eR

then we have u, — 0 in LP(RN) for p € (2, 725).

Proof. By using [24, Lemma 2.2], it remains to prove that for some r > 0,

lim sup / |un|T=0.
n—eo RN YB(zr)
Suppose that
/ 11,7 > ¢ > 0. (3.2)
B(zu,1)

Observe that in the family {B(gzu,1)}4c0(2), We find an increasing number of disjoint balls
provided that |(z},2z3)| — co. Since {u,} is bounded in L1(RN), g € [2, %), by (3.2), |(z},22)|
must be bounded. Then for sufficiently large » > g, one obtains

/ ’“n’qZ/ |uny|T>c >0,
B((szﬁ ),1’) B(Zn,l)

and we get a contradiction with (3.1). O

Lemma 3.2. Let u, — u,v, — vin X, uy, — 1,0, — v a.e in RN. Then

lim |un|“|vn|ﬁ—/ | [o]f = Tim [ |un — ul*|on — 0f.
n—oo JRN RN n—oo JIRN
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Proof. Forn =1, 2,..., we have that
o Nunlonl? = [l = ul*fon - ol
RN RN
= [ Gl = liew = ) oul + [ Jatn = ul* (o] = [0 — 0]
RN RN
Since u, — u,v, — vin H'(RV), from [17, Lemma 2.5], one has
[l = lwn = = a0, 1 e,
RN

which means that
| |* = |1y — u|* = [u|® in L& (RN).

Using |0, — |v]f in L%(]RN), it follows from « + B = p that

oGl = lan = u)lonl® = [ Jullolf, 0= oo,
RN RN

Similarly,
104]P — |04 — 0| — [0|f in LF(RY).

As i, — u|* — 0in L (RN), we obtain that
/N]un—ul”‘(]vn\ﬂ—|vn—v|ﬁ)—>0, n — oo.
R

This proves the lemma. O
The following lemma is due to Poppenberg, Schmitt and Wang from [18, Lemma 2].

Lemma 3.3. Assume that u, — u in H'(RN). Then

liminf [ 12| Via|? > liminf [ (1n — )| Vitn — Vitl? +/ 12| Vul?. (3.3)
n—oo RN n—oo RN RN
Proof. The proof is analogous to that of [18, Lemma 2], so we omit it here. O

Lemma 3.4. m is achieved at some (1,v) € M.

Proof. Let {(un,v,)} C M be a sequence such that I(u,,v,) — m. Using (u,,v,) C M and
(Az), we may obtain

1+m > I(uy,vp)

_ v+ p
= WDH_@/RN(W“HZ‘F Vou?)

B2 | (B 1V + o)
g o (@4 B DAC) ~ TAG) 1),

which implies that {u,}, {v,}, {2} and {v2} are bounded in H!(RN), then, there exists a
subsequence of (u,,v,), still denoted by (u,,v,) such that (u,,v,) = (4,v) in X. Then {u,}
and {v,} are bounded in L**#(IRN). The proof consists of three steps.
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Step 1.
[ lmnl*Toalf 4 0.
RN

It follows from Lemma 2.3 that

1
I(ty,0y) = /IRN (2(\Vun]2 + \an\z—i—A(x)ufl —|—vi1

|un|“|vnrﬁ)

2
+ 12 | Vg |* 4+ 03| Vo, |?) — i F
—m >0,

then
/RN(’V”"|2 4 [Vou 2 + A2 + Bo? + 12|Vt |2 + 02| Vou|?) 4 0.

By Lemma 2.2, for t > 1,

m < I(uy, vy)

2 I((un)t/ (vn)t)
tN ) : tN+2 ) )
=5 IRN(|Vun| + [V, )+T/]RN(A(tx)un+an)
fN+2 , . L 2pNFerp o
g fo IV 02 Vo) = T [ o
tN
> 5 1RN(|Vun|2—l—!V0n|2+AOu%—I—vil+u$l|Vun|2+v%\Vanlz)
th-‘roH-ﬁ
-1 ‘”n‘“|vn‘ﬁ
a+p JrN
tN th—I—OH-‘B N
e B
> > Py RN\un\ |on|P,

where § is a fixed constant. It suffices to choose t > 1 so that tNT" > 2m to get a lower bound

for
I
RN

Therefore, we may assume (passing to a subsequence, if necessary) that
[ Junl[onl? = D € (0,9) (3.4)
RN

Step 2. u # 0. By using (3.4) and Holder’s inequality, we can assume (passing to a subse-
quence, if necessary) that

/N\un\“+5>6>0.
R

By Lemma 3.1, there exist § > 0 and {z,} C R such that

lim sup lun|* P > 6 > 0. (3.5)

n——o0 B((O,Zn a

Define
y = (x1,x2), z=(x3,...,XN),
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Wy (x) = wy(y,2) = un(y,z+zn),
and
on(x) = 0u(y,z) = vn(y,z+ zn),
then w, — w,0, — o in X. In this case, by (A4), we may obtain I(u,,v,) = I(w,,0,). By

using (3.5) and w, — w in Lllxojﬁ(]RN), one has

0 <& < limsup |1, |¥ TP
n—+oo JB((0,z1),1)

= lim sup || TP
n—+oco JB((0,0),r)

7
_= / | w | ‘X—"_ﬁ,
B((0,0),r)

which implies w # 0, and then u # 0.
Step 3. We claim that (1,v) € M. Indeed, if (u,v) ¢ M, we discuss three cases:

Case 1: G(u,v) < 0. By Lemma 2.2, there exists t € (0,1) such that (u;,v;) € M, it follows
from (A3), (uy,v,) € M and Fatou’s Lemma that

m = liminf (I(un,vn) — mg(un,vn)>

n—-—+o0

— liminf ( —%TP 2 2
= 1711111+1£1°f (2(N+(X+‘B) /]RN(\VLI,J + |V, |7)

n M /RN((zx +B—2)A(x) - VA(x) - x)u;
B2 | (BTl )
> M"foﬁﬁ)/ﬂw(wulﬁ Vo)
AN T ATE) Ja (0B 2AG) ~ VAL )2
> gy o VP 170P)
b e Ja (642400 — VAR -
mtmw AN(sz+u2|Vu|2+02]Vv|2)
= I(ug, v1) — mg(uwt)
>m,

which is a contradiction.

Case 2: G(u,v) > 0. Set &, := uy — u, vy, := v, — v, by Lemma 3.2, the Brézis-Lieb Lemma [2],
(3.3), (A1) and (B;), we may obtain

G(un,vn) > G(1,0) +G(Cn, ¥n) +0u(1). (3.6)
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Then
limsup G (&, vn) < O.

n—o00

By Lemma 2.2, there exists t, € (0,1) such that ((¢x)t,, (7)) € M. Furthermore, one has
that

limsupt, <1,
n—oo

otherwise, along a subsequence, t, — 1 and hence

G(&nrvn) = G((Gn)tyr (Yu)t,) +0n(1) = 04(1),

a contradiction. It follows from (u,,v,) € M, (3.6), (Az) that

m + 0n(1) = (i, vp) — N+1¢+p’g(u”’v”)
— N o T+ T0u)
1
PN T AT B Jao (€ B=2AG) ~ VAG) -2
m/IRN(Bvﬁ+u§\Vun|2+v§yvpnyZ)
> SN F] Jo [P+ V0 + V4 77
N5 Ja (0 B DA~ VAW 1) 0+ )
x+p—2
SN T8 B Jun B+ IV VP 4 2+ IV
+ 7 V)
g Mﬁroﬁr[i)/m(wulz + Vo2 + V&l + [Val?)
i 2(N+1«x+,3) /RN((“ + B —2)A(x) = VA(x) - x) (u® + 5777
Z(D;\ItL’BO;_ZIB)/]RN(BUZ+uz|Vu|2—HJZ\VUF+t‘,ﬂ‘“’2fy,2Z
+ 1 2 Ve + B V)
_ x+pB
= I((gn)tn/ (')’n)tn) + WUC‘F,B)/IRN(‘VIJF—F ‘Vz)’Z)
1
PN T AT B o B=DA) ~ VAR) )
M/MBUZWZW”VH‘?“WV)
>m

e 7

which is also a contradiction.
Therefore, (1,v) € M. By using Lebesgue’s dominated convergence theorem, Fatou’s
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Lemma, (A;) and (u,,v,) € M, we may get

m = 1(u,0) — Mg(u,v)

= SRy Jon I+ 1V0P)

+ M /RN ((a+ B —2)A(x) — VA(x) - x)u?
M/H{N(sz+u2m|2+z;2|v@|2)

< timinf (5 gy o IV 1901
AN T TE] Jo (€ P DA~ VAW - 1)
N M/RN(BU% 12|Vt +vﬁ\wn\2)>

= lim inf <I(un,vn) - mg(un,vn)>

=m,

which implies that (1, vx) — (1,0) in X and I(u,0) = m. O

Having a minimum of |4, the fact that it is indeed a solution of (1.1), is based on a
general idea used in [13, Lemma 2.5].

Proof of Theorem 1.1. Let (if,3) € M be a minimizer of the functional I|. We show that
I'(ii,7) = 0. By Lemma 2.2,

I(#1,7) = inf maxI(uy,v) = m.
(wv)eX t>0

We argue by contradiction by assuming that (i7, 7) is not a weak solution of (1.1). Then, we
can chose ¢1, ¢ € C(RN) NV such that

(I'(4,9), (¢1,¢2)) = /IRN (Vﬁqul + VoV, + V(%) V (1) + V(0°)V (3¢2)
2

gl 2alolPe— 2 folP 2olal'gn)

+ A(x)ii¢y + By — "

< —1L

Then we fix e > 0 sufficiently small such that

(I'(ty + o1, 0t + 0¢2), (1, ¢2)) < —1,

> Vi0tE=1],llo] <e

and introduce a cut-off function 0 < { < 1 such that {(t) = 1 for |t — 1| < 5 and {(t) = 0 for
|t — 1| > e. For t > 0, we define

ﬁt, 1f|t—1|2€,
71(t) 32{

1y —|—S€(t>4)1, if ‘t— 1| <§,
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ﬁt, 1f|t—1|2€,
m2(t) =9 .
Oy +el(t)do, if|t—1| <e.

Note that 71(f) and 72(t) are continuous curve in the metric space (X,d) and, eventually
choosing a smaller ¢, we get that for |t — 1| < ¢,

dx ((11(t),72(1)), (0,0)) > 0.

Claim: sup,., [(71(), 72(t)) < m.

Indeed, if |t — 1| > ¢, then I(7y1(t), v2(t)) = I(#, 0¢) < I(u,v) = m. If |t — 1] < ¢, by using
the mean value theorem to the C! map [0,¢] > ¢+ I(i; + 0 (t)¢1, 0t + o (t)¢2) € R, we find,
for a suitable ¢ € (0,¢),

(i + o (t) 1, 0t + 0L () P2)
= I(i1, ) + (I'(i1 + 0Z (1)1, T + TC(£)p2), (T(£) 1, T(t)p2))

stﬁa—%aﬂ
< m.

To conclude, we observe that G(y1(1 —¢),72(1 —¢)) > 0 and G(711(1+¢),72(1+¢)) < 0.
By the continuity of the map t — G(y1(t), 72(t)) there exists tp € (1 —¢,1+ ¢) such that
G(7(to), 12(to)) = 0. Namely,

(11(t0), 12(to)) = (i, + e (to)P1, Oty + L (t0)P2) € M

and I(7y1(to), 72(to)) < m, this is a contradiction.

In addition, from the definition of V and the fact that det(ny) = —1, (u(yx),v(nx)) =
(det()u(x),det(n)v(x)) = (—u(x), —v(x)). So (u,v) will change sign when (y1,y2) cross
perpendicularly the half lines y, = j:yltamTﬂj (y1 >0), j=1,2,...,s. Hence (u,v) is a nodal
solution with at least 2s nodal domains. O
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