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Abstract. We investigate the growth of solutions of the differential equation
FO 4 Ay (2) fO D 4 4 AL(2) f 4 A (2) f =0, where Ay (2) ..., A,_1 (2) are
entire functions with Ay (z) #Z 0. We estimate the hyper-order with respect to the
conditions of Ay (2), ..., A,—1 (2) if f # 0 has infinite order.
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1 Introduction and statement of results

We assume that the reader is familiar with the fundamental results and the
standard notations of the Nevanlinna’s value distribution theory of meromorphic
functions ( see ([5])). Let o (f) denote the order of the growth of an entire function f
as defined in ([5]) :

U(f): EM: m IOglog]W(T7 f)’

r—+o00 log r r—-+oo log r

where T (r, f) is the Nevanlinna characteristic of f (see [5]), and M (r, f) =
maxi.|— | [ (2)].

Definition 1. ([1], [2], [8]) Let f be a meromorphic function. Then the
hyper-order o9 (f)of f(z) is defined by

oy (f) :Hw' (1.1)

r—00 log r
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Note. Clearly, if f (2) is entire, then

oy (f) = HlogloglogM(r, f) _ H1oglogT(r, f). (12)

r—00 lOg r r—0o0 log r

We define the linear measure of a set H C [0,+oo[ by m(H) = [, dt and the

dt
logarithmic measure of a set F C [1,+oo[ by my (F) = [, - The upper and the

lower densities of H are defined by

densH = Ton 007D
r—00 T

 dens H = i MH O]

r—00 r

Recently in [1], [2], [3] the concept of hyper-order was used to further investigate
the growth of infinite order solutions of complex differential equations.
The following results have been obtained for the second order equation

"+ AR f +B(:)f=0 (1.3)

where A (z), B (z) # 0 are entire functions.

Theorem A.([1]) Let H be a set of complex numbers satisfying dens {|z| : z € H} >
0, and let A (z) and B (z) be entire functions such that for some constants a, 3 > 0,

A=) < exp {o (1) 12"} (1.4)

and

B () 2 exp{(1+0(1)al’} (1.5)

as z — oo for z € H. Then every solution f # 0 of equation (1.3) satisfies
o (f) = +o0 and 03 (f) > B.

Theorem B.([2]) Let H be a set of complex numbers satisfying dens {|z| : z € H} >

0, and let A(z) and B (z) be entire functions, with 0 (A) < o (B) =0 < +00 such
that for some real constant C (> 0) and for any given ¢ > 0,

[A(2)] < exp{o(1)]]""} (1.6)
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and

B (2)] = exp{(1+0(1))Clz]""} (1.7)
as z — oo for z € H. Then every solution f # 0 of equation (1.3) satisfies
o(f) =400 and o2 (f) =0(B).

For n > 2, we consider a linear differential equation of the form

Y4 A ()Y AR +AR) =0 (1.8)

where Ag (2), ..., A,—1 (2) are entire functions with Ay (z) # 0. It is well-known that
all solutions of equation (1.8) are entire functions and if some of the coefficients of
(1.8) are transcendental, (1.8) has at least one solution with o (f) = +o0.

The main purpose of this paper is to investigate the growth of infinite order
solutions of the linear differential equation (1.8).

Theorem 1. Let H be a set of complex numbers satisfying dens {|z| : z € H} >
0, and let Ay (2), ..., An_1(2) be entire functions such that for some constants 0 <
0 < aand p >0, we have

Ao (2)] = e (1.9)

and

A (2)] <P k=1,..,n-1 (1.10)
as z — oo for z € H. Then every solution [ # 0 of equation (1.8) satisfies
o (f) = +o0 and 0 () > .

Theorem 2. Let H be a set of complex numbers satisfying dens {|z| : z € H} >
0, and let Ay (2) , ..., An_1 (2) be entire functions with max {o (Ay) - k=1,...,n—1} <
0 (Ay) = 0 < +oo such that for some real constants 0 < < a, we have

Ao (2)] > e (1.11)

and
A (2)] <77 k=1, n—1 (1.12)

as z — oo for z € H. Then every solution f # 0 of equation (1.8) satisfies
o(f) =400 and oo (f) =0 (Ap).
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2 Preliminary Lemmas

Our proofs depend mainly upon the following Lemmas.

Lemma 1. ([4], p. 90) Let f be a transcendental entire function of finite order
o. Let T'={(ki,51),(ka,72), . (km,Jm)} denote a finite set of distinct pairs of
integers satisfying k; > j; >0 for i =1,....m and let € >0 be a given constant.
Then there exists a set E C [0,00) with finite linear measure, such that for all
z satisfying |z| ¢ E and for all (k,j) € T, we have

'f(k) | < e, (21)

£ (2)

Lemma 2. ([4]) Let f(z) be a nontrivial entire function, and let o > 1 and
e > 0 be given constants. Then there exist a constant ¢ >0 and a set E C [0, 00)
having finite linear measure such that for all z satisfying |z| = r ¢ E, we have

¥ (2) k
15 <c|[T (ar, f)r logT (ar, f)]",k € N. (2.2)
Let f(z) = > a, 2" be an entire function, u(r) be the maximum term, i.e
n=0

p(r) = max{|a,| r™; n=0,1,..}, and let v;(r) be the central index of f, i.e
vy () = max {m, (1) = |an] 7).

Lemma 3.([2]) Let f (2) be an entire function of infinite order with the hyper-
order oo (f) = o, and let vy (r) be the central index of f. Then

Iy loglog vy (r) _ o. (2.3)
r—00 log r

Lemma 4.(Wiman — Valiron, [6], [7]) Let f(z) be a transcendental entire
function and let z be a point with |z| = r at which |f (2)| = M (r, ). Then for all
|z| outside a set E of r of finite logarithmic measure, we have

¥ ()
f(2)

where vy (1) is the central index of f.

— (yfz(r)) (14+0(1)), (k is an integer, r ¢ E) (2.4)
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3 Proof of Theorem 1

Suppose that f Z 0 is a solution of equation (1.8) with o (f) < co. By (1.8) we can
write

L f0 A (2) f0 A
IO + IO +'"+A0(z)f+1_0 (3.1)
1 fm "_1Ak(2)ﬁ__
ORI S E N A (32)

Then, by Lemma 1, there exists a set E; C [0, 00) with finite linear measure, such
that for all z satisfying |z| ¢ E; and for all k= 1,2,...n, we have

’f(’“) (2)
)

Also, by the hypothesis of Theoreml, there exists a set Fy with dens {|z| : z € Ey} >
0 such that for all z satisfying z € F5, we have

<z, k=1,..n; c=0c—1+e. (3.3)

Ao (2)] = e (3-4)

and

s

A (2)] < k=1,...n—1 (3.5)

as z — o00. Hence from (3.3), (3.4) and (3.5) it follows that for all z satisfying
z € Fy and |z| ¢ Fy, we have

AGOIPE .1 e _
’Ao(z) ' f(z) < e(a75)|z|u 2", k=1,.,n—1; c=0—1+4¢ (3.6)
and
‘ 1 ‘f(n) (Z) 1 Z|nc c=c—1+4¢ (3 7)
Ao (2)|] f(z) | ~ exll” ) .
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as z — 00. Thus there exists a set H C [0,00) with a positive upper density such

that (3.6),(3.7) hold. Since

. 1 kc
;}L%WLZ‘ :O, k:1,7n—1
z€H

and

1
lim —— [z|"“ =0,
Z*)OOea‘Z‘
z€H

it follows that

AP R _
lelzl’go Ao(z)’f(z) =0, k=1,...n—1

and

lim 1 ‘ f(n) (2) _
a0 | Ag (2) || f(2)

By making z — oo for z € H in the relation (3.2), we get a contradiction. Then
every solution f#0 of equation (1.8) has infinite order.
Now from (1.8), it follows that

(n-1) /
ff +...+|A1(z)||f7.

Then, by Lemma 2, there exists a set F3 C [0, +00) with a finite linear measure
such that for all z satysfying |z| = r ¢ E3, we have

|Ap (2)] < ’f;”)

(3.8)

A G|

Lk)(z) T T s = n
’f(z) <r[T@n A k=1,..n. (3.9)

Also, by the hypothesis of the Theorem1, there exists a set £y with dens{|z| : z € F4} >
0 such that for all z satisfying 2z € F,, we have

|Ag ()] > e (3.10)
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and

Ak (2)] <P k=1,.,n-1 (3.11)

as z — oo. Hence from (3.8), (3.9),(3.10) and (3.11) it follows that for all z
satisfying z € E, and |z| ¢ Ej3, we have

B < [T 2], NI 1+ (0 - 1) ] (3.12)

as z — 00. Thus there exists a set H C [0, +00) with positive upper density such
that

ela= M=o < 1 (2, f)]"H!

as r — oo in H. Therefore

—_loglogT
—loglog (r, f)

> .
r—00 log r

This proves Theorem 1.

4 Proof of Theorem 2

Assume that f # 0 is a solution of equation (1.8). Using the same arguments as in
Theorem 1, we get o (f) = +o0.

Now we prove that o (f) = 0 (Ag) = 0. By Theorem 1, we have o5 (f) > 0 —¢,
and since ¢ is arbitrary, we get g9 (f) > 0 (Ap) = 0.

On the other hand, by Wiman-Valiron theory, there is a set E C [1,+00)
with logarithmic measure m; (F) < oo and we can choose z satisfying |z| = r ¢
[0,1]U Fand |f ()| = M (r, f), such that (2.4) holds. For any given ¢ > 0, if r is
sufficiently large, we have

o+¢e

|Ag (2)| <€ k=0,1,....,n—1. (4.1)

Substituting (2.4) and (4.1) into(1.8) , we obtain

(L) o< e (4 <7“>)"1 1+ 0()] +

|| ||
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ter (”f W)H L+o()| 4. +e <”f <T>) L+o()+e™  (42)

2] ||

where z satisfies |z] =7 ¢ [0,1]UE and |f (z)| = M (r, f). By (4.2), we get

T loglog v ()

< . 4.3
r—00 logfr S ( )

Since ¢ is arbitrary, by (4.3) and Lemma 3 we have o5 (f) < o. This and the fact
that o9 (f) > o yield o5 (f) = 0.
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