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Abstract. We investigate the growth of solutions of the differential equation
f (n) + An−1 (z) f (n−1) + ... + A1 (z) f

′

+ A0 (z) f = 0, where A0 (z) , ..., An−1 (z) are
entire functions with A0 (z) 6≡ 0. We estimate the hyper-order with respect to the
conditions of A0 (z) , ..., An−1 (z) if f 6≡ 0 has infinite order.
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1 Introduction and statement of results

We assume that the reader is familiar with the fundamental results and the
standard notations of the Nevanlinna’s value distribution theory of meromorphic
functions ( see ([5])). Let σ (f) denote the order of the growth of an entire function f
as defined in ([5]) :

σ (f) = lim
r→+∞

log T (r, f)

log r
= lim

r→+∞

log log M (r, f)

log r
,

where T (r, f) is the Nevanlinna characteristic of f ( see [5]), and M (r, f) =
max|z|=r |f (z)| .

Definition 1. ([1] , [2] , [8]) Let f be a meromorphic function. Then the
hyper-order σ2 (f) of f (z) is defined by

σ2 (f) = lim
r→∞

log log T (r, f)

log r
. (1.1)
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Note. Clearly, if f (z) is entire, then

σ2 (f) = lim
r→∞

log log log M (r, f)

log r
= lim

r→∞

log log T (r, f)

log r
. (1.2)

We define the linear measure of a set H ⊂ [0, +∞[ by m (H) =
∫

H
dt and the

logarithmic measure of a set F ⊂ [1, +∞[ by ml (F ) =
∫

F

dt

t
. The upper and the

lower densities of H are defined by

densH = lim
r→∞

m (H ∩ [0, r])

r
, dens H = lim

r→∞

m (H ∩ [0, r])

r
.

Recently in [1], [2], [3] the concept of hyper-order was used to further investigate
the growth of infinite order solutions of complex differential equations.

The following results have been obtained for the second order equation

f
′′

+ A (z) f
′

+ B (z) f = 0 (1.3)

where A (z), B (z) 6≡ 0 are entire functions.

Theorem A.([1]) Let H be a set of complex numbers satisfying dens {|z| : z ∈ H} >
0, and let A (z) and B (z) be entire functions such that for some constants α, β > 0,

|A (z)| ≤ exp
{

o (1) |z|β
}

(1.4)

and

|B (z)| ≥ exp
{

(1 + o (1))α |z|β
}

(1.5)

as z → ∞ for z ∈ H. Then every solution f 6≡ 0 of equation (1.3) satisfies

σ (f) = +∞ and σ2 (f) ≥ β.

Theorem B.([2]) Let H be a set of complex numbers satisfying dens {|z| : z ∈ H} >
0, and let A (z) and B (z) be entire functions, with σ (A) ≤ σ (B) = σ < +∞ such

that for some real constant C (> 0) and for any given ε > 0,

|A (z)| ≤ exp
{

o (1) |z|σ−ε
}

(1.6)
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and

|B (z)| ≥ exp
{

(1 + o (1)) C |z|σ−ε
}

(1.7)

as z → ∞ for z ∈ H. Then every solution f 6≡ 0 of equation (1.3) satisfies

σ (f) = +∞ and σ2 (f) = σ (B) .

For n ≥ 2, we consider a linear differential equation of the form

f (n) + An−1 (z) f (n−1) + ... + A1 (z) f
′

+ A0 (z) f = 0 (1.8)

where A0 (z) , ..., An−1 (z) are entire functions with A0 (z) 6≡ 0. It is well-known that
all solutions of equation (1.8) are entire functions and if some of the coefficients of
(1.8) are transcendental, (1.8) has at least one solution with σ (f) = +∞.

The main purpose of this paper is to investigate the growth of infinite order
solutions of the linear differential equation (1.8) .

Theorem 1. Let H be a set of complex numbers satisfying dens {|z| : z ∈ H} >
0, and let A0 (z) , ..., An−1 (z) be entire functions such that for some constants 0 ≤
β < α and µ > 0, we have

|A0 (z)| ≥ eα|z|µ (1.9)

and

|Ak (z)| ≤ eβ|z|µ , k = 1, ..., n − 1 (1.10)

as z → ∞ for z ∈ H. Then every solution f 6≡ 0 of equation (1.8) satisfies

σ (f) = +∞ and σ2 (f) ≥ µ.

Theorem 2. Let H be a set of complex numbers satisfying dens {|z| : z ∈ H} >
0, and let A0 (z) , ..., An−1 (z) be entire functions with max {σ (Ak) : k = 1, ..., n − 1} ≤
σ (A0) = σ < +∞ such that for some real constants 0 ≤ β < α, we have

|A0 (z)| ≥ eα|z|σ−ε

(1.11)

and

|Ak (z)| ≤ eβ|z|σ−ε

, k = 1, ..., n − 1 (1.12)

as z → ∞ for z ∈ H. Then every solution f 6≡ 0 of equation (1.8) satisfies

σ (f) = +∞ and σ2 (f) = σ (A0) .
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2 Preliminary Lemmas

Our proofs depend mainly upon the following Lemmas.

Lemma 1. ([4] , p. 90) Let f be a transcendental entire function of finite order

σ. Let Γ = {(k1, j1) , (k2, j2) , ..., (km, jm)} denote a finite set of distinct pairs of

integers satisfying ki > ji ≥ 0 for i = 1, ..., m and let ε > 0 be a given constant.

Then there exists a set E ⊂ [0,∞) with finite linear measure, such that for all

z satisfying |z| /∈ E and for all (k, j) ∈ Γ, we have

∣

∣

∣

∣

f (k) (z)

f (j) (z)

∣

∣

∣

∣

≤ |z|(k−j)(σ−1+ε) . (2.1)

Lemma 2. ([4]) Let f (z) be a nontrivial entire function, and let α > 1 and

ε > 0 be given constants. Then there exist a constant c > 0 and a set E ⊂ [0,∞)
having finite linear measure such that for all z satisfying |z| = r /∈ E, we have

∣

∣

∣

∣

f (k) (z)

f (z)

∣

∣

∣

∣

≤ c [T (αr, f) rε log T (αr, f)]k , k ∈ N. (2.2)

Let f (z) =
∞
∑

n=0

an zn be an entire function, µ (r) be the maximum term, i.e

µ (r) = max {|an| rn; n = 0, 1, ...} , and let νf (r) be the central index of f , i.e
νf (r) = max {m, µ (r) = |am| rm} .

Lemma 3.([2]) Let f (z) be an entire function of infinite order with the hyper-

order σ2 (f) = σ, and let νf (r) be the central index of f . Then

lim
r→∞

log log νf (r)

log r
= σ. (2.3)

Lemma 4.(Wiman − V aliron, [6] , [7]) Let f (z) be a transcendental entire

function and let z be a point with |z| = r at which |f (z)| = M (r, f). Then for all

|z| outside a set E of r of finite logarithmic measure, we have

f (k) (z)

f (z)
=

(

νf (r)

z

)k

(1 + o (1)) , (k is an integer, r /∈ E) (2.4)

where νf (r) is the central index of f .
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3 Proof of Theorem 1

Suppose that f 6≡ 0 is a solution of equation (1.8) with σ (f) < ∞. By (1.8) we can
write

1

A0 (z)

f (n)

f
+

An−1 (z)

A0 (z)

f (n−1)

f
+ ... +

A1 (z)

A0 (z)

f
/

f
+ 1 = 0 (3.1)

or

1

A0 (z)

f (n)

f
+

n−1
∑

k=1

Ak (z)

A0 (z)

f (k)

f
= −1. (3.2)

Then, by Lemma 1, there exists a set E1 ⊂ [0,∞) with finite linear measure, such
that for all z satisfying |z| /∈ E1 and for all k = 1, 2, ...n, we have

∣

∣

∣

∣

f (k) (z)

f (z)

∣

∣

∣

∣

≤ |z|k c , k = 1, ..., n ; c = σ − 1 + ε. (3.3)

Also, by the hypothesis of Theorem1, there exists a set E2 with dens {|z| : z ∈ E2} >
0 such that for all z satisfying z ∈ E2, we have

|A0 (z)| ≥ eα|z|µ (3.4)

and

|Ak (z)| ≤ eβ|z|µ, k = 1, ..., n − 1 (3.5)

as z → ∞. Hence from (3.3) , (3.4) and (3.5) it follows that for all z satisfying
z ∈ E2 and |z| /∈ E1, we have

∣

∣

∣

∣

Ak (z)

A0 (z)

∣

∣

∣

∣

∣

∣

∣

∣

f (k) (z)

f (z)

∣

∣

∣

∣

≤
1

e(
α−β)|z|µ

|z|k c , k = 1, ..., n − 1 ; c = σ − 1 + ε (3.6)

and

∣

∣

∣

∣

1

A0 (z)

∣

∣

∣

∣

∣

∣

∣

∣

f (n) (z)

f (z)

∣

∣

∣

∣

≤
1

eα|z|µ
|z|nc , c = σ − 1 + ε (3.7)
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as z → ∞. Thus there exists a set H ⊂ [0,∞) with a positive upper density such
that (3.6) , (3.7) hold. Since

lim
z→∞
z∈H

1

e(
α−β)|z|µ

|z|k c = 0, k = 1, ..., n − 1

and

lim
z→∞
z∈H

1

eα|z|µ
|z|n c = 0,

it follows that

lim
z→∞
z∈H

∣

∣

∣

∣

Ak (z)

A0 (z)

∣

∣

∣

∣

∣

∣

∣

∣

f (k) (z)

f (z)

∣

∣

∣

∣

= 0, k = 1, ..., n − 1

and

lim
z→∞
z∈H

∣

∣

∣

∣

1

A0 (z)

∣

∣

∣

∣

∣

∣

∣

∣

f (n) (z)

f (z)

∣

∣

∣

∣

= 0.

By making z → ∞ for z ∈ H in the relation (3.2) , we get a contradiction. Then
every solution f/≡0 of equation (1.8) has infinite order.

Now from (1.8) , it follows that

|A0 (z)| ≤

∣

∣

∣

∣

f (n)

f

∣

∣

∣

∣

+ |An−1 (z)|

∣

∣

∣

∣

f (n−1)

f

∣

∣

∣

∣

+ ... + |A1 (z)|

∣

∣

∣

∣

∣

f
/

f

∣

∣

∣

∣

∣

. (3.8)

Then, by Lemma 2, there exists a set E3 ⊂ [0, +∞) with a finite linear measure
such that for all z satysfying |z| = r /∈ E3, we have

∣

∣

∣

∣

f (k) (z)

f (z)

∣

∣

∣

∣

≤ r [T (2r, f)]k+1 , k = 1, ..., n. (3.9)

Also, by the hypothesis of the Theorem1, there exists a set E4 with dens {|z| : z ∈ E4} >
0 such that for all z satisfying z ∈ E4, we have

|A0 (z)| ≥ eα|z|µ (3.10)
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and

|Ak (z)| ≤ eβ|z|µ, k = 1, ..., n − 1 (3.11)

as z → ∞. Hence from (3.8) , (3.9) , (3.10) and (3.11) it follows that for all z
satisfying z ∈ E4 and |z| /∈ E3, we have

eα|z|µ ≤ |z| [T (2 |z| , f)]n+1
[

1 + (n − 1) eβ|z|µ
]

(3.12)

as z → ∞. Thus there exists a set H ⊂ [0, +∞) with positive upper density such
that

e(α−β)rµ(1−o(1)) ≤ [T (2r, f)]n+1

as r → ∞ in H. Therefore

lim
r→∞

log log T (r, f)

log r
≥ µ.

This proves Theorem 1.

4 Proof of Theorem 2

Assume that f 6≡ 0 is a solution of equation (1.8) . Using the same arguments as in
Theorem 1, we get σ (f) = +∞.

Now we prove that σ2 (f) = σ (A0) = σ. By Theorem 1, we have σ2 (f) ≥ σ−ε,
and since ε is arbitrary, we get σ2 (f) ≥ σ (A0) = σ.

On the other hand, by Wiman-Valiron theory, there is a set E ⊂ [1, +∞)
with logarithmic measure ml (E) < ∞ and we can choose z satisfying |z| = r /∈
[0, 1] ∪ E and |f (z)| = M (r, f), such that (2.4) holds. For any given ε > 0, if r is
sufficiently large, we have

|Ak (z)| ≤ erσ+ε

, k = 0, 1, ..., n − 1. (4.1)

Substituting (2.4) and (4.1) into(1.8) , we obtain

(

νf (r)

|z|

)n

|1 + o (1)| ≤ erσ+ε

(

νf (r)

|z|

)n−1

|1 + o (1)| +
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+erσ+ε

(

νf (r)

|z|

)n−2

|1 + o (1)| + ... + erσ+ε

(

νf (r)

|z|

)

|1 + o (1)| + erσ+ε

(4.2)

where z satisfies |z| = r /∈ [0, 1] ∪ E and |f (z)| = M (r, f). By (4.2), we get

lim
r→∞

log log νf (r)

log r
≤ σ + ε. (4.3)

Since ε is arbitrary, by (4.3) and Lemma 3 we have σ2 (f) ≤ σ. This and the fact
that σ2 (f) ≥ σ yield σ2 (f) = σ.
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