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Abstract. In this article, we investigate the multiplicity results of the following bi-
harmonic Choquard system involving critical nonlinearities with sign-changing weight
function:

: 2 .
A%u = AF(x)|u|""2u+ H(x) </Q Wdy) ul%"2u  inQ,

. 2% .
A2p = ﬂG(x)|v|r_20+ H(x) (/Q H(y)u(y”dy> |v|2a—2v in Q,

|x —y|*
u=v=Vu=Vo=0 on o),
where Q) is a bounded domain in RN with smooth boundary 003, N > 5,1 <r < 2,
0 <a<N,2 = %{]V—_’f is the critical exponent in the sense of Hardy-Littlewood-

Sobolev inequality and A? denotes the biharmonic operator. The functions F, G and

H : O — R are sign-changing weight functions satisfying F, G € Lﬁ(ﬂ) and H ¢
L*®(Q) respectively. By adopting Nehari manifold and fibering map technique, we
prove that the system admits at least two nontrivial solutions with respect to parameter
(A1) € B2\ {(0,0)}.
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1 Introduction

We consider the following biharmonic Choquard system involving concave-convex nonlinear-
ities with critical exponent and sign-changing weight functions

/

2 )
A*u = AF(x)|u|""2u + H(x) (/Q H(y)|v(y)|dy> lul>*2u  inQ,

[x —yl*
2 .
8o = uG(lel 2o+ () ( [ S ) o2 i, (D1)
Q _
u=v=Vu=Vo=0 on o),
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where Q) be a bounded domain in RN with smooth boundary 0, N >5,0<a < N,1<r<
2, 2% = 28=L s the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality, A
denotes the biharmonic operator and A, u are the parameter such that (A, u) € R2 \ {(0,0)}.
We assume the following additive assumptions on the weight functions F, G and H:

(Z1) F, G € LP(Q) with B = 52— and 2* = 2, F¥ = max{£F,0} # 0in Q and G* =
max{+G,0} # 0in Q.

(Z2) H € L*(Q) and H" = max{H,0} # 0in Q.

Over the last many decades, biharmonic equations have been studied by many authors. These
equations have wide application in many physical problems such as phase field models of
multi-phase systems, in thin film theory, micro electro-mechanical system, nonlinear surface
diffusion on solids, interface dynamics, flow in Hele-Shaw cells, incompressible flows, in
theory of elasticity and the deformation of a nonlinear elastic beam (see [16,27,28,33,37]).

In recent years, many researchers are highly attracted to the study of nonlinear Choquard
equation because of its applications in physical models (see [35,41]). The origin of nonlinear
Choquard equation is related to the work of S. Pekar in 1976 [38] and P. Choquard. They used
the elliptic equations with Hardy-Littlewood-Sobolev type nonlinearity to describe the model
of an electron trapped in its hole in the Hartree-Fock theory of one component plasma and
the quantum theory of a polaron at rest respectively.

Here, we are interested to study the biharmonic system with Choquard type nonlinearity
because such type of equations occur in many applications. For this, consider the following
Schrodinger-Hartree equation

i0u + a(t) Au + B(H)A%u = 6(|x| ™ * |ul*)u =0, x € RV, teR
u(x, to) = up(x), x € RN,

where u(x,t) is a complex valued function in space-time RNXR,N>1,a, B are real valued
functions denoting the variable dispersion, § # 0 represents the focusing or defocus behaviour
and A is a positive parameter. The above model can be used in nonlinear optics for the
electromagnetic wave propagation in optical fibers exhibiting particular nonlinearities, where
there exists a repulsive (Hartree) force with strength 6, and when «, B experience variations
in time due to the need of balance effect of the nonlinearity and the dispersions ([1,2]).

Towards the study of biharmonic equations, Bernis et al. [5] have examined the following
critical biharmonic equation with Dirichlet and Navier boundary conditions

Au = Mu|T%u + |u* 2u, inQ,

(1.1)
:a—uzo or M:Auzo, Ol’laQ,
on

where A > 0, 2" = %. The authors proved that there exists Ag > 0 such that for 0 < A < Ao,
(1.1) has infinitely many solutions. Moreover, they also showed the existence of at least two
positive solutions of (1.1) in the critical case. We suggest some literature ([11,12,15,21,24,32,
39]) for reader’s convenience and references therein.

Starting with the work of Pekar and Choquard [30, 38], there has been a lot of work done
involving Laplace, p-Laplace and nonlocal operator with Choquard type nonlinearity (see
[9,10,29,36,43]). In [34], Moroz and Schaftingen studied the following Hartree equation (or
Choquard equation)

u

—AuAu= (I % [u|P) [ul">u  inRN, p>1, (1.2)
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where I, denotes the Riesz potential, defined as

T N—ua
L(x) = BA’;QW with B, = T = ) ,
| x] r(%mza)

a € (0,N).

and the term (I, * |u|P) |u|P~2u is also known as Hartree-type nonlinearity. They proved the
existence, positivity and radial symmetry of ground state solution. In 2018, Gao and Yang [19]
investigated Brézis—Nirenberg type critical Choquard equation regarded as

2 .
—Au = (/ |Ll(y)|dy> lul>*2u+Au in Q, (1.3)
o lx—y|*
where () is an open and bounded subset in RN with Lipschitz boundary, N > 3, 2} = 2=,

a € (0,N) and A is a parameter. They established the existence and nonexistence of the
nontrivial solution for (1.3) using variational methods. For more literature in this direction,
we cite [4,17,18,20,45] and references therein. Recently, there are few works concerning the
system involving nonlinear Choquard term. In [49], You and Zhao studied the following
system with critical Choquard type nonlinearity

1 " - 1
—Au+ Mu =y <]x\ﬂ * |u|214> lul>1 4 B (

* *
‘x‘}l * ’0’2”> |u’2’4 1/ x€Q),

1 AN o N
—Av+ A0 = g <|x|ﬂ * |v|zﬂ> o1 4+ B <|x1|P‘ * \u|2u> lo|%71, x e Q, (1.4)
wov>0 inQ, u=v=0 ond),
where p1, 2 > 0, B # 0, —A1(Q) < A1, A2 > 0, A1(€Q) is the first eigen value and 2}, = 21{]‘]7:2"

is the critical exponent in sense of Hardy-Littlewood-Sobolev inequality. The author proved
the existence of a positive ground state solution using variational methods. Moreover, for
elliptic system involving Laplace and fractional Laplacian with Choquard nonlinearity, we
cite [23,25,26,46,48] and references therein.

Recently, Sang et al. [42] examined the critical Choquard equation with weighted terms
and Sobolev-Hardy exponent in the case of Laplacian. They showed the existence of multiple
positive solutions corresponding to the problem using variational methods and Lusternik-
Schnirelmann category. Afterwards, Rani and Sarika [40] investigated the critical Choquard
equation for biharmonic operator involving sign-changing weight functions and proved the
multiplicity results analogous to the problem using the method of Nehari manifold and fiber-
ing map analysis. Considering all these facts as mentioned above, we have studied the system
of critical Choquard equation involving sign-changing weight functions for biharmonic oper-
ator and proved the multiplicity results of nontrivial solution related to the system (D, ;) with
the help of Nehari manifold and fibering map techniques ([7, 8, 13]).

To the best of our knowledge, no work has been done on biharmonic system involving
critical Choquard nonlinearity with sign-changing weight function. Apart from that, the min-
imizers for Sy ;. demonstrated here are entirely novel in the case of biharmonic system. More-
over, the results obtained in this article are completely fresh and new in the case of Laplacian
also however the approach may be familiar.

In this article, we will discuss the existence and multiplicity results of nontrivial solutions
for the system (D, ;) with respect to parameter A and p. Using the Nehari manifold and fiber-
ing map analysis [7,8,13], we establish the existence of at least two nontrivial solutions for
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system involving critical Choquard nonlinearities with sign-changing weight functions with
respect to the pair of parameters A, u belongs to a suitable subset of R?. The conspicuous
aspect of this article is the study of the critical level (c.) below which the Palais-Smale condi-
tion is satisfied. Altogether, this article amplifies the branch of knowledge and gives a novel
addition to the literature of the critical Choquard system.

In order to present our main results, we define the constant Y; as

_1
x_q ,

2
22* _2 2-r 2—7' = « | 2
Y1 = {555 HY(| 2 (SmL)™ S,

where S m,r and S are defined later.
Now we state our following main results.

Theorem 1.1. If1 <7 < 2,0 < a < Nand A, u > 0 satisfy 0 < (A|F||g)27 + (4[| G|lp)27 < Y3,
then the system (D, ,) has at least one nontrivial solution in H3 () x H3(Q).

For multiplicity result, we need the following assumptions on F, G and H respectively:

(Z3) There exist ag, by and ro > 0 such that B(0,2ry) C Q) and F(x) > ag, G(x) > by for all
x € B(0,2ry).

(Z4) There exists &y > 222 such that |[H" | = H(0) = max,gh(x), H(x) > 0 for all
x € B(0,2rp) and
H(x) =H(0)+o (\x|‘50> asx — 0.

Theorem 1.2. If 1 < r < 2,0 < & < Nand A, u > 0 satisfy 0 < (A||F||3) 77 + (u]|G||s) 27 < Ya
(where Y, < Y1), then the system (D, ) has at least two nontrivial solution in H(Q)) x H3(Q).
Moreover, the solutions corresponding to the system (D, ,) are not semi-trivial.

Remark 1.3. We note that the multiplicity results for the system (D, ,) can be generalized to
the following polyharmonic system

Zz,m "
(—=A)"u = AF(x)|u|""2u + H(x) (/ H(y)\v(y)\dy) lul» 2y inQ,
0

[x =yl
2:;,"1 *
(—=A)"v = uG(x)|o|" v + H(x) </ Wdy) lo[%n =2y in Q,
o _
Dy = Do =0 for all k| <m—1 on 0Q),

where (—A)™ denotes the polyharmonic operators, m €¢ N, N >2m+1,0<a < N,1<r <
2,20m = 1%]1\1 5 18 the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality,
and A, y are the parameter such that (A, 1) € R7 \ {(0,0)}.

Let S be the best Sobolev constant defined as

m,, |2
ueHY' (Q)\{0} (fQ |u]2??zdx)ﬁ

where 2;, = 2. Then it is well known that S is achieved if and only if Q = RY, by the
function

N—-2m
C 4m
N,m

U(x) =

N-2m

(1+|x?) 2
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(see [44]). All the minimizers of S are obtained by

Cw N—-2m
m— moe 2
Ue(x) =e2 U (E> =,
€ (e2+|xP)
where € > 0 with Cy » := C(N, m) = IT%;_,, (N — 2j).
Define Sy 1 to be the best constant as
D™u|?dx
SH,L = inf fIRN ‘ ’ T

——
20,m

llEHén (]RN)\{O} u o, m ,m
e )

One can obtain a family of minimizers for Sy in the similar manner as shown in section 2
—u)(2m—N

—~ (N—p)( ) m—
for the case m = 2 by taking Ue(x) = S N ) (C(N,oc))2<Nz+2mN—ﬂ> U (x), where € > 0 and
Ue(x) provides a family of minimizers for Sy ;.. Using the same approach, multiplicity results
can be established with respect to parameter A and u.

Organization of the article is as follows: In Section 2, variational setting for the problem
(D)) and some essential results are proved. Besides this, we show various asymptotic es-
timates which perform a vital role in the study of a second solution for the critical case. In
Section 3, we discuss that the Palais-Smale condition holds for the energy functional asso-
ciated with (D, ) at energy level in a suitable range related to the best Sobolev constant.
Further, Nehari manifold and fibering map analysis are discussed precisely in Section 4. In
Section 5, we prove the existence of Palais-Smale sequences and showed the existence of first
nontrivial solution by the proof of Theorem 1.1. In Section 6, we give the detail of proof of the
Theorem 1.2.

2 Preliminaries and some important results

We are using Sobolev space H = HZ(Q) x H3(Q) as alfunct1on space with standard norm
[(w,0) || = ([|ull® + ||o]|2) 2, where |Ju]| = (Jo |Aul?dx)? and ||lull, = ([, |u\”dx) be the
usual L?(Q)) norm.

Now, we state the well known Hardy-Littlewood-Sobolev inequality that plays a crucial
role in solving the problem involving Choquard type nonlinearity.

Proposition 2.1 (Hardy-Littlewood-Sobolev inequality [31]). Let t, ¢ > 1 and 0 < a« < N
with 1/t +a/N+1/q = 2, ¢ € L'(RN) and h € LI(RN). Then there exists a sharp constant
C(t,N,w,q), independent of g, h such that

8(xX)h(y)
/RN . dedy < C(t, N, o, q) I8l ey 1| Lo (wny- (2.1)

Ift:q—ZN - then

h(x) = AB? + |x —a?)~ 5,
for some A €C,0#4bcRandac RN,
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Thus, if |u* € L'(RN) for t > 1 such that 2 + £ = 2, then by the Hardy-Littlewood-
Sobolev inequality, the integral [py [grn %dxdy is well defined. Hence for u € H2(RY),
by Sobolev embedding theorems, we obtain

2N—(x< <2N—(x

2, =
@ N “—°=N_-4

. *
=: 2%,

where 2, and 2} are known as lower and upper critical exponent respectively in the sense of
Hardy-Littlewood—-Sobolev inequality.
Therefore, for all u € H?>(RN), by the Hardy-Littlewood-Sobolev inequality, we have

) P ey %
/]RN /IRN ’x_y‘lx dXdy < C(Nr“)Hqu* ’

where C(N, a) is same as defined in Proposition 2.1. One can easily see that in the Hardy-
Littlewood-Sobolev inequality, equality takes place if and only if

2N—«a
)=yt )’
= (epmm)

N—

) T if and only if

where C > 0 is fixed constant. Thus, u = C (m

2

</]RN /]RN |x‘2_|by[|a )|2* dxdy) % = (C(N/“))% </IRN ‘”(x)|2*dx> . . (2.2)

Let S be the best Sobolev constant defined as

Aul?d
5 — in fQ| u|“dx .
uweHF(O\0} ([, Ju(x)|¥ dx)z
N-—4
The best constant S is attained by the function U(x) = [N(N+2() (N | ‘2))5\, 15 and all the
1+|x
minimizers of S are obtained by
U (x :e%u i , wheree >0, (2.3)
€

which satisfies the equation A%u = |u|?> ~2u in RN, with

N
4

[Ue(x)[|> = [|Ue(x) 5 = S*.
Further, we define Sy 1 to be the best constant as
f]RN |Au|?dx
1
x) |2 %
f]RN f]R \x yu\”‘ dXdy>

Next, we show the relation between S and Sy ;. by the following lemma in which the leading
concept is taken from [19].

SH,L = inf
ueD22(RN)\{0} (
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Theorem 2.2. The constant Sy 1, is achieved if and only if

N
”_C<k2+rx—a12> :

where C > 0 is a constant, a € RN and k € R*. Furthermore

S
S = —"7. (2.4)

(C(N, &)
Proof. The Hardy-Littlewood—-Sobolev inequality yields that

Aul?d
SH,L 271 inf Jwy |Auf*dx _ 5

(C(N, @))% WD RO} (o [uP)F (C(N,a))%

Further, it follows by the definition of Sy ; and (2.2) that

SH,L < f]RN |AM’2dX < f]RN \Au!zdx : < S 1
(f]RN f]RN ‘\xZ ‘;‘a Ol dXd]/) f]RN | |2 dx)7 (C(N/ “))2;
In conclusion, we obtain the required result. O

(N—a)(4—N)

Take Uc(x) = § 50+ (C(N,tx))z“jl‘ﬁ“) U, (x), then U, gives a family of minimizers for
Sh 1 and satisfies the equation

2*
Nu = </ luy)[* ) u*~2u  inRN.
vx—y

Moreover,

—_— 2 u
/ |Au€|2dx:/ / [ U () | Ue () dxdy = (Sp ) Nioa.
RN RN |[x —yl|*

Consider the best constant Sy | given as

2
e it I(,0)]

ueH\{(0,0)}

x) %4 Jo(y) [

(o Jo M g dy);z'

Now, we state an important lemma which is used to show the relation between Sy ; and Sp 1.

Lemma 2.3. For u,v € L% (RN),0 < & < N and s € [2,,2%), the following inequality holds true

x)[*lo(y)[*
/IRN/IRN =y ——————=—dxdy

< ([ MO ) (][ S )

Proof. The proof is similar as given in [22]. O

Afterwards, we build a relation that connecting Sy ; and Sy | by adopting an idea from [3].
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Lemma 2.4. The following relation holds
S, =2SH,1.

Proof. Let {k,} C H3(Q) be a minimizing sequence for Sy ;.. Choose the sequences {u, = sk}
and {v, = tk, } in H3(Q), where s,t > 0. Then the definition of Sy ; implies that

2 2
), < H(un,mu () Il s
i () 2% [0 (1) [ JLACHIRILACHIES %
(fn Jo \x R dy) (fn Ja |x g dx dy)
Further, define a function f : R" — R* such that f(x) = x+ 1. Then f(§) = $+ ! and f

achieves its minimum at xy = 1. Thus, we have

min f(x) = f(x0) = 2.

xeR*

Now, choose s, t in such a way that s = t and taking n — oo in (2.5), we obtain
S_H,L S ZSH,L. (26)

At the same time, let {(u,,v,)} be a minimizing sequence of Sy ;. Take a, = s,v, for some

spn > 0 such that [, [, %dxdy IoJo |an (x |\xz“\;ra( v dxdy.

This together with Lemma 2.3 implies that

|un (x |2 an(y)| %
dxd
Jols [x = yJ? /
1
)2 2 )2 2% 2
(// |Mn | |Mnlx )’ d.’Xdy) <// ‘an | |ana )‘ dxdy>
vl vl
|un (x ‘2 lun(y) %
= dxdy.
// —yl* Y

Thus we have

[ (2, vn) ||? _s, [ (1, v ||
1
un Un “n an % 2%
(fo fQ‘ |‘x ‘y i dxdy) (fQ fQ‘ \L ‘y|"‘ o dxdy)
2 2
o Ll e —

(fn fQ W);ﬂ (fO fQ = \x % = ) ;

Now passing the limit as n — oo
Sur > 2SuL. (2.7)

We desire our result after combining (2.6) and (2.7). O
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Now, we prove some estimates, which are useful to obtain the critical level. Without loss
of generality, we may assume that 0 € Q) and B(0,27) C Q. Let ¢ € C(Q) be a fixed cut-off
function such that 0 < ¢ < 1in RN, ¢(x) =1 on B, = B(0,7) and ¢(x) = 0 in RN \ By, with
IVp| < C,|A¢p| < C. Define

Ue(x) = ¢pUe(x),

where U, (x) is define in (2.3). Accordingly, we have the following norm estimates (see[12]).

Lemma 2.5. The following estimates are true for € > 0 small enough.

IUe(x)]|* = S5 +o0(e"™)
|Ue(x)]* = ST +o(eM).
Q
0 (€¥r> , r < N—2
/Q U (x)|"dx = { o (eN’%’| 1ne|> , r=+ (2.8)
0 (eN_T%r) , r> &y
Lemma 2.6. For Choquard term, the following estimate is true:
2(N-4) (N-4)N N—4 a
O<||H+|| ZNa( (N,“))(ZNAHLS _0(€ZNZ )
1
%Uu 2 %
</ / e(x)‘ _‘uil(y)’ dXdy)
[x Yl
2(N—4) (N-4)N N-4
< | HHE (C(N,0) 5555 HLL- (29)

Proof. By assumption (Z2), there exists 0 < 7 < rg such that for all x € B(0,2v) with Jy >
2N—«
2

H(x) = H(0) 4 o(|x|%), as x — 0. (2.10)

Using the Hardy-Littlewood-Sobolev inequality and (2.4), we have

-, U.(x)|% *e 2% % zl* R
(f, f, e MBI gy ) < a1 v, o 13

2(N—4) (N-4)N N-4

= [|H" ]| i (C(N, @) 2S5y +o(eM™).

Thus

o )
[ ) RO duay < e o) ST + o,

Consider

—a 17 22177 2%
€a72NHH+H%o(C(N,Dc))%S;N‘lL . €“72N/ / H(X)H(y) ’ue(x)‘ ‘ue(y”
! Q

o) [x —yl*
AZN Dé/ /
RN JRN (€2 + [x[2) 77 (2 + [y[?)

a— UG(X)IZZ"UE(]/MZ;
e 2N/]RN /RN H(x)H(y) P

dxdy

-yl
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:Azm[/ H(0) (H(0) ~ H(x)lgp(x)|*) </ ! d>dx
R (e ) Y (2 1 y2) 5 x g
HEIWPE ([ HO - HOWWE ) .
* s, (e ey (/RN @+ ) (x— gl ) ‘
H(O) (H(0) -~ H() L .
T T </RN (@1 lyP)"F yl“d>d

_Hw) H(0) = Hw)lpW)l* , \ ;.
I (€2 +]22) 7 (fR @+ Iy ey ) d ]

=E1+Ey+ E;+ Ey4, (2.11)

where A = [N(N +2)(N —2)(N —4)]s"
On taking E;, we have

v | [ H(O) (HO) — HE)p()[%) i
n [/IRN\Bw (€2 + ¥ 7 </H<N\Bw<e2+\y\>zrx—y\“dy>dx

+/ H(0) (H(0) — H(x)|¢(x)|*) (/ 1 d )dx]
R¥\B, (2 + |x|2) 7" By (€2 +|y[2) " [x —yJo

= E11 + Eq.

Applying the Hardy-Littlewood-Sobolev inequality on E;; and E;, respectively, we get

d o d o
X Y
el ot VF( )
b= < RN\B, (€2 + !XIZ)N> ( RN\B, (€2 + [y[?)N

2N—«a 2N
_c dt =~ <C ) rN*ld N _c
=1 /]RN\BW (€2+ ’t|2)N I /), T/ZN r — L2.

and
1
Ei,<C / _ _ dxd
R M B
X y
<C / e / )
- 3( RV\B, (€2 + IXIZ)N> ( B, (€2 + [y[?)N
2N—a 2N—a
<c / dx \ ¥ /7 rN=1dr N
>~ L4 RN\B, |x|2N 0 (62_|_72)N
N«
<o <e‘2NT_“> /Z 71}1\]71‘# -
- o (1+)N
2N—ua
N« ) tN—ldt 2N aN-a
§O<€ 2)(/0 (1—}—1‘2>N> —0(6 2).
Thus

=Cy+o (e’m?“) .
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Further on taking E,, we obtain

E, — A2V [ Lo (HOc)Iqb(x)l2 ( L. (H(O)—Hz(g_)aM’(y)lzz dy> dx

€2+ |x[?)" e+ yP) T [x—yl*

H(x) | (x) [ H(0) — H(y)|¢(y) %
' /IRN\Bv (€2 + [x2) 7 </Bv (2 +y») "2 yl”‘dy> dx]

= Ex1 + Epp.

Now estimating E, ; same as E; 1, we have

2N—ua 2N—a

dx 2N dy 2N
E,1 <C / A — / ) = Cg.
2= 5<RN\BW <e2+|x12>N> (mw (€2 + [y[2)N ¢

Using the Hardy-Littlewood-Sobolev inequality E;» and (2.10), we get

2N—a

INoa 2N4, N
face ([, ati) ([
22 =7 RN\B, (€2 4+ |x|2)N B, (€2 + |y[»)N

2N—a 2Ndy 22171\7“
<o o) (e
= P Uk, (€2 + [x[2)N B, |y|™N

= Co.

Hence

Er = Cg + Co.

For E3, we use the Hardy-Littlewood-Sobolev inequality with (2.10) which implies that

_ A2N-u H(0) (H(0) — H(x))
S [/Bw /IRN\Bw (€2 + [x]2) 5" (€2 + y]2) 5" |x — yl*

H(0) (H(0) — H(x))
+ /B7 /B7 @+ ) @+ |y ) = | _y|lxdxdy]

xdy

:E3,1+E3,2.
H(0)|x|%
E3,1 S AZN_“/ / 2N—a ( )IX| 2N—a dxdy
By JRN\By (€2 + |x[2) 77 (€2 + [y[?) "2 [x —y|*
2N—a
<o x|medx ) (] dy )
- B, (€2 + [x[2)N RN\B, (€2 + [y[>)N

2N—«a
2N—a

2N&y 2N
con( [ R T () o)
=0\, PN RN\B, (€24 [y[*)N

= Cq1.

11
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IN—« H(0)]x|%
E3,2 <A / / 2N—u 2N—a dXdy
By (€2 + [x[2)77 (2 +[y[*) 2 yl

2N—«

2N—«a

< A2N-a / Mﬁdx . </ dy > N
- B, (€24 [x[?)N B, (€24 |y|?)N

SN 2N—«a
<o) ([ BRSNS Jfan w
N B, |xN o (I+A)N
2N—u
< _2N-a 0 pN=1g,\ 2V T
_0(6 2 ) '/0 7’27]\] :0<€ 2 )

Thus
E3 =Ci1+o (Gfm%“) :

Similarly on taking E4, we have

D N H(x) H(0) = H)[¢(y)* N
B [/37 (€2 + [x2) 77" </IRN\B~ (€2 + |y T Wdy ) ’

H(x) (H(0) — H(y)) .
* /_m /37 @t D @+ D e dy]

= E4,1 -+ E4,2.

By the same approach used in E; ; and Ej3, respectively, we obtain

Eq1 =0 (e_ZNT%) and Eg» =0 <6_2N27a> )

Hence

__2N—uw __2N—u _2N—u
E4:0<e 2 )—I—o(e 2 >:0<€ 2 )

Therefore

Ei+E+E+E=C+o (672]\]27“),

where é\ =Cy+ Cy + Cqp.
Using (2.11), we obtain

—u 7 25177 2
OSeafZNHHJngO(C(N’DC))%SZ\?L —€“2N//H(x)H(y)|ue(x)’ |uea(]/)| dxdy
aJao |x — v
Sé%—o(e’m%).
This implies that
24177 2r
0 <1 | Ie ) ¥ [ [ o M g

2N—a _ «
< N HT | F(C(N ) ¥sy,, C+o( ).
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Furthermore

_2N—-a ~ —a
0< 1N H2(C(N,a) ¥5,,7 C—o (e%)

2| Ue(y)|*
< ||H'|2(C(N,a)) Y55 T //H [Ue (%) |Ue dxd
< [[H" || (C(N, &))" %S * oo x — yl* xay
<1

_2N—a
Now, choose € > 0 such that ezN*”‘HH+H;OZ(C(N,oc))*%SH,L‘* C < 1. Thus

_2N—a _ —a
0<1— N4 HY||2(C(N,a)) 15,7 C—o <e2N2 )

1
_ 2N—& _ u 2%
< (1—eZN-“||H+||;2<C<N,a>>-’4”sH,L4 €—o(eP ))2

1
_2N-4) 2 U (y) |2 %
< ||H+||OO2N—0¢ (C(N,Dé)) (2N n45 (/ / |Ue(x|)x| _|lyl|€[x(]/)| dxdy)
<1
Moreover
2(N—4) (N-4)N N-4
0 < [HHIE (C(N, ) B RS
2(4—N+a) ~N—4)N a—N-4 __ —a
e S v ) R Sui C—o (™)
1
T (O 25T () 1% 2% 2N—4) Qo Nt
< (] [ remn BRI gy )™ < ) 3 (e s
/o x —y|* ’
Thus, we can write
2(N—4) (N-4)N N—4 a
0 < [H 3 (C(N,0) sy, — o (25°)
1
21U (y)]% %
< ([, . ooty B
[yl
N 22?\]1 4) (N—4)N N44
< [[HT[[™ (C(N, a)) B985 7
Thus, the proof is complete. O

Definition 2.7. A pair of functions (u,v) € H is said to be a weak solution of the system (D,\,ﬂ)
if for all (¢1,¢2) € H, the following holds

/ AuA¢1dx+/ AvAchdx—A/ x)|u|"™ zugbldx—y/ x) 0| 2oprdx
- [ [ oyt (P50 + e o ol _

In order to prove the Palais-Smale condition, we need the following lemma which is in-
spired by the Brézis-Lieb convergence lemma (see [6]).

Lemma 2.8. Let N > 5,0 < a < N and {u,} be a bounded sequence in L%(IRN). Ifu, — uae.

in RN as n — oo, then
unlzz—/ (|x!_“*|Mn—u!2;)|un—ul22> =/ (|| ™% |u
RN RN

lim (/ (| # |4
n—oo RN

%

2;)

2;)
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Proof. The proof is similar to the proof of the Brézis—Lieb Lemma (see [6]) or Lemma 2.2 [19].
But for completeness, we give the detail. Consider

[l P a2 = / (Il = )t —
RN RN

= (T o = = ) (% = it = )
42 [l g — )y @12)
Now by using [34, Lemma 2.5], for g = 2; = 2)=F and r = ;2¥_2% then we obtain
1|2 — |1ty — u]™ — |u|22 in Lzv=i (RN) as n — oo. (2.13)

Also the Hardy-Littlewood-Sobolev inequality implies that
x| % (| |® = g — uf®) — x| %% [u% in L% (RN) as n — oo. (2.14)

Hence with the help of [47, Proposition 5.4.7], we obtain |u, — u|? — 0 weakly in Lo (RN)
as n — o0. So using this together with (2.13), (2.14), in (2.12), we obtain the required result. [J

Now, we define the energy functional I , : H — R associated with the system (D, ,) as
1 1
Tp(0,0) = 5 lw,0) P =5 [ QFG)ul + uG () ol

—le/ﬂfﬂH(x)H(y)< (|)x|zi|;|(“)|2;). (2.15)

Then I, ,,(1,v) is C! function on H. Moreover, the critical points of the functional I, ,, are the
solutions of (D, ,). For convenience, we define P, ,(u,v) and Q(u,v) as

Pryu(u,0) := /Q(AF(X)IMV +uG(x)[v]")dx

0) Z/Q/QH(X)H(?)('u(ﬁyzi|;|(g)|2;)dxdy,

throughout the article. Then we obtain the estimates on P, ,(u,v) and Q(u,v) by using
Holder’s inequality, Sobolev’s embedding theorem and the definition of Sy as follows

Py, (1,0) = /Q(AP(x)|u|r—|—yG(x)|v|r)dx
< S72 (A[|F|gllull” + p|Gllgllo|l")

<57 ((AIFID) ™ + (G 19) ™) * (w0l 2.16)

Q(u,0) < [[H"[%(Smp) > (u,0)]| . (2.17)

Definition 2.9. Let ] : X — R be a C! functional on a Banach space X.

1. For ¢ € R, a sequence {u;} C X is a Palais-Smale sequence at level ¢ ((PS).) in X for |
if J(ux) = c+o0x(1) and J'(ux) — 0in X! as k — oo.

2. We say ] satisfies (PS).-condition if for any Palais—-Smale sequence {u} in X for | has a
convergent subsequence.
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3 The Palais—-Smale condition
In this section, we show that the energy functional 7, satisfies the Palais-Smale condition
below a certain level i.e. co, which is used to prove the existence of second solution.

Lemma 3.1. Consider (Z1) and (Z2) are true. Suppose {(un, vy} C H is a (PS)c-sequence for I, ,
such that (un,vn) — (u,v) weakly in H. Then I}  (u,v) = 0. Furthermore, there exists a positive
constant Koy depending on r,«, N,2 and S such that

Du(,0) = =Ko (AIFlp)77 + (ulIGllg) 7 ),

22— _ _ 25 r\ a1l ot
where Ko = ( 22;;r> (329) {(A%fz}fa) < 22;;r) 5 2} 572
Proof. If {(un,v,)} be a (PS)c-sequence for Iy, with (u,,v,) — (u,v) weakly in H, then by
using the standard argument, we get I} ,(1,0) = 0. ie.

(1, 0) |2 — Py (1, 0) — 2Q(u,v) = 0.

Above with Holder’s inequality, Sobolev embedding theorem and Young'’s inequality in (2.15)
implies that

taan0) = (5= 332 ) 1002 = (= 555 ) [ QF Gl + 1Gx) ol

N+4—« 22 —r o NG, ,
> 22N —a) | (,0)||* — < > > ((/\||F||ﬁ)2—r + (Z,[HGHﬁ)Z—r) S5 (u,0)]|
)

> Nad-a o)
= 3N —a

(u,
(222*21 ) 5[ 22((AriF\rﬁ>zzr+<u||cuﬁ>fr)+;z%H<u,v)uz]

= Ko (AlIFllg) + (llGlIp)77 ),

where, Ko = (Zi") (37) [(205%) (B) 5787 5% and £ = [(25%) (%) 574"
This completes the proof. O

\
NI~

Lemma 3.2. Assume {(uy,v,)} C H is a (PS)c-sequence for I, then {(u,, vy)} is bounded in H.

Proof. Let {(un,vn)} be a (PS)c-sequence for Iy, in H, then as per the definition of (PS).-
sequence, Iy, (uy,v,) — c and Iglﬂ(un,vn) —0inH ie

;*Q(un,vn) =c+o0,(1), (3.1)
[ (s, ) 1> = Pa gy (4, vn) — Q(1tn, vn) = 04 (1). (3.2)

Now, our aim is to show that {(u,,v,)} is bounded. On contrary, assume that || (i, v, )| — o0

as n — oo and take (il,,0,) = HEZ:’ZZ%II' It follows that {(it,,7,)} is a bounded sequence.

1 1
EH(”nrvn)Hz - ;PA,y(”n,Un) -

Consequently, up to a subsequence (il,, 0,) — (il,0) weakly in H, (it,,0,) — (iI,0) strongly
in L"(Q) for all 1 < m < 2* and (#1,(x), 0, (x)) — (#(x),9(x)) pointwise a.e. in Q x Q).
Using (3.1) and (3.2), we have

~ 1 ~
*H( thn, © n)HZ—*H (e, 0n) "2 P (i, Bn) — 57 |l (1n0n) WZ72Q(Mn, 0n) = 0n(1),  (3.3)
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and
||(ﬁn/5n)||2 - ||(”nrvn)Hr_zPA,y(ﬁnrﬁn) =l (”nrvn)szz_zQ(ﬁman) = 0,(1). (3.4)
From (3.3) and (3.4), we can deduce that
PN 22y —r _ PN
130D = 2055 2 00) |7 2P (7, 5) + 00 (1) 5)
(44

Since 1 < r < 2 and ||(uy,v,)|| — oo, then (3.5) implies || (i, 0,)||> — 0 as n — oo, which is a
contradiction to the fact that ||(it,, 0, )|| = 1. Thus, proof is completed. O

Lemma 3.3. There exists

. N+i-a <||H+||oo2

N+Zix _I\%i\r]% L L
o () ™ 5 o () + Gl ).
such that the energy functional I) , satisfies the (PS)c-condition with ¢ € (—o0, co) and Ky is defined

in Lemma 3.1.

Proof. Let {(uy,vs)} C H be a (PS)-sequence for I, , with 0 < ¢ < ce. Then by Lemma 3.2,
{(un,v,)} is a bounded sequence in H. Thus, up to a subsequence, (u,,v,) — (u,v) weakly
in H. So u, — u and v, — v weakly in H(Z)(Q), u, — u and v, — v strongly in L™(Q)) for all
1<m<2"and u, = u, v, — v pointwise a.e. in (). Therefore

Py (tn, vn) = Pp (1, 0) + 0, (1). (3.6)

Also, Ig,y(u, v) = 0, follows from Lemma 3.1. Now, define (i, 7,), where i, = u, — u,
0y, = v; — v. Then by the Brézis-Lieb lemma [6] and Lemma 2.8, we have

1 (Gtn, 3n) |12 = [t 00) 2 = 1| (1, 0) | + 00 (1),

Q(un, vn) = Qily, n) + Q(u,v) + 0,(1). (3.7)
Using I, (un, vn) = ¢ +0,(1), IA,V(Mn,Un) = 0,(1) and (3.6)—(3.7), we obtain

20, 8012 = 5 Q10 5) = € — Ly u(1,0) +0u(D), 68)

and

H(ﬁnrﬁn)Hz —2Q(ily, 0n) = <I;\,y(”/0)/ (n —u,0p —0)) +0,(1) = 0,(1).

Therefore, we may assume that

. 25 2
(itn, 5)|> — d, and Z/Q/QH(x)H(y)’u"OC‘ZJ _’;Ta(y” ~d. (3.9)

It follows from the definition of Sy | that

e = )

-2 1, () |6 () %\ 2
> Syl HY o (/Q IR ("‘ZC'_';,,E” ) S G
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On combining (3.9) and (3.10), we have

1
- — (d\ %
0= Sl (5)"

which gives either
e P
o _2N-a
d=0 or d> ( ZHOO ) Sur "

Further, if d = 0 then the proof is complete. If

i N
H « _2N—a
d> ( 2”°° ) SHT

then according to (3.8), (3.9) and Lemma 3.1, we get

1 1
c = (2 - 2222) d+ I/\,y(u,v)

N+4—a (|H"|S
~ 2(2N — )

a contradiction to ¢ < c. Hence, d = 0 and with this we end the proof.

4 Nehari manifold and fibering map analysis

m——ﬁf\’;“ 2 2
=) SR~ ko (UL + (Gl ) = e

17

In this section, we elaborate some important results for Nehari manifold and analysis of
fibering map on I, ,. Notice that the energy functional I, , is unbounded below on H. So
we restrict I , on an appropriate subset NV, , of 7, called Nehari manifold and defined as

N 1= {(,0) € H\{(0,0)} : (I}, (1w,0), (w,0)) = 0}.
Thus, (u,v) € N, , if and only if

(I, (1,0), (w,0)) = ||(u,0)||* = Pau(u,0) —2Q(u,0) = 0.
Next, we see that I, , is bounded from below on N, ,, in the following lemma.

Lemma 4.1. The energy functional I, ,, is coercive and bounded below on N ,.

Proof. Let (u,v) € N, for A, > 0, then using (4.1) and (2.16), we have

1 1 11
Dou(,0) = (5 = o5 ) 1 0) 2 = (= = 555 ) Pau(i,0)
2 22% ro 22%

r

(4.2)

1 1 5 1 1 o, B 2 21 )
> (3732 ) NI~ (5 = 552 ) 7 (MIFL + (Gl 2) o),

Since 1 < r < 2. Therefore, I A is coercive.
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Now, consider the function ¢ : R — R as o(t) = b1#*> — bpt". Then one can easily see that
bz?’

1
¢'(t) = 0if and only if t = (3)>" =: " and ¢"(t*) > 0. So ¢ attains its minimum at t*.
Moreover,

2-r
2

. _r 2 2 .
Taking b1 = (3= &), b2 = (2 = 5k)S~H (P19 + (#Gllp)™) ™ and ¢ = [|(1,0)]] in
the function ¢, we obtain

Dou(u,0) 2 o(l[(w,0)[]) = o).
which yields the required assertion. O

The Nehari manifold is intently related to the behaviour of map ¥, : t — Iy, (tu, tv) for
t > 0, defined as
tZ

tr
‘Iju,z;(t) = IM,(tu, tv) = EH(L{, Z))Hz — 7PM,(u, U) —

22%

2*

o

Q(u,v).

These maps are known as fibering maps which were introduced by Drdbek and Pohozaev in
[13]. Thus, (tu,tv) € N, iff ¥} ,(t) = 0. Furthermore

¥io(t) = tl(u,0) > = 7 Py u(u,0) = 22%71Q(u, ),
Yiuo(t) = (1, 0) | = (r = )" 2Pyu(u,0) = 2(22; = 1)#22Q(u, ).

In particular, (1,v) € N, , if and only if ¥} ,(1) = 0. Therefore it is obvious to split N,

into three parts namely N )jr W N Iy p and N )(\) " corresponding to local minima, local maxima and

point of inflexion respectively as:
N/\i,y = {(u,0) e Ny : ¥,,(1) 20}, /\/'/(\)IV = {(u,v) e Ny, : ¥, ,(1) =0} .

We note that, for (1,v) € N, ,,, we have

' 1) {(2—2zz>||<u,v>||2—<r—zz;z>PA,y<u,v> Wy

0 (2= 17)||(u,0) > — 2(22; — )Q(u,v).

In next lemma, we will show that the local minimizers of I , on N, , are the critical points
of I Au-
M

Lemma 4.2. If (u,0) is the local minimizer for I, , on subset of Ny ,,, namely N )f yor Ny, such that
(u,v) ¢ N)?/H' Then I} \,(u,v) = 0in H L, where H~' denotes the dual space of H.

Proof. Suppose (u,v) is a local minimizer for I,, subject to the constrains @, ,(u,v) :
(I3, (u,v), (u,0)) = 0. Then by Lagrange multipliers, there exists J € R such that I} , (u,v) =
6@ ,(u,0). This implies that (I} ,(1,0), (u,0)) = &(P) ,(u,v), (u,v)). As (1,0) € N, then
(L), (w,0), (u,0)) = and (P} ,(,0), (u,0)) # 0because of (u,v) ¢ N)(\),y. Therefore 6 = 0. This
completes the proof. O

Lemma 4.3. The following hold:
(i) If (w,v) € N UNY , then Py, (u,0) > 0.

(ii) If (u,v) € Ny, UN)?/H, then Q(u,v) > 0.
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Proof. The proof follows directly from (4.3). O
Before analyzing the fibering map, we define a map Sy, : R™ — R such that
Suo(t) == 27| (u,0)||*> = 26%%77Q(u, v). (4.4)

It is noted that for t > 0, (tu,tv) € N, , if and only if S,,(t) = Py, (u,v). We will check
the behaviour of S, near 0 and +co. Since 1 < r < 2 and 2 < 22}, this implies that
lim; 0+ Sy, (t) = 0 and lim¢—, 1.0 S0 (t) = —00. Moreover, for critical points

Sio(t) = (2=t || (u,0)|2 - 2(225 — )21 Q(u, ).

One can easily see that S, ,(t) = 0 if and only if t = tax, where

_(@=n)llwo)|? \ ==
fmax = <2(22;’2 _r)Q(M,U)> .

Also, S/, (t) = (2—r)(1 =)t 7"||(u,0)]|* — 2(225 — r) (225 — r — 1)#?%"2Q(u, v).

Sl o (tmax) = (2= 1) (1= 1)t (1, 0) |2 — 2(225 — 1) (225 — 7 — Dt Q(1,0)

-0 () 10

—1)|[(u,0)]]? E =
L 2(22F — ) (22F —r—1) (22222* _”'r()é(ﬂv)) Qu, )

*

S “_p)\
_ o) [(Z_rm_r) =3

(Qu,0)) = 21
\ . 21 2(22; — 1)\ B2
2(22F — r)(22% 1 1)(2(22z—r)>( 2 ) }
2-22;) (2(22; — 1)) %2 2024 -2 .
= BB CER_IVE2) ,0))55 (Qu,0) %

(2 _ 1’) 2252
< 0.

Thus, S, ,(t) has maximum value at .. Moreover, we have relation
Y, o(t) =1t (Suo(t) — Pry(u,v)). (4.5)

Lemma 4.4. Assume that 0 < (A||F||,3)% + (yHGHﬁ)% <Y and (u,v) € H, the following results
hold:

(i) If Q(u,v) < 0and Py, (u,v) <O, then there does not exists any critical point.

(it) If Q(u,v) < 0and Py, (u,v) <O, then there exists a unique (t*u, t*v) such that (t*u,t"v) €
Ny and I, (tru, 7o) = infioo I, (tu, o).

(iii) If Q(u,v) > 0 and Py, (u,v) <0, then there exists a unique t~ > tmax such that (t"u,t"v) €
Ny and Dy (87 u,t70) = supys, Iy (tu, to).
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If Q(u,v) > 0 and Py, (u,v) > 0, then there exists unique t* and t~ satisfying 0 < t* <
tmax <t such that (t*u,ttv) € ./\/}jfy and (t"u,t"v) € Ny, Moreover

Ly (tu, t70) = 0<}1<1tf Iy (tu, to); Lyu(tu,t70) = ti?p Iy (tu, to).

Proof. Let (0,0) # (u,v) € H, then we have following four possible cases:

(i)

(i)

(iii)

If Q(u,v) < 0and Py, (u,v) <O, then ¥, ,(t) =0att=0and ¥, ,(t) > 0 forall t > 0.
This implies that &, is strictly increasing and hence no critical point.

If Q(u,v) < 0, then from (4.4) S, is strictly increasing for t > 0. As Py ,(u,v) > 0, this
implies that there exists a unique t* such that S,,(t*) = Py ,(u,v) with S,,(t*) > 0.
Using (4.5), we conclude that (t"u,t"v) € N, ,. Further, ¥} ,(t) > 0 and ¥} ,(t) < 0
for t > t* and and t < t* respectively. Also ¥/, (i7) = (t*)”’Sl’w(t*) > 0. Thus,
(ttu,tto) € Nfﬂ and I, (t*u, tTv) = infi>q Iy, (tu, tv).

If Q(u,v) > 0, then fyay is the point at which S} ,(t) > 0 has maximum. Thus, S, (t)
is strictly increasing for 0 < t < tmax and strictly decreasing for tmax < t < o0. As
Py, (u,v) <0, so there is a unique t~ > tmax > 0 such that S, ,(t7) = Py ,(u,v) and
Sup(t7) < 0. Further, (4.5) gives ¥, ,(t) = 0. Thus (t"u,t"v) € N . Also, ¥}, ,(t7) =
(t7)78,,(t7) < 0and ¥, ,(t) <0 for t > tmax, 50 ¥uo(t™) = sup,s,  Yuo(t). Hence,
(tu,tv) e N):H and Iy ,(t7u,t70) = sup,, Iy, (tu, to). -

Since Q(u,v) > 0, S, () achieves its maximum at t = fpax. Thus

_ , 2—r Prrees 22% (e, 0) |22 s
Soaton) = 1091 (3 7)™ (2 =7) (Pl )

> |Gt ) HH*HJ(SH,LV*} (B ) 1wl

As Py ,(u,0) >0, so

2— r
27 o (225 2
— > . Ht 2; i r
Susltmm) = Pus00) 2 | (535 ) I 120 | ™ (27 ) o))

2—r

~ (A1) + Gl ) * s w0

>0,

for 0 < ()\HFH[;)Z 7 (yHGHﬁ)ZL < Y;. Thus, there exists t* and t~ with 0 < t1 <
tmax <t~ satisfying

Suo(tT) = Pryu(u,0) = Sup(t™) and S, ,(t7) <0< S, ,(t7).

Therefore, (tTu,t™v) € N*ly, (t"u,t"v) € N . Furthermore, ¥, ,(t) <0 fort € (0,£%),
¥, (t) >0fort e (t7,t7)and ¥; ,(t) <Ofort e (t,00).

Hence

Ly (tu, t70) = 0<}I<1{ Iy (tu, to); I, (Fu, t70) = iup Iy, (tu, tv).
=t =tmax t_tmax

holds true. This completes the proof. O
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Lemma 4.5. If0 < ()\HFH[;)% + (yHGHﬁ)% <Y1, then N)?,y is a null set.
Proof. We will prove it by contradiction. Let (u,v) € N /{J,H, then (4.3) implies that,

22 —r

11,0)I12 = 25— P (1,0)
and
2227 —r
G017 = 222000,

On using (2.16) in (4.6), it is easy to calculate

1
227 —7r

Il < (B2s75) ™ (I + (G I )

Now, taking (2.17) in (4.7), we find

22% —r
)P <2 (%t

(u, )|,

— ) IH (|3 (Sp,)

or

1

1901 = | (g ) I 12|

Thus, from (4.8) and (4.9), we get

1

21

(4.7)

(4.8)

(4.9)

2
2 2 22% — 2\ 27 2—r - < Ty
2=r 2-r > a _— +1) =2 20’ 2=r —:

which contradicts the fact that 0 < ()\||PH5)% + (]/t||G||ﬁ)% < Y;. Hence /\/'/Q,y = ¢ which

completes the proof.
Consequently, if 0 < (AHFHﬁ)% + (yHGHﬁ)% <Y1, then we have
Now, we define

kr,= inf I,,(u,v); ki = inf I,,(u,0); ky = inf I, ,(u,0).
M ey, (u,0) M wyeny, () M wyeny, (w,2)

Lemma 4.6. The following facts hold:

(i) IFO < (A|[F|lg) 7 + (#|Gllp) ™ < Ya, then ky, <k, <0,

O]

(ii) If0 < A < 5Yq, then k;/u > do, where dy is a positive constant depending on A, u,a,r,N, S,

IFlla, Glla and |[H|co.
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Proof. (i) Let (u,v) € N} 1 then (4.3) gives
2—

2(22* =7
This together with (2.15) and (4.1) yield

) = (5= 1) o) P +2 (1 - 52 ) Qo) < - 220 =D, <o

2 r 22k r22%

11, 0)]1* > Q(u, 0).

Thus, by the definition of k) , and k)t  we conclude that k, ; < kj{,y < 0.
(ii) Let (u,v) € N/\_u‘ Then using (4.3) and (2.17), we have

2— 2 12 -2 22
- < o« o,
sy |00 0P < Qo) < IR (Su) ™ [, 0)]
This implies that
1
2 2 a2 B2
001> (e 12 5% ) @10)
On combining (4.2) and (4.10), we obtain
I u(u,0)
1 1 1 v 2 2\ &
> ’ r (2 ~z P P
> 1,0l | (5= g0 ) 10002 = (5= 55 ) 7 (IFLRY + Gl ) ]

2—r

2 —Tr _ — 2% 22;{72 1 1 2 —7 B _ o -
- H+ 2 o - - H+ 2 S o
= (2(22; — 7’) H Hoo (SH’L) ) [ (2 22;) (2(22; — 1,) H Hoo ( H,L)

(55 S (WIFID P + <m|cuﬁ>f—r)2’]

Thus, if 0 < ()\HFH[;)% + (,uHGHﬁ)% < (5 )%Yl, then I ;,(u,v) > do for all (u,v) € Ny,

where d is a positive constant depending on A, u, &, 7, N, S, ||F||a, |G|« and [|HT ||co- O

5 Existence of solution in N/ ,ty

In this section, we show the existence of Palais—Smale sequence corresponding to energy
functional I, ,, in N/ iy, by using the implicit function theorem.

Lemma 5.1. Suppose 0 < ()L||FH5)% + (y||G||/3)% < Y1. Then for every z = (u,v) € N, there
exist € > 0 and a differentiable mapping { : B(0,€) C H — R such that {(0) = 1, {(w)(z — w) €
Ny and for all w = (wq, wy) € H

2B(z,w) — 1Py u(z,w) —2Q(z,w)

00 ) =5 o) 2 — 2225 — ) Q(w, o)
where
B(z,w) = /Q (AuAwy + AvAw,) dx,
Prulz,w) = /Q (AF(x)|u|"2uwy + uG(x)|o|"2vw,) dx,

2

)= [ [ o) (R Az ) o) ot

o) |x —y|*
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Proof. For z = (u,0) € Ny, define a map & : R x H — R such that
(0, w) = (1}, (6(z = ), £z = ) = | (4 —w1,0 — wa) |
— 0 Q) =]+ pG ()| — w2 )b = 20 Q1 — 1,0 — wa)
Then (1, (0,0)) = (I} ,(z),2z) = 0 and

2.01,0,0) = 2002~ [ (FGl+ 5G] )dx — 2(222)Q(u,0)

dg
= (2= 7)l(u,)|* - 2(22; - r)Q(u,v) #0.

Thus, by the implicit function theorem, there exist € > 0 and a differentiable mapping ( :
B(0,e) € H — R" such that (0) =1,

, _ 2B(z,w) =Py u(z,w) —2Q(z,w)
O = o) - 2225~ QG o)

& (C(w),w) =0V w € B(0,¢). Thus,
(I (L(w)(z —w)),L(w)(z—w)) =0 Vwe B(0,e).
Therefore, {(w)(z — w) € Ny . O

The similar result is also true for (u,v) € N. o which is as follows

Lemma 5.2. Suppose 0 < ()\HFHﬁ)% + (yHGHﬁ)zZTr < Yj. Then for every z = (u,v) € N):y,
there exist € > 0 and a differentiable mapping {~ : B(0,e) C H — R such that {~(0) = 1,
¢ (w)(z—w) € Ny, and for all w = (wy,wz) € H

7, 2B(z,w) — 1Py, (z, w) —29(z, w)
(@) O =G = ol - 225~ )00, o)

where B(z,w), P, (z,w) and Q(z,w) is same as in Lemma 5.1.

Proof. By the same argument used in Lemma 5.1, there exists € > 0 and a differentiable
function {~ : B(0,€) C H — IR" such that {~(0) =1 and {~ (w)(z —w) € N . Since

¥l (1) = 2 =1)l(w,0)]* - 2(22; - r)Q(u,v) < 0.
By the continuity of ¥” and {~, we have
¥ e (D) = 2= 1T (@) (2 — ) = 2(22; — NQ(T~ (w)(z — w), T (w)(z — w) <,
for € > 0 is sufficiently small. Thus, ™ (w)(z —w) € N . O

Lemma 5.3. The following statements are true:

(i) If 0 < (A||P||,5)% + (pt||G||ﬁ)% < Yy, then there exists a (PS)y, -sequence {(u,vn)} C
Ny in H for I .

(i) If0 < (/\||P||lg)% + (y||G||ﬁ)% < (%)ZE’ Y1, then there exists a (PS),— -sequence
ot
{(un,on)} C Ny, inH for I .



24 A. Rani and S. Goyal

Proof. (i) According to Lemma 4.1 and Ekeland Variational Principle [14], there exists a mini-
mizing sequence {(u,,v,)} C N, such that

1
I/\,y(unr Op) < k?\,y + Y
1
Iy (i, 0) < Iyu(u,0) + EH(M' ) — (un,vu)||, for each (u,v) € N ,. (5.1)

Using Lemma 4.6(7) and taking n large, we get

1 1 1 1
i on) = (5 = 532 ) Mmoo B~ (3 = 552 ) Pastin 20
[14 [14

1 k)\ u
kgt < S (5.2)
This implies that
23k o 2 2\
0< M <y, o0) < 75 (QAIEIRE + (Gl ) 7 Nmon)l. 63)
o
Wherefore, (u,,v,) # (0,0). From (5.2), we have
1
22—\ o 2 2\ T
o)l < | (g ) 573 (@RI + Glcl ™) T e
Further, (5.3) gives us
1
r2 k)\y 2 a2 =27
w0} = [~ 2225 (ELR) > + (Gl |

Now, we will prove that
HI;\,y(unlvn)HH—l —0, asn — oo.

Using Lemma 5.1 for each z, = (u,,v,) to obtain the mapping {, : B(0,e,) — R™ for some
€n > 0 such that {,(w)(z, —w) € N, ,. Choose 0 < 17 < €,. Let z = (u,v) € H with z # 0
and take w;‘] = ﬁ We set w;, = gn(w;‘])(zn — wj;) Since wy, € ./\/';\,,4, from (5.1), we get

1
IA,H(wW) - I/\,],t(zn) > _EHwW - ZnH-
Using mean value theorem, we obtain

1
<I/,\,;4(Zn)/w17 —2Zn) + O(HWU —2za||) > _EHZUW — Zp||.

Therefore,

(D (zn), —wy) + (Zn(wy) = 1)(T) , (zn), 2 wi;)2—%qu—znl\+0(qu—an). (5.5)

Since {n(wy)(zn — wy) € Ny, and from (5.5), we get

1 (Bl 7 )+ @) = D)o =), 20— 03] 2 =y = 2l + o0y = 1),
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Thus, we have

z 1 1
(o) o ) < ooy = 2l + Lol -z
(Gulwy) =1) * (6)
+#<IA,y(zn—w,7),zn—w,7>.
. a(wi)—1 .
As Jlwy — zall < 7lZu(@0])] + 1Za(w)) — 1llzal| and Timyp 07 < iz (0)]), if we take

n — 01in (5.6) for a flxed n € N and using (5.4) we can find a constant A; > 0, free from 7%
such that

/ Z Ay
<1A,H<zn> E ||> AL o).

Further, we will show that ||},(0)]| is uniformly bounded. By Holder’s inequality and
Sobolev’s embedding theorem, we have

/Q AF () |01 + 4G (x) |on] s

r
0% ¥

>\ ¥ 2
< r—1 r / r—1 T
_A|\Fr|a</0(\un\ w) ) +m|cua<0(|vn\ ws) )
< ANF a5 022 + Gl ol ezl
< S B+ plIGlla) 1t 0) 7 01, 02)| 57)

Further, using the Hardy-Littlewood-Sobolev inequality, Holder’s inequality and Sobolev’s
embedding theorem, we obtain

ZZ*N 2217130‘ 2N 22’7[;“
< C(N,DC) < o |1/ln|2N tv> </Q (|vn‘22—1w1) 2NL¥>

v () () )
2N—a L*

cw ([ ) ™ (/ |vn|2*)2 (/ fwnl )’

2* ZN 27 é?\lﬂ % 2%
: <51/|Aunr2> | [t fmn) | (G o)
(@] Q Q
* N+44—a
< Aol || % [[ou]| V5 [Jn |
3N+4—2a
< Ao || (i, v) | TN | (w1, 02) |- (5.8)

Using the same idea, we can calculate

3N+4—2«

V| %
/n/n (|3’c —‘y|“> [t | wadxdy < Agl (1, va) |7V || (1, w2) . (5.9)
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Thus, on combining (5.7)—(5.9) and (5.4), we have

Ag[ (w1, ws) ||
— 1) [[(tn, 00) (|2 = 2(225 — 1) Q(1tn, vu)|”

‘ (%(O)rw) ‘ < (2

where A4 > 0 is a constant.
Now we are left to show that

|2 = )|, o) 1P = 2(225 = 1) Q(un, v) | = As,

for some As > 0 and 7 is taking large enough. On contradiction argue, suppose there exists a
subsequence {(u,,v,)} such that

(2 = 1)l (e, o) |12 = 2(225 = 1) Q (14, v) | = 0(1). (5.10)

From (5.10) and using (u,, v,) € N ,, we have

22F — v
I, )12 = 52 P it o) + 00 (1),
n n 2206 _2 H n n n
2(22%F —r
G 20) P = 252200000+ 0n ()

By Holder’s inequality, Sobolev embedding theorem and the definition of Sy 1, we obtain

1
2% —r _r 2-r 2 2 1
01 < (355571 ) ™ (IFIP + (IGT) )+ 0n(0),
(44

1
2—r _ ] 2=
o) = [ (g ) I 12| ™ + 0,0

This implies that (A||F|| 5)237 + (u||G|| 5)237 > Y7, which is a contradiction to the fact that
2
2—r

0 < (A[F[l3)=7 + (1]|Gllp)=+ < Y. Hence,

, Uu,v A

Thus, proof of (i) is completed.

(ii) Using Lemma 5.2, one can prove (ii) in a similar manner. O

Lemma 5.4. Let 0 < (/\||F||ﬁ)% + (;4HG||!3)% <Y1, then I, has a minimizer (uj v} ) in N
which satisfies the following:

(l) I)‘/.“(u}\,y’ U}\,M) = k)‘/.“ = k)tll < 0.
(i) (u},, 0} ,) is a nontrivial solution of the system (D), ,,).
(iii) IA,y(u}\,y,v}L/y) — (0,0)as A = 0", u — 0T
Proof. By Lemma 5.3 (i), there exists a minimizing sequence {(u,,v,)} for I, , such that

Iy (tn, o) = kp o+ 04(1), Igly(un,vn) =0,(1)in H L.
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Lemma 5.1 gives us that {(u,,v,)} is bounded in H. So up to subsequence (u,,v,) —
(1} 0y ,) weakly in (un,v4) — H, (u},v},) strongly in L™(Q) V1 < m < 2* and

(un(x),vn(x)) — (u}w (x), U}w(x)) pointwise a.e. in (). Then, it is easy to see that

% = ud 1%, Joal% — [0} /% in L2¥5(Q) and

: (5.11)

i 520 — ud 520, o[ 20, — [0}, B 20), in Ly (Q),

as n — 0. As we know that the Riesz potential defines a continuous linear map from L2 (Q)
2N . .
to L'« (Q)) which provides

| Ju [P = [xe| " [u) , | and [x| 7% 5 o, B = x| % |0} | weakly in L% (Q), (5.12)
as n — oo. Thus, (5.11) and (5.12) gives us

(‘x’_a * ’Un|2;) |t

%2y (Jx] 0 o) ) ] 2],
) ) é ) ¢ ) ¢ weakly in LI\%(Q), (5.13)
(] ) foul 20, — (Il fud ) o, 2},

as n — oo. Therefore, for any (¢, ) € H, we have

lim [/Q (AttyAd + Av,A) dx—/Q(AF(x)|un|f*2u¢_,_VG(XHUHVQWJ) i

n—oo

_ /Q /Q H(x)H(y) ('vn<x>22‘<|un<y)zzzun(y>¢<y)+|un<x)|zﬁ|vn<y)ZﬁZvnw)w(y))] =0,

[x—yl®

because of ||} ,(un,0u)|| — 0 as n — co. Thus, using (5.13), continuity of H and passing the
limit as n — o0, we have

I (0} 09+ 804, 89) dx— [ (AP ik, 20} + 1) o} 20} ) v

B / / H()H() <|vx,,<x>|zﬁua,,4<y>zzZui/%(y>¢<|yx>_+y||ix,4<x>2§vz,ﬂ<y>23Zv;/%(mw)) o,
QJOQ

ie. <I§L/H(ui,y,v}w), (¢,9)) — 0. This implies that (u}w,v}\’y) is a weak solution of (D, ).

Since (1, vn) € Ny . So, we have
||(un/ Un)||2 = P/\,y(unzvn) + ZQ(un/ Un)/

which gives

1 1 1 1
Ly (i, o) = (2 - 22*) (14, 0n) > = (r - 22*) Py (i, vn)
44 o

1 1
> = (r - 22;;) PA,y(”nrvn)-

Taking n — co together with A, y < 0, we obtain

225k,
Pr (13,03 ) > —(227_;‘) > 0. (5.14)
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Therefore, (u}w,vky) is a nontrivial solution of (D, ,). Afterwards, we will show that

(up,vy) — (u}w,v}w) strongly in H and IA,y(u}\,y,v}w) = k. Using Fatou’s lemma, we

obtain

1 1 1
kau < IA,y(u}\,;trv}L,y) = <2 ) H( Upu 0 )Hz (r - 22*) PA,M(“XWUM)
(14

/11 , (11
Shgg&K2—2%>WwwwH—(r—2%>ﬁwmeﬁ

=liminfIl, ,(u,,v,) = ky .
P /\,y( n n) Au

This implies that I;\,y(u}\,y,v}w) = kyy and lim | (s, o) |* = ||(ux”,v}\,y)||2. Further, the
Brézis-Lieb lemma [6] contributes that (u,,v,) — (u}w,vky) strongly in H.

Now, we are left to show that (u} " v} V) eNY + . We prove this by contradiction argument.
Suppose (u} o 0} #) € NA Then, from Lemma 4. 3 (ii) and (5.14), we have

Q<“i,wv/\,u> >0 and PA,ﬂ(uA,ﬂ,vA,y) > 0.

Thus, from Lemma 4.4, there exist unique #; and #; such that (t]u} V,tJrv}\ y) e N , and
(tyul #,tl_v}w) € NA_,V' In particular, we have 7 < t; = 1. Since ‘I’( . )(tf) = 0 and

A M O} e
‘I”(/uw vh)(tf) > 0, there exists t{7 < f < t; such that IA,ﬂ(tI“uAlﬂ,tva,H) < IA,y(tu}l,y,tv%,y).
On using Lemma 4.4, we obtain

t+vm) < IA,;,(fu}\,y,kaH) < IA,M(t_ukH,tl_v}w) = IA,y(u}\,y,v},y) = kau,

I)\,]'l ( u/\ M
which is a contradiction. Therefore, (1} " o} H) € N
(iii) Further, from Lemma 4.6 (i) and (4.2), we have

0> kI > kyy = IAV(”/\H’UAH)

1 1 _r 2 2\ ,
> = (3= 5 ) S (MIFID + (G ) 10k I

r

which implies that I Ml(”}\,w vi,y) — (0,0) as A — 0%, u — 0" which completes the proof. [

Proof of Theorem 1.1. From Lemma 5.4, we conclude that (D, ,) has a nontrivial solution
(u}w,vi,y) € N)jy. O

6 Existence of solution in N/ A

In this segment, we first prove the critical level by using few estimates which are already
proved in Section 1. Then we show the existence of a second weak solution of problem (D, ,)
under the assumptions (Z1)—(Z4). At the end of this section, we give the proof of Theorem 1.2.
Lemma 6.1. Assume that (Z1)—(Z4) hold and 3 < r < 2, then there exist (up,,v),) in H \
{(0,0)} and Y > 0 such that for 0 < (AHFH[;)Z—V (;4||GH5)2 T <Y,

sup Iy, (tupu, tor )
10

N+d—a ([HSZ\V o2 2 oy
<2(2N_“)< > Sir _KO((/\HFHIS)Z (}”HGH/S)Z) ! Ceo-



Biharmonic system with Hartree-type critical nonlinearity 29

Furthermore, ky , < cos for all 0 < (A|[Fllg) = + (u[[Gllp) = < Y.
Proof. For this, we first define the functional £ : H — R such that

E(wv) = 202~ 5-Quo), ¥ (u,0) €.

Take Uy = Vo = U with (U, Vo) € H. We define ¢(t) = E(tUp, tVp). Then ¢(t) satisfies
$(0) =0, ¢(t) > 0 for t > 0 small and ¢(t) < 0 for t > 0 large. Further, one can easily verify
that ¢(t) attains its maximum at

1
- (M)
ZQ(UOI VO)

Thus from (2.9), we have

StUtV—@uvz—L)zzzUV
sup £ (tUp, Vo) = 5| (U, Vo) |* = == —Q(Uo, )
>0 @
- N
_ (N+4—q) IUe|?
— . 1
2N —« (Q(ue/ ue))zz
) 2N—a
N(N—4) N N+4—a
_ (N+4-a) (C(N,a)) 5% 81, + (e 4)
> — 2(N—4) N(N-4) N—4 —a
2N e (N, 0) B S — ofeN—w) —o (5°)
r _ 2(N-4) 1\%54?“
_ (N+4—a) | [H o™ Sy + (N4
>~ ON — & 1_0(€2N2a)
4) 2N—u —u Lj‘a
< (I\;;\’]MHH—FHOONH aSN+4 « [1+0( 4) +o0 (6%)} A
2N—a
c Nrdoa) oy ee (S )T foe ), ass )
- 2N-—uw 2 o(e”2"), a>8.

Further, 6; > 0 is chosen in such a way that ce, > 0 for all 0 < ()\HFHﬁ)% + (yHGHﬁ)% < 1.
Then, the definition of I, , and A, u > 0 yield that I) ,,(tUp, tVp) < %H (Uo, Vo)||? for t > 0. This
implies that, there exists ty € (0,1) such that

sup Ly, (HUo, 1V9) < e ¥ 0 < (A|Fllg)7 + (| Gllp) ™ < &1
te[0,to]
Moreover,

sup Py, (tUp, tVp) = sup </Q AF(x)[tUp|" + yG(x)\tVo|r>

t>tg t>tg

— sup <tf/Q(AF( %) + G (x)) [T dx>

t>to

> (o)’ (Aao + ptbo) /B(O2 )\Uerdx
,21(0

N—N_4, N
w o(e > "nel), r=++5
> (A+m ( N_ur| Y N 6.2)
o(eNT7 ), r> 5a
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where w = min{ay, by }.
Thus, on using (2.8), (6.1) and (6.2), we have

1
Sup I)\,y(tU(),tV()) = sup <5(tU0,tVQ) — ;P)W,(tuO, tVo))

t>tg t>tg

2N—ua
- N+4—ocHH+H—% Sur N“”‘_i_ o(eN™), a<8
- 2N —« * 2 0(62sz“), a>8
w o(eN"TIne|), r= g
o(e ) "> Na
or
2N—a
N+4 2(N—4) gHL N+4—ua
g (#Uo, 1V) < ~ = S 7 (2B 0
sup 1, (1l V) < N LA | ( 1) 4 o(en)
N4
L@ gy fol€ el =g
r o(eN*%’), r> &

where p = min {N — 4, 28-41.

1
Choose 6, > 0 in this way that 0 < € < &, and take € = [()\HFHﬁ)ZL (y||G||5)2L] ?. Thus,
we have

N+4_[X _Z(N—:l) gHL N+4—n
sup Iy, (tUp, tVp) < ——————||[H ||l | == +o(D(A,
sup Ly(tUo, Vo) < 55—~ IH'| (2) (DA, )
w o((D(A, 2 [ InD(A, . or= 2L
—<A+m{ (PO DO, 7=
' o(D(A, ) ), r> 5

where D(A, 1) = (A||Fllg) = + (]| Gllg) =

Case (i): When o < 8, thenp = N — 4.
For r = &, we can choose 83 > 0 with 0 < D(A, ) < 85 such that

w(A+

_wArp), (( (A, 1)) [In (D (Mt))\) < =Ko (D(A, 1)),

r

o(D(A, 1))

as A, u — 0and |In(D(A, u))| = +o0.
For r > &, we choose 65 > 0 with 0 < D(A, i) < 64 such that

o(D(a, )~ CAEE o (D, )P < ko (DA, ),

as 1+ 7= (5 — §) < 5% for r > . Now, we fix Y, —mm{(S o, T ,037,6,2}1>0
suchthat

2N—«a

o 2(N—4 N+4—a
sup I, (tUo, tVo) < %H HF oM (SHL) — Ko(D(A, ) for 0 < D(A, p) < Y
>t -« 2

Case (ii): When a > 8, then p = 28-%.
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Forr = %, we choose 5 > 0 with 0 < D(A, i) < J5 such that

o(D(1, 1))~ “AEE o (D, )™ fin (D, 1)) < Ko (DA, ),

as A,y — 0and |[In (D(A, u))| — +oo.
For r > %, we choose ¢ > 0 with 0 < D(A, 4) < J6 such that

w(A+ N N-4
o(D(A, 1)) — (r”)o (D, ) =="25) < —Ko (D(A, ),
2 2N N—4 2-r W 2-r  2-r
as 1+ 5= (2N7a — 2N7“r) < 5= forr > N 1o Fix Yi = min{é,*> ,6, 2 ,05%,0,> } >0
to obtain
sup IA,y(tuO/ tVO)
>t
N -+ 4 2(N-4) Ntdia
< ;TIIHWOON“ : (SI;L) —Ko(D(A, ) for0 < D(A ) < Yes. (6.3)

Thereafter, we fix Y = min{Y,, Y., }. Thus, we have

sup Iy, (tUo, tVo)
t>ty
N
N+4- Nerw [ S )
< ﬁHH*!IwM : ( P21L> —Ko(D(A, ) =i o for 0 < D(A,p) <Y

Later, we show that k), < ce for all 0 < (AHFHﬁ)% + (]/tHGHﬁ;)% < Y. By using (Z2), (Z4)
and the definition of (Up, V), we get

P/\,y(U(), VQ) >0 and Q(UQ, VO) > 0.

Further, by Lemma 4.4, definition of k;, " and (6.3), there exists t(Uy, Vo) € N A " satisfying

ki < Duu(t2lo, £2V0)) < I y(to, Vo)

—&

N+4— _2(N-4) SHL N+4 o
< + N+4 uc _ = Coo,

foreach 0 < D(A, u) < Y.
Take (Uo, Vo) = (s, va,) and with this we complete the proof. O

Lemma 6.2. Assume that (Z1)—(Z4) hold. Then I, satisfies the (PS),- condition for all 0 <
A

(/\||F||ﬁ)% + (ptHGHﬁ)% < (%)ZL Y1 and has a minimizer (uMl,v%y) in Ny, and satisfies the
following conditions:

(i) IA/H(“%,WU%»,#) =k, >0

(if) (ui,y, v%w) is a nontrivial solution of the system (D, ,,).
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2
Proof. By virtue of Lemma 5.3 (ii), for 0 < ()\||FH5)% + (‘u||GHﬁ)% < (5)¥7 Y, there
exists a (PS)k; -sequence {(un,vn)} C N , in H for I, ,. Then, from Lemma 3.2, we
find that {(u,,v,)} is bounded in H. Now, using Lemma 3.3 and Lemma 6.1, I, satis-

fies the (PS)k;,#—condition. Then, there exists (ugw,viy) € H such that up to subsequence
2 2

; 2 2y — k- 2 .2 —
(thn, vn) — (u)\,y,v)w) in H. Moreover, IA,M(”A,WU/\,y) = kMt > 0 and (u)w,v)\,y) € NM!' Us-
ing the argument as applied in Lemma 5.4, one can easily obtain that (13 " v} 14) is a nontrivial

solution of system (D, ,) for 0 < (A||PH5)% + (I/‘HGHB)% < (%)% Y. O

Proof of Theorem 1.2. By Lemma 54 and Lemma 6.2, system (D,,) has one solution
(u}w,vky) e N} P and another solution (u%\’y,vﬁlﬂ) e Ny v Afterwards, we show that the

solutions (u} ” vl ;4) and (u3 W o H) are not semi-trivial. Using Lemma 5.4 (i) and Lemma 6.2

(i) respectively, we get
IA,V(u}\,H,vxﬂ) <0 and IA,y(“i,yrvi,ﬂ > 0. (6.4)

We observe that, if (1,0) (or (0,v)) is a semi-trivial solution of system (D, ,), then we have

N*u = AF(x)|ul"?u inQ,
(6.5)
u=Vu=0 on dQ).
Now, the energy functional I, ,,(u,0) corresponding to (6.5) is
— 1 2 A r _ 2—r 2
L(,0) = S w2 = [ FGo)fufax = == julP <o. ©6)

Thus (6.4) and (6.6), we conclude that (u% " v%\ y) is not a semi-trivial solution. Next, we prove

1
Ay

v}w = 0. Then u}w is a non-trivial solution of (6.5) and

that (u}L w0 ) is also not a semi-trivial solution. Without loss of generality, we assume that

108} 0) 12 = skl = A [ )k, [ = 0
Moreover, we choose w € H3(Q) \ {0} such that
10, w)|[? = [lw||* = #/Q G(x)|w|"dx > 0.

From Lemma 4.4, there exists a unique 0 < t; < tmax(u}\ V,w) such that (tlu}\ W hw) € ny,
where

1

1 )= ((222i—r) fQ(AF(X)IL&,er+#G(X)IWI’)dx>“ B (22;—r>21—r -

tmax (U 1, W) =

(22~ 2)[[(ul,, w)]P. 2;-2
Furthermore,
1 s 1
In, (tlu)w, tw) = ogigtfmax In, (tu)w, tw).

This together with the fact that (u} ,,0) € NV} imply that

V?tu < IA,y(tluxﬂ,tlw) < IA,y(”i,ww) < IA/V(”}\,WO) = VIV’

which is a contradiction. Hence, (u} " o} 14) is not a semi-trivial solution. O
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