Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 22, pp. 521-538, May 2011

http://math.technion.ac.il/iic/ela

THE OPTIMAL PERTURBATION BOUNDS FOR THE
WEIGHTED MOORE-PENROSE INVERSE*

WEI-WEI XU, LI-XIA CAI{, AND WEN LI¢

Abstract. In this paper, we obtain optimal perturbation bounds of the weighted Moore-Penrose
inverse under the weighted unitary invariant norm, the weighted @Q-norm and the weighted F-norm,
and thereby extend some recent results.
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1. Introduction. Let C™*™ be the set of complex m x n matrices and C**" be
the subset consisting of all matrices in C™*™ of rank r. Let A € C™*™. We denote
IAl, 11All2, l|Allg and ||A||F by the unitary invariant norm, spectral norm, Q-norm
and F-norm of A, respectively. The conjugate transformation and the Moore-Penrose
generalized inverse of a matrix A are denoted by A* and A, respectively.

Weighted problems, such as the weighted generalized inverse problem and the
weighted least squares problem, draw more and more attention, see e.g., [2, 4, 8, 12].
A generalization of the generalized inverse is the weighted Moore-Penrose inverse of
an arbitrary matrix which has many applications in numerical computation, statistics,
prediction theory, control systems and analysis and curve fitting, see e.g., [1, 9, 14].
There have been many numerical methods for the computation of the weighted Moore-
Penrose inverse, see e.g., [6, 7, 10, 11]. It is an interesting problem to determine how
the weighted Moore-Penrose inverse is transformed under perturbation. Answers to
this problem will have application in numerical computation, prediction theory and
curve fitting. Therefore, it is of significance to estimate the optimal perturbation
bounds of the weighted Moore-Penrose inverse. The weighted unitary invariant norm
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is a more general norm and in terms of this norm, the bounds for the weighted Moore-
Penrose inverse can be characterized by weighted singular values ((M, N) singular
values). Recently, much effort has been made for estimating perturbation bounds
of the Moore-Penrose inverse, see e.g., [5, 9, 13, 14]. In [13], Wedin presented the
perturbation bounds of the Moore-Penrose inverse under a general unitarily invariant
norm, the spectral norm and Frobenius norm, respectively. Meng and Zheng in [5]
obtained the optimal perturbation bounds for the Moore-Penrose inverse under the
Frobenius norm. Cai et al. in [3] obtained the additive and multiplicative perturbation
bounds for the Moore-Penrose inverse under the unitary invariant norm and the Q-
norm, which improves the corresponding results in [13]. In this paper, we will focus
our attention on optimal perturbation bounds for the weighted Moore-Penrose inverse
in the weighted unitary invariant norm, the weighted @-norm and the weighted F-
norm and thereby extend the corresponding results in [3] and [5].

We first introduce some basic definitions:

DEFINITION 1.1. [3] A unitary invariant norm || - || is called a Q-norm if there
1

exists another unitarily invariant norm | - || such that Y| = (|[Y*Y|")2, which is
denoted by || - ||o-

Note that F-norm and 2-norm are @Q-norms.

DEFINITION 1.2. [15] For an arbitrary matrix A € C™*"  there is a unique
matrix X € C™*™ satisfying the following equalities:

e AXA=A,
o XAX = X:
o (MAX)* = MAX;
o (NXA)*=NXA.

Then matrix X is called a weighted Moore-Penrose inverse of A and denoted by
X = Ajw - Here M and N are the given Hermitian positive definite matrices, which
are called weighted matrices.

DEFINITION 1.3. [15] Let A € C™*™. Then the following norms

1

o [Allany = |[M2AN=z|;
o |Allpmny = ||M%AN7%||F;
o [|Allouny = ||1M§A]Y_5HQ;
o |Almn = [M2AN2 |2,

are called the weighted unitary invariant norm, the weighted F-norm, the weighted
Q-norm and the weighted spectral norm of A, respectively.

DEFINITION 1.4. [15] Let A € C**™. The (M, N) weighted singular value de-
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composition (MN-SVD) of A € C**"™ is expressed as follows:

E O * *
(1.1) A:U(O O)V:Ulzvl,

where U = (Uy,Uz) € C™*™ and V = (V1,V,) € C" " satisfy U*MU = I,,, and
V*N-V = I,, ¥ =diag(o1,...,0,), 0 = VA and Ay > -+ > X, > 0 are the
nonzero eigenvalues of N~1A*M A. Then o1, ...,0, > 0 are called the nonzero (M, N)
weighted singular values of A.

The rest of this paper is organized as follows. In Section 2, we give some lemmas,
which are useful to deduce our main results. In Sections 3 and 4, we consider the
additive and multiplicative perturbation of the weighted Moore-Penrose inverse. Some
new bounds for additive and multiplicative perturbation under the norms || - [|(arny,
Il - loavny and || - [| p(ar vy are presented, which extends the corresponding ones in [5]
and [13]. In Section 5, we give some numerical examples to illustrate the optimality
of our given bounds under the weighted @-norm and F-norm, respectively. Finally,
in Section 6 we give concluding remarks.

2. Preliminaries. In this section we give some lemmas, which are useful to
deduce our main results.

LEMMA 2.1. [12] Let A have MN-SVD (1.1). Then
(1) Al = NT'MiS U M;
(2) [ Ajyllvnr = 5=
LEMMA 2.2. [3] Let B have the block form
B B
o=( o mi)
Then

IBIIG < 1B11llg + 1Bi2llg + 1 B21[1g + 1| B2l

LEMMA 2.3. [3] Let By and Bz be two Hermitian matrices and let P be a complex
matriz. Suppose that there are two disjoint intervals separated by a gap of width
at least n, where one interval contains the spectrum of By and the other contains
that of By. If n > 0, then there exists a unique solution X to the matriz equation
B1X — X By = P and moreover,

1
X1 < =IP]-
U
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LEMMA 2.4. [3] Let W € C"*™ be a unitary matriz with the block form

Wi Wia )
W = ,
( War Waa

where Wiy € CT™X", Way € CP=1X(n=) 1 < p < n. Then [|[Wya| = |[|[Wai| for any
unitarily tnvariant norm.

3. Additive perturbation bounds. In this section, we will present optimal ad-
ditive perturbation bounds of the weighted Moore-Penrose inverse under the weighted
unitarily invariant norm, the weighted (-norm and the weighted F-norm, respectively.

THEOREM 3.1. Let A€ C**™ and B= A+ E € C**™. Then

||BJTWN - A}LWNH(NM) < (||A]1LV[N||NM||B;[V[N”NM +maX{HAJ]r\4N”%VM?
(3.1) 1B ;I3 DIE vy

Proof. Let A and B have the following (M, N) weighted singular value decompo-
sitions:
D}
0

(3.2) AU( X 0 >V*U121V1*, BU<

0 7k __ TT. N \/*
P O)VUlZlvl,

where U = (Ul,UQ), U = (01702) e Cmm Vo= (‘/1;‘/2), ‘7 = (‘71’ ‘72) €
C™*m satisfy U*MU = I,,, U*MU = I,,, V*N~'V = I, and V*N~'V = I,
¥, =diag(oy,...,0.), X =diag(s1,...,0s) withoy > -+ >0, >0and 61 > --- >
Gy > 0.

By (3.2) we have
(3.3) E=B-A=U%V-U%Vy.

By the MN-SVDs (3.2) of A and B we know that M2U, M2U, N~V and N~ 2V
are unitary matrices. Hence from (3.3) one may deduce that

(3.4) S\ VFENTYWV, — U MUY, = U MEN~YV,,
U; MUS, = U;MEN 'V,
SIVIN"Wy = —Uf MEN ™V,
It follows from (3.4) that

(3.7) ViN“Et - ST U MU, = STTUFMEN T BT
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By Lemma 2.1 we obtain A%,y = N"'V; X7 U M and B,y = N~'W 57107 M.
Then, by Definition 1.3, we have
1Bl — Alwllovan = [INF(NTWVASTIOEM = NTWASTI U M)M 3|
= |[V*N"5(N 2SOy M2 — N~ Vi UF M2 ) M2 U |
= |[VX(NTTV ST UM — NS iUy MU |

— H( “;1* ) (NSO M — NS U M) (UL, Uy)
2

(3.8) Y SO MU - VENTIVETY ST MU,
: - _‘/2*N71V121_1 0 )

from which one may deduce that

) ) —177% _Yrxn—1 -1
|B;4NARIN||(NM>SH(21 UIMUy = ViINTIAE] ")H
0 0
0 ST U MU,
3.9 - 1 -1 .
(3.9) +H( ~VyN~E! 0 )H

By (3.7) we have

(3.10) |IM2EN"3||.

O0r0s

SUMUFMU, - VNS 0 L
0 0
By (3.5) and (3.6) we have

ST U MU, = S72(Us MEN '),
ViN“isTh = (UFMEN~YW,)* s 2

Thus

0 SO MU,
A1 - Lol
[ R |

11 0 (Us MEN~'V;)*

< - ~ .

= max{ag’(}g}"( (U MEN~'Vy)* 0
Notice that

0 (Us MEN~'V})* vy -
N <[ L )N'E*M (U, U

(3.12) - HV*N*E*MUH :
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Since M2U and N~2V are unitary matrices, it follows from (3.11) and (3.12) that

0 ST MU, 11 H _1 1
N < —, = }|N"ZE*M
[ s el G [N

1 1 1 _1
— max{—3, =) HM2EN :
S

T

1
:max{gag}”EH(MN)v

which together with (3.9), (3.10) and Lemma 2.1(2) deduces (3.1). O
REMARK 3.2. If we take M = N = I, then Theorem 3.1 reduces to
(3.13) IBY — AT|| < (| AY|[2|BY |12 + max{[| AT[13, | BT I3}l E]l,
which is the result of Theorem 3.1 in [3].
For the Q(nar)-norm we provide the following bound.

THEOREM 3.3. Let Ac C**" and B=A+ E € C**™. Then

(3.14)  |BYx — Alynlloovan

< V1Al ar + 1Bl ar + 1AL 1Bl I3ear | Ellarm.

Proof. The bound (3.14) follows immediately from Lemma 2.2, (3.4)—(3.6) and
(3.8). O

REMARK 3.4. If we take M = N = I, then Theorem 3.3 reduces to

1B" — Afllq < \/||AT||§1 +IBHZ + 1AM B Elle,
which is the result of Theorem 3.2 in [3].

THEOREM 3.5. Let Ae C"*" and B=A+ E € C**". Then

(3.15)  ||Bi;n — Abnlleovary < max{|[ A% v 1300 1BY n 13 HEE moay-

Proof. 1t follows from (3.3) that
(3.16)  UMUS, — S, VPN~V = U MEN~V,,
(3.17) UsMU\%, = ~Us MEN™'V,, UsMU%, = U MEN 'V,
(3.18)  S\ViN Yo =U;MEN 'V, S,V NV = —-Uf MEN V5.
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By (3.16), we have

(3.19) STYUTMU, - VNS = ST U MEN T ST

It is easy to see that

1By = Alynlpovan = IN* (NSO M = NTWAET UT M)M ™ 2|
= |[V*N"3(N 2 ST UF M2 — N 3ViST UF M) M3 U || ¢
= |[VY(NTVETOFM - NT'VvisT U MU ||

V' —1y7r v—177* — — * r 7 7
- H( Vl* )(N WSO M — NT'WST U M) (UL, Us)
2

F

A VENTITEE - ST UE MU, ST U MU,
(3.20) =

‘/Q*N_1‘712;1 0

F
It follows from (3.8) and (3.20) that
2||Bl,y — AEWNH%‘(NM) = |STIOT MU, = VN TWASTH | E + (187107 MUs||3
VNS E + VN TS - ST UT MU 7
+ 2 U MO |7 + Ve N TR
which together with Lemma 2.2, (3.4)-(3.6) and (3.16)—(3.19) yields
2|Blyn — Abrnlovan = IET 0T MEN T IS 3 + IE° VN T E* MUs |3
+ ST UTMEN T AST 7 + [V N7 ET MU 7
(3.21) + |ISTPPVEN T E MU |7 + ||V N E*MULS |7
1 ~ -
< 5= ([UTMENT'VA|}: + Uy MEN V1| %)
UTJS
1~ .
+ (Ve NTIE" MU 7 + [V N~ E"MUs||7)

1 1 . _ . 15

< max{ . = }(|UTMEN"'Vi|[} + [U MEN'Vi[)
T S

+ VN E MU |3 + [[Vs N~ E* MU, | %

+ |V NTEMUL3 + [V NTLE* MU, )%
1 1 1 it

< 2max{ ., 5} | M2 EN" 3|}

= 2max{ || ALy I8 1B I ar HIE N -

Therefore,
1By n — Al levary < max{| AL v 13 IBin 3 B vy,

which implies (3.15) holds. O
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REMARK 3.6. If we take M = N = I, then Theorem 3.5 reduces to
IBT — ATl < max{||AT[|3, || BY 3} Bl r,
which is the result of Theorem 2.1 in [5].

Now we consider the case that rank(A) =rank(B), i.e., A, B € C"*"™.

THEOREM 3.7. Let A, B= A+ E € C"*™. Then

IBYn — Absnlovan < AN llvar | B v llvar + (A llvar + 1B vl var)

min{ || ALy v az, 1B x| vas HIEl (arvy.-

Proof. Let
(%0 (%0
Dl_(o JTI)’D2_<O &J)’and

- ( ST MU, - VN VST S0 MU, >

~VsN~is! 0
Then
STIUFMUY, — VENTYY, 0,27 U MU,
XD D X — 1 1 ~ 1 <] 1
1 ( _VEN-Y, 0
UsMU, — S, VEN-VieT UrMU,
22 1 N 1 1 1 .
(3 ) + ( 75,7“/2*]\771‘/121—1 0

From (3.4) it is easy to see that

1 — 177 7k NT— 1 B —5 1
(323)  [EUIMUS) VN < = IMEENTE| < =Bl arw).

Tk O Y7k NT— — 1 1 _1 1
(3.24) |Uf MU, — S1VENTTET!| < ;HMZEN 2| < ;HEH(MN)-

Since U*MU is unitary, by Lemma 2.4 we have
[UF MUs || = |[Uy MU ||.
By (3.3) and (3.5), one may deduce that

Ui MU, = —U; MEN~'V; 57}
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and
Ui MUy = STHUF MEN~'V;)*,
This in turn implies that
oy 1
1Oz MUl < | Ellarw,
and
. 1
IUT MU|| < = Ell e,
respectively. Then

UsMU,|| < E
[UT MUs|| < &T}H ()

max{o,,
and thus

Or

S Or || 7s
low 31 U MU | < =5 || U7 MUs|| < 1E] (eny-

o, max{o,,,}
By an analogous argument, we have
- 1
VaN~'W| € ———||E
7NVl < e By
and

5,

~ Tk — — 5_7" 7k —
o VE NTIAS | < 2 [V NI < 1Bl arnys
r

which together with (3.8), (3.22)—(3.24) and Lemma 2.3 give the desired result. O
REMARK 3.8. If we take M = N = I, then Theorem 3.7 reduces to
(3.25) BT — AT|l < [1AT |2l B 2 + (14Tl + | BYl2) min A2, | BTl I B,
which is the result of Theorem 3.3 in [3].
For the weighted F-norm we have:

THEOREM 3.9. Let A, B=A+FE € CI"*™. Then

(3.26) IBin — Al lrovany < AN v llv s 1By w v s 1 E | o ar s -

Proof. Since in (1.1) U*MU,VN-'V and V*N~V are unitary, by Lemma 2.4

we have

(3.27) U MUs||p = ||Us MU: ||, |Us MUy || = |UT MUs| £,
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(3.28) IVENTWVallp = Vo N~ Vallp, Vo N~ Valle = Vi N~ 12|l p.
It follows from (3.17), (3.18) and (3.27), (3.28) that

2|Bin — Al livan = IST U MENT'WASTY 3 + IST U MEN T ST 3

_|_

1 F Tk * AT—17)
(107 MU + [V N1 3)

1 7k NT— * 7
+ SV NTVAIR: + U7 M)
1

< o ([0 MEN""A [} + U MEN"'VA )
1 F Tk * AnT—177

+ §(||U2MU1H% + VN %)
1 7K NT— * 7

+ §(||V1 N='Wo|[% + |Us MU || 7)

—_

= = (|[UMEN"'"V1 |3 + [UT MEN V4 |1%)

2
ofof

1

o
1

=N

(U3 MENT'VAET |3 + |57 ' UT MEN '3[

_|_
il\)‘

+ (IS U MEN"Wa|3 + |[Us MEN 'V ST 13)

o2
< 2 IMYEN"E|3 = 2 AL el Bl 2| B
= 5202 F MNINMILPMNINM F(MN)>
which implies (3.26) holds. O

REMARK 3.10. Since

1A I var By wllaar < mas{{| Ay n 1 3rars I BYrwllRear )

the bound is sharper than the one in (3.15).
For the weighted @-norm we have:

THEOREM 3.11. Let A, B=A+ E € C**". Then
(3:29)  |BYx — Alynllowvan < VBIAL w v 1By wllvar 1Bl gar vy -
Proof. By (3.20) we have

1Bt Al | _ | veNTTE - SO MOy -2 U MU,y
MN MNIIQ(NM) VQ*N’lVlEl’l 0 o
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It follows from (3.8), (3.27), (3.28) and Lemma 2.2 that
2| BY,n — Alnllhvan < IS0 MU — VP NS + IS7107 MU, |13,
+ Vs NTWSTHS + (VN TS — ST U MU
+ IS MUL|E + VSN~ VASTHIG,
which together with (3.4)—(3.7) and (3.16)—(3.19) gives that
2Bl n — Alnllbovan < ISTOT MENT'WSTHS + IS U MEN TSR,

1 FT * AT—1717
+ = (10 MU + |V N7 3)

r

1 {7k NT— * 7
+ SV NTVAIR + U5 MO )
1 - ~
< = (IUTMENT'A[G + IUT MENT'VA)
070r

1 r 7% * AT— 177
5_3(||U2 MUIG + [V N~'Va5)
1

72
0—7”

+
(IVyN=Vag) + U3 MUL3)

1 ~ -
= 5 (IlUMEN"'V1 |3 + ||[Uf MEN "'V [[?)
0.7'0-7‘
1 - B o o
+ (Il MENT'iETH G + |27 UT MEN 5| 13)

52
oy

1 S —177* — * —1y7 v—
+ (12T UTMEN" Vo [[g + [Us MEN'VAE[5)

T

< |Us MEN"'WV||§, + |Us MEN VA3,

7253
+ U MEN"'V3||% + ||lUf MEN "'V |[3,
+ |[UFMEN "33, + lUs MEN~'VA4||3)

< 611 ALyl a1 BRI ar 1B G ar)-
which implies that the inequality (3.29) holds. O
REMARK 3.12. If we take M = N = I, then Theorem 3.11 reduces to
IBT — ATllq < V3| AT||2[| BT|12]| Ellq.
which is the result of Theorem 3.4 in [3].

It is easy to see that

VIl Al lvarll B s < V1AL s leas + 1BhoI4as + 1Ak 13easll Bl s

which implies that the bound in (3.29) is sharper than the one in (3.14).
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4. Multiplicative perturbation bounds. In this section, we present optimal
multiplicative perturbation bounds of the weighted Moore-Penrose inverse. Let B
be a multiplicative perturbed matrix of A, i.e., B = D1 AD>, where Dy and D5 are
m X m and n X n nonsingular matrices, then rank(A) =rank(B).

THEOREM 4.1. Let A € C"™*" and B = D}AD,y, where D1 and Dy are respec-
tively m X m and n X n nonsingular matrices. Then

(4.1)  |IBin — Al llvan < max{|| A}yl vz, 1By wlvar}@1(D1, D2),
where

U1(D1, Da) = | Im — D5 l(asney + Him — D1 [ (vany + 1 — Dall (v vy + 1 — D3 [ (v vy -

Proof. Let A and B have the MN-SVDs (3.2). Clearly we have

B—A=B(I,-D;") + (D — I,)A
(4.2) = (I, — DT*)B + A(Dy — I,).

It follows from (3.3) and (4.2) that

0121‘71* — U121V1* = 0121‘71*(]” — D;l) + (DT — Im)UlElvl*
(4.3) = (I, — DYV + U S, Vi (Ds — Iy).

By (4.3) we obtain
SIVENTYV, — U MUY, = 5,V (I, — Dy YNV, + U M (D} — I1,)U 5y,
Uy MUY, — S ViN~YWV = U M (I, — D7) UL + 21V (Dy — IL,)N 71,

Us MUL\%, = Us M(I,, — DT*)UL %,
Us MUY, = —Ui M (D} — 1,,,) U, 4,

SIVIN W, = 5,V (I, — Dy YNy,

S1VENTWV, = =5,V (Da — I, )N Vs,
from which one may deduce that

(4.4) VyNTviyT! - S7UFMU,
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= Vi (I, = Dy YNTWAST + S0 MDY = 1)U,
(4.5) SO MU, = 7007 (1, — DY Y)Y MUS,
(4.6) —VyN“'Mist =V NTY(DE - L)ViSTY
(4.7 27'UTMU, - Vi NTIvist

=y 'UrM (1, — DY)YUL + Vi (Dy — I,) N1V 57
(4.8) ST WU MUy = 71U (D) — 1) MUy,

(4.9) VaN VST = Ve NI, — Dy)ViSTL
By (3.7) and (4.4)—(4.6) we obtain

IBYn — Al llvan

B L S0 (I, — DTYMU,
N VN Ds - L)visy? 0
Nl =0 MDD - 1)Uy 70 (I — DY) MU,
= 0 0
N ( Vi (I, = Dy )NTTVIiZt 0 >H
NN D; —I,)x' 0
I M OEPUTMAM T (1, — DY) MEM Uy
“1I\ o 0
(4.10) N ~ViN"iNi(I, - Dy )N":N":Vi57' 0
' V;N"EN~3(D5 — I,)N:N-:i57' 0 )|

where

This implies (4.1) holds. O
REMARK 4.2. If we take M = N = I, then Theorem 4.1 reduces to

B = AT)| < max{[| A"l | B2} ¥(D, Da),

533
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where
U(Dy, D) = I = Dill + [T = DTl + 11 = Dall + 11 — D5,
which is the result of Theorem 4.1 in [3].
For the Qna)-norm we obtain the following bound:

THEOREM 4.3. Let A € C™*" and B = D AD,y, where Dy and Dy are m X m
and n X n nonsingular matrices, respectively. Then

3
(411 1Bl — A loovan < |/ S max14Ly e, Bl s} 4(Dr. Do),
where

@1 (D1, D2) = [l Im = Di115(arnry + 1 m — D1 o arany
_ 1
+{| L — D2||2Q(NN) + ||, — Dy 1||2Q(NN)] 2.

Proof. By (3.8), (4.4)—(4.9) and Lemma 2.1 we can derive
2B — Al

< |IVy*(I, — Dy HYN'WisT !t + S0 M(D; — L) UL ||,
+ 127105 (I — D )MUQHQ+||V;N YDs - L)ViS G
+ |87 UT M (I, — DY) UL+ Vi (D2 — L)NT'WASTHG
+H2*Uf<D1— )MU2HQ+||V;N Y(In — Dy )vliflué

(7”‘/1 (In = Dy )N 1V||Q+7||U1 M(D5 = In)UillQ)*

(—||U1 (Im — Dy *)Uillq + —||V1 (D2 = I)N~'Villg)?
+ 5—3(\\U{‘(Im = Dy YMUs|[G + [IVe' N~ (I — Dy *)VAI3)

U_?(HVJN H(D3 — LVAllg + U (D1 — L) MUs||3))

< (&

+ (=

IVy* (1o — Dy )N 1V1||Q+~2HU1 (DT — In)ULI3)

2
2 -1
2 IUT M (I TG + =5 52 ||V1 (D2 — Ln)N~'VA[3)

+ ﬁ\\ﬁf‘(m = Dy )MUs |G + [[Vs N~ (In = D3 )VAIG)

T

;(HV;N (D3 = L)VAllg + 1UF (D1 — In) MUs||3))
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(4.12)

1
+ Vs N I = Dy )Vallgy) + (21|07 M (D5
~L) Ui |3 + |UF (DT — L) MUz||B) + (2[|Uf M (L, — DT)UL [
+ ||Uf (I = DT MUs|[3) + (2[[Vi* (D2 — L) N~'Vi 13,

< max{ HEIVY (I, = Dy )Nl

1 7k NT— *
+ 5 (IVFN"H(D5 — L)Val[3))]

T

11 . .
< 3maX{§7 ?}[”Im — DBy + Hm = DT 1 arary + 1T — Dallgnny

T

+ (10 — D3 I5n )]
= 3max{|| ALy X 1B n 132} 2(D1, Da)?,
where ®1(D1, D2) equals
* — % — 1
(1 — D1||2Q(MM) + [[Im — Dy ||2Q(MM) + [1n = D2H29(NN) + [[In — Dy 1H?Q(NN)]2'

Hence,

3
IBYn — Alynllovan < /5 max{|[AL, v lxar, | By llva @1 (D1, Ds),
2
which derives the desired result. O

REMARK 4.4. If we take M = N = I, then Theorem 4.3 reduces to

3
|Bt — Al|lq < \/gmaX{HATIIQ, |BT||2}®(Dy, D),
where
_ _ 1
®(Dy, Da) = [|Im — D13 + 1T — Dy G + 1 — Dl + [11n — D3 I3,
which is the result of Theorem 4.2 in [3].

For the Fiyar)-norm we obtain the following bound:

THEOREM 4.5. Let A € C™*" and B = D} ADy, where D1 and Dy are respec-
tively m X m and n X n nonsingular matrices. Then

(4.13) 1B,y — Al nllrvan < max{|| AL, vllvar, | By x| var o1 (Dr, Da),

where p1(D1, D2) equals || I, — DTH?,(MM) + || I, — Dl_*H%(MM) + |, — DQH%(NN) +
_ 1
[1n — D 1”%(1\/1\7)] 2.
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Proof. 1t follows from (4.12) and Lemma 1.2 of [5] that
2B = Abew

1 1 Tk — — * ANT— — %\ T/
< max{ —, = IV (L~ Dy YN VAl + Vi N (1 — Dy ) l2)

+ 2IUF M(D; — L) Ui | + ||UT (D1 — L) MUs||3)
+ 2IUF M (L, — DT*)OL|% + |Uf (I, — DY MU ||3)
1

+ @IVE (D2 = L)NTVA[F + —5 (V5 NTHD5 = L)Vl [7)]

< 2max{ 2z, 25} = Dilbasan + 1 = D7 bqaaany + 1 = Dol boem

+ ([0 — D3 M3 v )

= 2max{|| A}y [ [ B [Rar}or (D1, D2)?,
which implies that (4.13) holds. O

REMARK 4.6. If we take M = N = I, then Theorem 4.5 reduces to

IBT — AY|| < max{||Af[|2, || BY|2}o(D1, Do),

where

¢(Dy, Da) = [IlTm = D13 + [ Tm = D7 |3 + 1n = Dall% + 11, — D3 [3)2,
which is the result of Theorem 3.1 in [5].

REMARK 4.7. We note that a multiplicative perturbation can also be viewed as
an additive one. The example in Remark 4.1 of [3] and Example 3 in [5] have shown
that the multiplicative bounds (4.11), (4.13) are better than the additive bounds
(3.29) and (3.26), respectively.

5. Numerical examples. In this section, we give some simple numerical exam-
ples to illustrate the optimality of our given bounds under the weighted Q— norm and
F— norm, respectively. Examples 1 and 2 in [5] show the optimality of the additive
perturbation bounds in (3.15) and (3.26), respectively. The example in Remark 3.3
of [3] shows the approximate optimality of the perturbation bound in (3.14). The
following examples will illustrate that the bounds in (3.29), (4.11) and (4.13) are
approximately optimal.

EXAMPLE 5.1. Let

1 00 1.000001 0 0
A=|101 0|, B= 0 1.000001 0 ,
0 0 2 0 0 2.000001



Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 22, pp. 521-538, May 2011
http://math.technion.ac.il/iic/ela

Optimal Perturbation Bounds 537
1 0 0 1 0 0

M=1010]|], N=|01020
0 0 4 0 0 4

We take the Ky-Fan 2-2 norm as a Q-norm (for details about the Ky-Fan norm please
see [3]). Then

V2
Bt . — At S e
V2
V3l AL wllvar Bl wliv el Ellecan) = 1500007

which implies the bound in (3.29) is approximate to the optimal bound.

EXAMPLE 5.2. Let

107 0 0 3 00
A= 0 107 0 , Di=I,D;=1| 0 2 0 |,
0 0 2-107 00 3
1 00 1 00
M=010 |,N=[010
0 0 3 0 0 3

We take the Ky-Fan 2-2 norm as a @-norm. Then

IBY,n — Al nlovan = V2 x 1077,

3 . _
\@ max{|| A}y [ vars | Bl yllnar @i (D, Do) = V2 1077,

which implies the bound (4.11) is approximate to the optimal bound.

Ju=(5 ) =0 2)

IBin — Abynllpovan =1 x 1072,

EXAMPLE 5.3. Let

10° 0 1
A‘( 0 109>’D1_I’D2_<0

Then

= O

max{[| A}, yllvar By w I varker(Dy, Do) =1 x 1072,

which implies the bound (4.13) is approximate to the optimal bound.
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6. Concluding remarks. Problems about the weighted Moore-Penrose inverse
arise in many fields, e.g., weighted generalized inverse problems and the weighted
least squares problem, etc. Of them, an interesting one is that when the original
matrix A is perturbed to be B = A 4+ E, how does the weighted Moore-Penrose
inverse transform? In this paper we have considered this problem and by using the
(M, N) weighted singular value decomposition (M N — SV D) some optimal bounds
for additive and multiplicative perturbation under the norms || - [|(arny), || - [|F(arn)
and || - [|o(a ) are presented, respectively. Our results extend the corresponding ones
in [3] and [5].
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