Data dependence theorems for operators on cartesian product spaces

Marcel-Adrian Şerban

Dedicated to Professor dr. Gheorghe Micula on his $60^{\text {th }}$ birthday

Abstract

We present some abstract data dependence theorems of the fixed point set for operators $f, g: X \times Y \rightarrow X \times Y$, using the c-Picard operators technique.

2000 Mathematical Subject Classification: 47H10.
Keywords: Picard operators, c-Picard operators, data dependence.

1 Picard operators, c-Picard operators

In this section we present some definition useful in the next part of the paper.

Definition 1.1.(I.A. Rus [4]). Let (X, d) be a metric space. An operator $A: X \rightarrow X$ is (uniformly) Picard operator (PO) if exists $x^{*} \in X$ such that:
(a) $F_{A}=\left\{x^{*}\right\}$,
(b) $\left(A^{n}(x)\right)_{n \in N}$ converges (uniformly) to x^{*}, for all $x \in X$.

Definition 1.2.(I.A. Rus [4]). Let (X, d) be a metric space. An operator $A: X \rightarrow X$ is (uniformly) weakly Picard operator (WPO) if:
(a) the sequence $\left(A^{n}(x)\right)_{n \in N}$ converges (uniformly), for all $x \in X$,
(b) the limit (which may depend on x) is a fixed point of A.

If A is weakly Picard operator then we consider the following operator:

$$
\begin{gather*}
A^{\infty}: X \rightarrow X, \\
A^{\infty}(x)=\lim _{n \rightarrow \infty} A^{n}(x) . \tag{1}
\end{gather*}
$$

Definition 1.3.(I.A. Rus [2]). Let (X, d) be a metric space. An operator $A: X \rightarrow X$ is c-(uniformly) weakly Picard operator (c-WPO) if:
(a) A is (uniformly) weakly Picard;
(b) exists $c>0$ such that.:

$$
\begin{equation*}
d\left(x, A^{\infty}(x)\right) \leq c \cdot d(x, A(x)), \tag{2}
\end{equation*}
$$

for all $x \in X$.

Example 1.1. Let (X, d) be a complete metric space and an operator $A: X \rightarrow X$ such that:

$$
\begin{aligned}
d(A(x), A(y)) & \leq \alpha_{1} d(x, y)+\alpha_{2} d(x, A(x))+\alpha_{3} d(y, A(y))+ \\
& +\alpha_{4} d(x, A(y))+\alpha_{5} d(y, A(x))
\end{aligned}
$$

with $\alpha_{i}>0, i=\overline{1,5}, \alpha_{1}+\ldots+\alpha_{4}+2 \alpha_{5}<1$, for all $x, y \in X$. Then A is c-Picard operator with $c=\frac{\alpha_{1}+\alpha_{3}+\alpha_{5}}{1-\alpha_{2}-\alpha_{5}}$.

Example 1.2.(L.B. Ćirić [1]). Let (X,d) be a complete metric space and an operator $A: X \rightarrow X$ such that:

$$
\begin{gathered}
d(A(x), A(y)) \leq \\
\leq \alpha \cdot \max \left\{d(x, y), d(x, A(x)), d(y, A(y)), \frac{1}{2}[d(x, A(y))+d(y, A(x))]\right\} \\
c=\frac{1}{1-\alpha} \text { with } \alpha \in[0 ; 1[, \text { for all } x, y \in X . \text { Then } A \text { is c-Picard operator with }
\end{gathered}
$$

For other examples of c-Picard operators see S. Mureşan, I.A. Rus [3], I.A.Rus [4].

An important data dependence result which is used in our paper is the following:

Theorem 1.1.(I.A.Rus, S. Mureşan [3]). Let (X, d) be a metric space. and $A_{1}, A_{2}: X \rightarrow X$ two operator such that.:
(i) A_{i} is $c_{i}-W P O, i=\{1,2\}$;
(ii) exists $\eta>0$ such. that.: $d\left(A_{1}(x), A_{2}(x)\right) \leq \eta$, for all $x \in X$

Then:

$$
\begin{equation*}
H\left(F_{A_{1}}, F_{A_{2}}\right) \leq \eta \cdot \max \left\{c_{1}, c_{2}\right\} \tag{3}
\end{equation*}
$$

where H is Hausdorff-Pompeiu metric on $P(X)$.

2 Fixed point theorems

In this section we present some fixed point theorems for operators $f: X \times Y \rightarrow X \times Y$, where X, Y are metric spaces.

Theorem 2.1. Let $(X, d),(Y, \rho)$ be two complete metric spaces and $f: X \times Y \rightarrow X \times Y, f=\left(f_{1}, f_{2}\right)$. Suppose there exist $\psi_{1}, \psi_{2}: \mathbb{R}_{+}^{6} \rightarrow \mathbb{R}_{+}$ continuous functions such that:

$$
\begin{array}{cc}
d\left(f_{1}\left(x_{1}, y_{1}\right), f_{1}\left(x_{2}, y_{2}\right)\right) \leq \psi_{1}(& d\left(x_{1}, x_{2}\right), \rho\left(y_{1}, y_{2}\right), d\left(x_{1}, f_{1}\left(x_{1}, y_{1}\right)\right), \\
& d\left(x_{2}, f_{1}\left(x_{2}, y_{2}\right)\right), d\left(x_{1}, f_{1}\left(x_{2}, y_{2}\right)\right), \\
& \left.d\left(x_{2}, f_{1}\left(x_{1}, y_{1}\right)\right)\right), \\
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y ; & \\
\rho\left(f_{2}\left(x_{1}, y_{1}\right), f_{2}\left(x_{2}, y_{2}\right)\right) \leq \psi_{2}\left(d\left(x_{1}, x_{2}\right), \rho\left(y_{1}, y_{2}\right), \rho\left(y_{1}, f_{2}\left(x_{1}, y_{1}\right)\right),\right. \\
& \rho\left(y_{2}, f_{2}\left(x_{2}, y_{2}\right)\right), \rho\left(y_{1}, f_{2}\left(x_{2}, y_{2}\right)\right), \tag{ii}\\
& \left.\rho\left(y_{2}, f_{2}\left(x_{1}, y_{1}\right)\right)\right), \\
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y ; &
\end{array}
$$

(iii) for any $t_{1}, t_{2} \in \mathbb{R}_{+}^{6}$ such that $t_{1} \leq t_{2}$ we have $\psi_{i}\left(t_{1}\right) \leq \psi_{i}\left(t_{2}\right), i=\overline{1,2}$;
(iv) $\psi_{i}\left(t_{1}+t_{2}\right) \leq \psi_{i}\left(t_{1}\right)+\psi_{i}\left(t_{2}\right)$, for all $t_{1}, t_{2} \in \mathbb{R}_{+}^{6}, i=\overline{1,2}$;
(v) for any $\lambda \in \mathbb{R}_{+}$we have $\psi_{i}(\lambda t) \leq \lambda \psi_{i}(t)$, for all $t \in \mathbb{R}_{+}^{6}, i=\overline{1,2}$;
(vi) $\psi_{1}(0,0,0,1,1,0)<1$ and $\psi_{1}(1,0,0,1,1,0)<1$;
(vii) $\psi_{2}(0,0,0,1,1,0)<1$ and $\psi_{2}(0,1,0,1,1,0)<1$;
(viii) $\frac{\psi_{1}(1,0,1,0,1,0)}{1-\psi_{1}(0,0,0,1,1,0)}<1$;
(ix) $\frac{\psi_{2}(0,1,1,0,1,0)}{1-\psi_{2}(0,0,0,1,1,0)}<1$;
(x) $\frac{\psi_{1}(0,1,0,0,0,0)}{1-\psi_{1}(1,0,0,0,1,1)} \cdot \frac{\psi_{2}(1,0,0,0,0,0)}{1-\psi_{2}(0,1,0,0,1,1)}<1$.

In these conditions we have that $F_{f}=\left\{\left(x^{*}, y^{*}\right)\right\}$.
Proof. From conditions (i)-(ix) we obtain that $F_{f_{1}(\cdot, y)}=\left\{x^{*}(y)\right\}$ and $F_{f_{2}(x,)}=\left\{y^{*}(x)\right\}$ (see M.A. Şerban [5])

We define the following operators:

$$
\begin{gather*}
P: Y \rightarrow X \tag{4}\\
P(y)=x^{*}(y) \in F_{f_{1}(\cdot, y)}
\end{gather*}
$$

$$
\begin{gather*}
Q: X \rightarrow Y \\
Q(x)=y^{*}(x) \in F_{f_{2}(x, \cdot)} \tag{5}
\end{gather*}
$$

It is easy to check that P and Q are lipschitz:

$$
\begin{align*}
& d\left(P\left(y_{1}\right), P\left(y_{2}\right)\right) \leq \frac{\psi_{1}(0,1,0,0,0,0)}{1-\psi_{1}(1,0,0,0,1,1)} \cdot \rho\left(y_{1}, y_{2}\right) \tag{6}\\
& \rho\left(Q\left(x_{1}\right), Q\left(x_{2}\right)\right) \leq \frac{\psi_{2}(1,0,0,0,0,0)}{1-\psi_{2}(0,1,0,0,1,1)} \cdot d\left(x_{1}, x_{2}\right) \tag{7}
\end{align*}
$$

which implies that $P \circ Q$ is contraction on X, therefore we have that $F_{P \circ Q}=\left\{x^{*}\right\}$ and $\left(x^{*}, Q\left(x^{*}\right)\right) \in F_{f}$. The uniqueness of fixed point for f is obtained from the uniqueness of x^{*} as a fixed point for $P \circ Q$.

Using this general result we obtain the following fixed point theorems.

Corollary 2.1. Let $(X, d),(Y, \rho)$ be two complete metric spaces and $f: X \times Y \rightarrow X \times Y, f=\left(f_{1}, f_{2}\right)$. Suppose that:

$$
\begin{align*}
d\left(f_{1}\left(x_{1}, y_{1}\right), f_{1}\left(x_{2}, y_{2}\right)\right) & \leq \alpha_{1} d\left(x_{1}, x_{2}\right)+\alpha_{2} \rho\left(y_{1}, y_{2}\right)+ \\
& +\alpha_{3} d\left(x_{1}, f_{1}\left(x_{1}, y_{1}\right)\right)+\alpha_{4} d\left(x_{2}, f_{1}\left(x_{2}, y_{2}\right)\right)+ \tag{i}\\
& \left.+\alpha_{5} d\left(x_{1}, f_{1}\left(x_{2}, y_{2}\right)\right)+\alpha_{6} d\left(x_{2}, f_{1}\left(x_{1}, y_{1}\right)\right)\right)
\end{align*}
$$

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y
$$

$$
\begin{align*}
\rho\left(f_{2}\left(x_{1}, y_{1}\right), f_{2}\left(x_{2}, y_{2}\right)\right) & \leq \beta_{1} d\left(x_{1}, x_{2}\right)+\beta_{2} \rho\left(y_{1}, y_{2}\right)+ \\
& +\beta_{3} \rho\left(y_{1}, f_{2}\left(x_{1}, y_{1}\right)\right)+\beta_{4} \rho\left(y_{2}, f_{2}\left(x_{2}, y_{2}\right)\right)+ \tag{ii}\\
& \left.+\beta_{5} \rho\left(y_{1}, f_{2}\left(x_{2}, y_{2}\right)\right)+\beta_{6} \rho\left(y_{2}, f_{2}\left(x_{1}, y_{1}\right)\right)\right)
\end{align*}
$$

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y
$$

(iii) $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+2 \alpha_{5}+\alpha_{6}<1, \alpha_{i} \in \mathbb{R}_{+}, i=\overline{1,6}$;
(iv) $\beta_{1}+\beta_{2}+\beta_{3}+\beta_{4}+2 \beta_{5}+\beta_{6}<1, \beta_{i} \in \mathbb{R}_{+}, i=\overline{1,6}$.

In these conditions we have $F_{f}=\left\{\left(x^{*}, y^{*}\right)\right\}$.

Proof. We'll apply Theorem 2.1 for

$$
\begin{aligned}
& \psi_{1}\left(r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}\right)=\sum_{i=1}^{6} \alpha_{i} \cdot r_{i} \\
& \psi_{2}\left(r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}\right)=\sum_{i=1}^{6} \beta_{i} \cdot r_{i} .
\end{aligned}
$$

Conditions (iii)-(x) are easy to check.
Corollary 2.2. Let $(X, d),(Y, \rho)$ be two complete metric spaces and $f: X \times Y \rightarrow X \times Y, f=\left(f_{1}, f_{2}\right)$. Suppose that:

$$
\begin{align*}
d\left(f_{1}\left(x_{1}, y_{1}\right), f_{1}\left(x_{2}, y_{2}\right)\right) \alpha \cdot \max \{ & d\left(x_{1}, x_{2}\right), \rho\left(y_{1}, y_{2}\right), \\
& d\left(x_{1}, f_{1}\left(x_{1}, y_{1}\right)\right), d\left(x_{2}, f_{1}\left(x_{2}, y_{2}\right)\right), \tag{i}\\
& \left.d\left(x_{1}, f_{1}\left(x_{2}, y_{2}\right)\right), d\left(x_{2}, f_{1}\left(x_{1}, y_{1}\right)\right)\right\},
\end{align*}
$$

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y
$$

$$
\rho\left(f_{2}\left(x_{1}, y_{1}\right), f_{2}\left(x_{2}, y_{2}\right)\right) \leq \beta \cdot \max \left\{d\left(x_{1}, x_{2}\right), \rho\left(y_{1}, y_{2}\right)\right.
$$

$$
\begin{align*}
& \rho\left(y_{1}, f_{2}\left(x_{1}, y_{1}\right)\right), \rho\left(y_{2}, f_{2}\left(x_{2}, y_{2}\right)\right) \tag{ii}\\
& \left.\rho\left(y_{1}, f_{2}\left(x_{2}, y_{2}\right)\right), \rho\left(y_{2}, f_{2}\left(x_{1}, y_{1}\right)\right)\right\}
\end{align*}
$$

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y
$$

(iii) $\alpha \in[0 ; 1[$ si $\beta \in[0 ; 1[$ such that:

$$
\frac{\alpha}{1-\alpha} \cdot \frac{\beta}{1-\beta}<1
$$

In these conditions we have $F_{f}=\left\{\left(x^{*}, y^{*}\right)\right\}$.
Proof. We'll apply Theorem 2.1 for

$$
\begin{aligned}
& \psi_{1}\left(r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}\right)=\alpha \cdot \max _{i=\overline{1,6}}\left\{r_{i}\right\} \\
& \psi_{2}\left(r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}\right)=\beta \cdot \max _{i=\overline{1,6}}\left\{r_{i}\right\}
\end{aligned}
$$

Conditions (iii)-(x) are easy to check.

3 Data dependence theorems

In this section we present a result of data dependence of the fixed points for two operators $f, g: X \times Y \rightarrow X \times Y$. For better understanding we give this result in the particular case of Corollary 2.1 when $\alpha_{3}=\alpha_{4}=\alpha_{5}=\alpha_{6}=0$ and $\beta_{3}=\beta_{4}=\beta_{5}=\beta_{6}=0$, the general case of Theorem 2.1 can be treated similarly..

Theorem 3.1. Let $(X, d),(Y, \rho)$ be two complete metric spaces and $f, g: X \times Y \rightarrow X \times Y, f=\left(f_{1}, f_{2}\right), g=\left(g_{1}, g_{2}\right)$. Suppose that:
(i) there exist $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{R}_{+}$, with $a_{1}<1$ and $b_{2}<1$, such that

$$
\begin{aligned}
d\left(f_{1}\left(x_{1}, y_{1}\right), f_{1}\left(x_{2}, y_{2}\right)\right) \leq a_{1} d\left(x_{1}, x_{2}\right)+a_{2} \rho\left(y_{1}, y_{2}\right), \\
\rho\left(f_{2}\left(x_{1}, y_{1}\right), f_{2}\left(x_{2}, y_{2}\right)\right) \leq b_{1} d\left(x_{1}, x_{2}\right)+b_{2} \rho\left(y_{1}, y_{2}\right), \\
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y
\end{aligned}
$$

(ii) there exist $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{R}_{+}$, with $\alpha_{1}<1$ and $\beta_{2}<1$, such that

$$
\begin{aligned}
& d\left(g_{1}\left(x_{1}, y_{1}\right), g_{1}\left(x_{2}, y_{2}\right)\right) \leq \alpha_{1} d\left(x_{1}, x_{2}\right)+\alpha_{2} \rho\left(y_{1}, y_{2}\right), \\
& \rho\left(g_{2}\left(x_{1}, y_{1}\right), g_{2}\left(x_{2}, y_{2}\right)\right) \leq \beta_{1} d\left(x_{1}, x_{2}\right)+\beta_{2} \rho\left(y_{1}, y_{2}\right),
\end{aligned}
$$

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y
$$

(iii) $\frac{a_{2} b_{1}}{\left(1-a_{1}\right)\left(1-b_{2}\right)}<1$;
(iv) $\frac{\alpha_{2} \beta_{1}}{\left(1-\alpha_{1}\right)\left(1-\beta_{2}\right)}<1$;
(v) there exits $\eta_{1}, \eta_{2} \in \mathbb{R}_{+}$such that

$$
\begin{aligned}
& d\left(f_{1}(x, y), g_{1}(x, y)\right) \leq \eta_{1} \\
& \rho\left(f_{2}(x, y), g_{2}(x, y)\right) \leq \eta_{2}
\end{aligned}
$$

for any $(x, y) \in X \times Y$;

Then we have:

$$
\begin{aligned}
& d\left(x_{f}^{*}, x_{g}^{*}\right) \leq \eta \cdot \max \left\{\frac{1}{1-\lambda_{f}} ; \frac{1}{1-\lambda_{g}}\right\}, \\
& \rho\left(y_{f}^{*}, y_{g}^{*}\right) \leq \tau \cdot \max \left\{\frac{1}{1-\lambda_{f}} ; \frac{1}{1-\lambda_{g}}\right\},
\end{aligned}
$$

where

$$
\begin{gathered}
\lambda_{f}=\frac{a_{2} b_{1}}{\left(1-a_{1}\right)\left(1-b_{2}\right)} \quad \text { and } \lambda_{g}=\frac{\alpha_{2} \beta_{1}}{\left(1-\alpha_{1}\right)\left(1-\beta_{2}\right)}, \\
\eta=\tau_{1}+\tau_{2} \cdot \min \left\{\frac{a_{2}}{1-a_{1}} ; \frac{\alpha_{2}}{1-\alpha_{1}}\right\}, \\
\tau=\tau_{2}+\tau_{1} \cdot \min \left\{\frac{b_{1}}{1-b_{2}} ; \frac{\beta_{1}}{1-\beta_{2}}\right\}, \\
\tau_{1}=\eta_{1} \cdot \min \left\{\frac{1}{1-a_{1}} ; \frac{1}{1-\alpha_{1}}\right\}, \\
\tau_{2}=\eta_{2} \cdot \min \left\{\frac{1}{1-b_{2}} ; \frac{1}{1-\beta_{2}}\right\} .
\end{gathered}
$$

Proof. Conditions (i)-(iv) show that f, g are in the conditions of Corollary 2.1, thus $F_{f}=\left\{\left(x_{f}^{*}, y_{f}^{*}\right)\right\}$ and $F_{g}=\left\{\left(x_{g}^{*}, y_{g}^{*}\right)\right\}$. We define the operators P_{f}, Q_{f}, respectively P_{g}, Q_{g} as in (4) and (5) corresponding to operator f, respectively to operator g. We have that $P_{f} \circ Q_{f}$ is λ_{f}-contraction and $P_{g} \circ Q_{g}$ is λ_{g}-contraction, which mean that $P_{f} \circ Q_{f}$ and $P_{g} \circ Q_{g}$ are c-Picard operators with constants

$$
c_{f}=\frac{1}{1-\lambda_{f}} \quad \text { and } \quad c_{g}=\frac{1}{1-\lambda_{g}}
$$

We have that

$$
\begin{gathered}
\quad d\left(P_{f}(y), P_{g}(y)\right) \leq d\left(f_{1}\left(P_{f}(y), y\right), g_{1}\left(P_{f}(y), y\right)\right)+ \\
+d\left(g_{1}\left(P_{f}(y), y\right), g_{1}\left(P_{g}(y), y\right)\right) \leq \eta_{1}+\alpha_{1} d\left(P_{f}(y), P_{g}(y)\right)
\end{gathered}
$$

and also

$$
\begin{gathered}
d\left(P_{f}(y), P_{g}(y)\right) \leq d\left(g_{1}\left(P_{g}(y), y\right), f_{1}\left(P_{g}(y), y\right)\right)+ \\
+d\left(f_{1}\left(P_{g}(y), y\right), f_{1}\left(P_{f}(y), y\right)\right) \leq \eta_{1}+a_{1} d\left(P_{f}(y), P_{g}(y)\right)
\end{gathered}
$$

which imply

$$
d\left(P_{f}(y), P_{g}(y)\right) \leq \eta_{1} \cdot \min \left\{\frac{1}{1-a_{1}} ; \frac{1}{1-\alpha_{1}}\right\}
$$

In a similar way we can prove

$$
\rho\left(Q_{f}(x), Q_{g}(x)\right) \leq \eta_{2} \cdot \min \left\{\frac{1}{1-b_{2}} ; \frac{1}{1-\beta_{2}}\right\} .
$$

We denote by $\tau_{1}=\eta_{1} \cdot \min \left\{\frac{1}{1-a_{1}} ; \frac{1}{1-\alpha_{1}}\right\}$ and $\tau_{2}=\eta_{2} \cdot \min \left\{\frac{1}{1-b_{2}} ; \frac{1}{1-\beta_{2}}\right\}$.
We have the estimation

$$
\begin{aligned}
& \quad d\left(P_{f} \circ Q_{f}(x), P_{g} \circ Q_{g}(x)\right) \leq d\left(P_{f}\left(Q_{f}(x)\right), P_{g}\left(Q_{f}(x)\right)\right)+ \\
& +d\left(P_{g}\left(Q_{f}(x)\right), P_{g}\left(Q_{g}(x)\right)\right) \leq \tau_{1}+\frac{\alpha_{2}}{1-\alpha_{1}} \cdot \rho\left(Q_{f}(x), Q_{g}(x)\right) \leq \tau_{1}+\frac{\alpha_{2}}{1-\alpha_{1}} \cdot \tau_{2}
\end{aligned}
$$

and also

$$
\begin{gathered}
d\left(P_{f} \circ Q_{f}(x), P_{g} \circ Q_{g}(x)\right) \leq d\left(P_{g}\left(Q_{g}(x)\right), P_{f}\left(Q_{g}(x)\right),\right)+ \\
+d\left(P_{f}\left(Q_{g}(x)\right), P_{f}\left(Q_{f}(x)\right)\right) \leq \tau_{1}+\cdot \rho\left(Q_{f}(x), Q_{g}(x)\right) \leq \tau_{1}+\frac{a_{2}}{1-a_{1}} \cdot \tau_{2}
\end{gathered}
$$

which imply

$$
d\left(P_{f} \circ Q_{f}(x), P_{g} \circ Q_{g}(x)\right) \leq \tau_{1}+\tau_{2} \cdot \min \left\{\frac{a_{2}}{1-a_{1}} ; \frac{\alpha_{2}}{1-\alpha_{1}}\right\}:=\eta
$$

From Theorem 1.1 we conclude

$$
d\left(x_{f}^{*}, x_{g}^{*}\right) \leq \eta \cdot \max \left\{\frac{1}{1-\lambda_{f}} ; \frac{1}{1-\lambda_{g}}\right\} .
$$

Using the same technique we can prove that

$$
\rho\left(Q_{f} \circ P_{f}(y), Q_{f} \circ P_{f}(y)\right) \leq \tau_{2}+\tau_{1} \cdot \min \left\{\frac{b_{1}}{1-b_{2}} ; \frac{\beta_{1}}{1-\beta_{2}}\right\}:=\tau
$$

and therefore, from Theorem 1.1, we conclude

$$
\rho\left(y_{f}^{*}, y_{g}^{*}\right) \leq \tau \cdot \max \left\{\frac{1}{1-\lambda_{f}} ; \frac{1}{1-\lambda_{g}}\right\} .
$$

Thus the theorem is proved.

References

[1] L.B. Ćirić, Fixed points of weakly contraction mappings, Publ. LÎnst. Math., Tome 20, (34), 1976, 79-84.
[2] I. A. Rus, Basic problems of the metric fixed point theory revisited (II), Studia Univ. Babeş-Bolyai, 36, 1991, 81-99.
[3] I. A. Rus, S. Mureşan, Data dependence of the fixed points set of weakly Picard operators, Studia Univ. Babeş-Bolyai, 43, No. 1, 1998, 79-83.
[4] I. A. Rus, Picard operators and applications, Babeş-Bolyai Univ., ClujNapoca, 1996.
[5] M. A. Şerban, Fixed point theory for operators on cartesian product spaces, (Romanian) Ph. D. Thesis, Babeş-Bolyai Univ., Cluj-Napoca, 2000.
"Babeş - Bolyai" University of Cluj - Napoca
Str. Mihail Kogălniceanu, nr. 1B
400084 - Cluj - Napoca, Romania
E-mail: mserban@math.ubbcluj.ro

