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Stability of Equilibrium Points In The
Photogravitational Two-Body Problem
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Abstract

This paper deals with the two-body problem in a photogravita-

tional field, using a model introduced by Constantin Popovici (1923).

Using Valeev and Scheglov’s (1965) transformations, the differential

equations of motion are obtained under an nonlinear autonomous

form. The equilibrium solutions of this system of equations are de-

termined and their stability is investigated. Numerical simulations

are also considered.
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1 Introduction

It is known that sunlight exerts a force on illuminated particles; this

explains why the comets’ tails are oriented in an opposite direction

to the Sun. This idea has been known since J.Kepler. In the early

twenties, P.N. Lebedev, E.F.Nichols and A.W.Hull have measured
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the pressure of the light on a reflecting surface. Although this force

is very small, it is unlimited and it acts continuously. For this reason,

its perturbation on the movement of a small body in a gravitational

field might be significant.

2 Basic equations

According to the model introduced by C. Popovici (1923), A. Pal

(1992), the magnitude of the photogravitational force is:

(1) F = −A

r2
+

R

r2
− R

ṙ

cr2
,

where −A/r2 represents the newtonian force (with A - the newtonian

force at the unit of distance r = 1), R/r2 the repulsion force of the

light at the unit distance and −Rṙ/(cr2) a corrective term due to

the finite speed of light.

Equation (1) can be written as:

(2) F = − k

r2
(1 + εṙ)

where

(3) k = A − R, ε =
R

ck
.

Anisiu (1995) has used for (2) the following expression:

(4) F = − 1

r2
(k + lṙ),

where

(5) l =
R

c

Note that (4) is not singular at k = 0 (when repulsion equals the

attraction).
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In polar coordinates (r, θ), the equations of motion take the form:

r̈ − rθ̇
2

= −(k + lṙ)
1

r2
,(6)

rθ̈ + 2ṙθ̇ = 0.

From the second equation of (6), we have r2θ̇ = H, where H is

the constant of the area’s first integral.

Another form of (6) can be obtained using the following transfor-

mation (Valeev et al. (1965); Barbosu (2000), Mioc et al. (2001)):

(7) x =
k

r3θ̇
2
, y =

ṙ

rθ̇

Using the area’s first integral and (7), equations (6) become:

dx

dθ
= P (x, y) = xy,(8)

dy

dθ
= Q(x, y) = 1 − x − εy + y2,

where ǫ = l/H. Note that the above system of equations is au-

tonomous, i.e. the independent variable θ does not appear explicitly

in the right hand side of (8).

3 Equilibrium points and stability of

motion

The equilibrium points of (8) are given by:

xy = 0,(9)

1 − x − εy + y2 = 0.

whose solutions are:

(10) {x = 1, y = 0}, {x = 0, y =
ε −

√
ε2 − 4

2
},
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{x = 0, y =
ε +

√
ε2 − 4

2
}

According to the possible values of ε, we have the following cases:

a) For ε > 2 there are three equilibrium points:

{0, 1}, {0,
ε −

√
ε2 − 4

2
}, {0,

ε +
√

ε2 − 4

2
}

b) For ε = 2 there are two equilibrium points:

{1, 0}, {0, 1}

c) For ε < 2 there is one equilibrium point:

{1, 0}

In what follows we will investigate the stability around the equi-

librium points. Let us consider small variations around the equilib-

rium point {x0, y0}. We have (Jordan et al. (1986), Zeldovich et al.

(1985)):

(11) x = x0 + ξ, y = y0 + η,

Thus,

dξ

dθ
= aξ + bη,(12)

dη

dθ
= cη + dη,

where a = y0, b = x0, c = −1, d = 2y0 − ε.

Let:

(13) ξ = αeλθ, η = βeλθ,

be the solutions of (12), where α and β are constants. The char-

acteristic equation for λ is:

(14) λ2 − (a + d)λ + (ad − bc) = 0,
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or

(15) λ2 − (3y0 − ε)λ + (2y0
2 − εy0 + x0) = 0,

with:

(16) λ1,2 =
(3y0 − ε) ±

√

(y0 − ε)2 − 4x0

2

For the equilibrium points situated on the Oy-axis (x0 = 0, y0 6=
0),

(17) λ1 = 2y0 − ε, and λ2 = y0,

For the equilibrium points situated on the Ox-axis (x0 6= 0, y0 =

0),

(18) λ1,2 =
−ε ±

√
ε − 4x0

2

According to (17) and (18) we can draw the following conclusions:

For ε < 2, the equilibrium point (1, 0) is asymptotically stable.

For ε = 2, the equilibrium point (1, 0) is asymptotically stable

and the point (0, 1) is unstable.

For ε > 2, the point (1, 0) is asymptotically stable and the other

two points (0, ε+
√

ε2
−4

2
) and (0, ε−

√

ε2
−4

2
) are unstable.

4 Phase portrait

In what follows we’ll present the phase portraits for the three cases

described in the previous section.

For ε < 2, we have:

One can see here the asymptotically stable equilibrium point:

(1, 0).

For ε = 2, the phase portrait is:
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Figure 1: ε < 2

Figure 2: ε = 2

Here, the two equilibrium points are (1, 0) and (0, 1).

For ε > 2, we can see that we have three equilibrium points:

the first (1, 0), which is asymptotically stable and the other two

(0, ε+
√

ε2
−4

2
) and (0, ε−

√

ε2
−4

2
) that are unstable:
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Figure 3: ε > 2

References

[1] Anisiu, M., 1995, On the Photogravitational model of C.Popovici,

Rom. Astr. J, 5, No. 1, pp. 49-54.

[2] Bărbosu, M., 2000, in: M. V. Alania, E. A. Grebenikov (eds.),

”Mathematica” Sysytem in Teaching and Research, Proc. 2nd

Int. Workshop on ”Mathematica” System in Teaching and Re-

search, January, 28-30, 2000, Siedlce, Poland, p.1.6

[3] Jordan, D. W., Smith, P., 1986, Nonlinear Ordinary Differential

Equations, second edition, Clarendon Press, Oxford.

[4] Mioc, V., Blaga, C.:, 2001, The Equilibrium Points in the Pho-

togravitational Model of Constantin Popovici, Rom. Astr. J., 11,

No. 1, pp. 45-51.



26 Michael Barbosu and Tiberiu Oproiu

[5] Pal, A., 1992, Early Romanian Contributions to Celestial Me-

chanics, Rom. Astr. J., 2, No. 1, pp. 205-207.

[6] Popovici, C., 1923, Sur une modification de la loi de Newton-

Coulomb, Bulletin Astronomique, Mémoires et Variétes, 3, pp.
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