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Finite element approximation of the

Navier-Stokes Equation

Mioara Boncuţ

Abstract

In this paper we formulate the variational principle of the problem

of stationary flow of a viscous fluid in a pipe with transversal section

in the L-form and analyze the finite element approximation (Ritz

algorithm on finite elements).

The coefficients and the solutions of the Ritz system and deter-

mined with a Turbo-Pascal program.

Numerical results demonstrating these bounds are also presented.
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1

The Navier-Stokes equation [4] that describes the stationary flow of a viscous

fluid in a pipe with an arbitrary transversal section Ω is

∂2u

∂x2 +
∂2u

∂y2 =
1

µ
·
dp

dz
, (x, y) ∈ Ω
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where u is the velocity, µ is the coefficient of viscosity and
dp
dz

is the pressure

fall on the length of the pipe. The problem is to determine the repartition

of the velocity in the section Ω.

We consider the boundary value problem

Lu ≡ −∇2u = f in Ω ⊂ R
2

u = 0 on ∂Ω.
(1)

By using the Gauss formula in C2(Ω), the following integral identity is

verified by classical solution u:
∫

Ω

∇T u · ∇vdΩ =

∫

Ω

fvdΩ, ∀v ∈ C1
0(Ω)

(C0(Ω) = {u ∈ C1(Ω)|u = 0 on ∂Ω}).

(2)

Let us introduce the fundamental Hilbert space and its norm as

H1
0 (Ω) = {u ∈ H2(Ω), u = 0 on ∂Ω}

||u||2H1

0
(Ω) =

∫

Ω

|∇u|2dΩ (≡ ||u||21,0).

where Hn(Ω) is the Sobolev space on Ω.

The triplet (H, a, ϕ), where H is the Hilbert space, can now be introduced

as follows

H = H ′

0(Ω)

a(u, v) =

∫

Ω

∇T u · ∇vdtΩ, ∀u, v ∈ H1
0 (Ω)

ϕ(v) =

∫

Ω

fvdΩ, ∀v ∈ H1
0 (Ω).

It is easy to prove that the form a(u, v) is a bilinear symmetrical func-

tional, boundary, coercive, and the functional ϕ(v) is a linear and bounded

form.
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In this conditions, (2) can be represented as

a(u, v) = ϕ(v), ∀v ∈ H1
0 (Ω).(3)

Definition 1.1. The integral identity (2) is normed weak equation for the

boundary value problem 1 and the function u ∈ H1
0 (Ω) for which (2) hold is

named weak solution.

From the Lax-Milgram theorem the problem (3) has a solution u and it is

unique.

Theorem 1.1. The weak solution of u is the unique point of minimum of

the functional

F (u) =
1

2
a(u, u) − (f, u).

Thus the solving of the problem (1.3) is equivalent to the following min-

imization problem [2]:

(Pv)
Find u ∈ H1

0 (Ω) such that

F (u) ≤ F (v), ∀v ∈ H ′

0(Ω)

The purpose of this paper is to analyze the finite element approximation

of (Pv). Let Ωh be a polynomial approximation of Ω defined by Ωh ≡
⋃

τ∈T h

τ ,

where T h is a partition of Ωh into a finite number of disjoint open regular

triangles τ , each of maximum diameter bounded above by h. In addition,

for any two distinct triangle, their closure are either disjoint, or have a

common vertex, or a common side. Let {Pj}
N
j=1 be the vertices associated

with the triangulation T h, where Pj has coordinates (xj, yj). Throughout

we assume that Pj ∈ ∂Ωh implies Pj ∈ ∂Ω and that Ωh ⊆ Ω. The following

finite dimensional space is associated to T h:

Sh =
{

v ∈ C(Ωh), v|r is linear ∀τ ∈ T h
}

⊂ H ′(Ωh).
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Let
∏

h : C(Ωh) → Sh denote the interpolation operator such that for

any v ∈ C(Ωh), the interpolant
∏

h v ∈ Sh satisfies
∏

h v(Pv) = v(Pj), j =

1, 2, ..., N.

The finite element approximation of (Pv) that we shall consider is

(P h
v )

Find uh ∈ Sh
0 such that

F (uh) ≤ F (vh), ∀vh ∈ Sh
0

where Sh
0 = {v ∈ Sh : v = 0 on ∂Ωh}.

The solution of the variational problem (P h
v ) is determined using the Ritz

method with finite elements through the procedure of local approximation

and assembly.

The approximate solution is chosen for the finite element τ as follows:

uh
r = {N(x, y)}T

τ {U}h
τ(4)

where {N} and {U} represent the column vectors of the local linear basis

for the element τ and of the nodal values of the approximate solution:

{N}T
τ = (N1N2N3); {U}h

τ = (U1U2U3)
T

where

Nr =
1

2∆r

(ar + brx + cry); Ur = uh
τ (xr, yr), r = 1, 2, 3

ai = xjyk − xkj; bi = yj − yk; ci = −(xj − xk) with permutation i → j → k,

∆τ being the area of the finite element τ .

Now we invoke the principle of stationary functional energy F τ = F (uh
τ ):

∂F τ

∂ur

= 0, r = 1, 2, 3.

We obtain the matrix equation on the τ element (Ritz system) in the

form:

[R]τ{U}h
τ = {P}τ .(5)
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In this case we have

[K]r =
1

4∆r









b2
1 + c2

1 b1b2 + c1c2 b1b3 + c1c3

b1b2 + c1c2 b2
2c

2
2 b2b3 + c2c3

b1b3 + c1c3 b2b3 + c2c3 b2
3 + c2

3









.

Remark 1.1. We note that the matrix [K]τ is the same for all the elements

if the following local counting is used (fig.1).

1

2

23

3 1

Fig. 1

The column vector {P}τ is {P}τ = f ∆
3















1

1

1















. The coefficients of the

matrix {P}τ are determined by using the local coordinates (L1, L2, L3) of

the point P (x, y) and the formula

1

∆τ

Iαβγ =
a

b

where

Iαβγ ≡

∫

τ

Lα
1 Lβ

2L
γ
3dτ = 2∆c

α!β!γ!

(α + β + γ)!
.

An equation of the type (5) is written for each element. The column

vector {U}h
τ is extended to the N number of nodes in the mesh by the
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introduction of all the nodal values. Taking into account the correspondence

between the local counting and the overall counting the matrices [K]τ and

{P}τ are also extended at dimensions N × N and N × 1. We obtain the

matrix of the mesh

[K] · {U} = {P}(6)

to which we attach conditions on main boundary.

The coefficients kij and pi of the matrices [K] and {P} and the solu-

tions of the Ritz system (by means of the Gauss elimination method) are

determined with a Turbo-Pascal program. The program has been applied

for the following numerical example:

µ = 1, 5 · 10−4Ns/m2;

dp

dz
= −5000N/m3;

Ω in L − form (fig.2);

a = 0, 1m.

y

0

z
xa

S

Fig. 2
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The values of velocity at nodes are listed in Table 1, in the case N = 51.

0.00 0.00 0.00 0.00

0.00 4866.45 4884.50 0.00

0.00 7253.47 7308.98 0.00

0.00 8481.01 8670.66 0.00

0.00 9164.11 9807.93 0.00 0.00 0.00 0.00

0.00 9431.55 11615.97 8368.64 7008.61 5013.84 0.00

0.00 8567.15 11271.05 10467.33 9165.95 6517.56 0.00

0.00 5792.50 7690.83 7637.64 6872.63 4989.36 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 1. Numerical results for velocity.

References

[1] Baretti J. W., Liu W. B., Finite element approximation of the

p-Laplacian, Math. Comp., vol. 61, 1993, 523 - 537.

[2] Berdicevski V. L., Variaţionn̂ıe prinţip̂ı mehanikipleşnoi sred̂ı, Moskova,

1983.
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