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A general schlicht integral operator

Eugen Draghici

Abstract

Let A be the class of analytic functions f in the open complex unit
disc U ={z € C: |z| < 1}, with f(0) =0, f/(0) =1 and f(2)/z #0
in U. Let define the integral operator I : A — A, I(f) = F, where:

1/(a+B+1)
} , 2z€U

Fo) = @4+ [ e

With suitable conditions on the constants « and § and on the func-
tion g € A, the author shows that F' is analytic and univalent (or
schlicht) in U. Additional results are also obtained, such as a new
generalization of Becker’s condition of univalence and improvements

of some known results.
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1 Introduction

Let U = {z € C: |z| < 1} be the complex unit disc and let A be the class

of analytic functions in U of the form:
f(2) =24+ anz" + ap 12" -

and with f(z)/z # 0 for all z € U.

Univalence of complex functions is an important property, but, unfortu-
nately, it is difficult, and in many cases impossible, to show directly that a
certain complex function is univalent. For this reason, many authors found
different types of sufficient conditions of univalence. One of these conditions
of univalence is the well-known criterion of Ahlfors and Becker ([1] and [7]),

which states that the function f € A is univalent if:

2f"(z)

There are many generalizations of this criterion, such those obtained in
[4], [5], [6] and [9]. In this paper, as an additional result, we will also
obtain a new generalization of the above-mentioned univalence criterion.
The principal result deals with finding sufficient conditions on the constants

a and § and on the function g € A so that the function:

1/(a+B+1)
} , z€eU

@ P = [<a L5+ / g (w)du

is univalent.The result improves also former results obtained in [3], [4], [5],

6] and [7].
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2 Preliminaries

For proving our principal result we will need the following definitions and

lemma:

Definition 1. If f and g are analytic functions in U and g is univalent,

then we say that f is subordinate to g, written f < g or f(z) < g(z) if
f(0) = g(0) and f(U) C g(U).

Definition 2. A function L(z,t), z € U, t > 0 is called a Léwner chain
or a subordination chain if:
(i) L(-,t) is analytic and univalent in U for all t > 0.
(i1) L(z,-) is continuously differentiable in [0,00) for all t > 0.
(iii) L(z,s) < L(z,t) for all real s and t with 0 < s < t.

Let 0 <7 < 1. We denote by U, the set: U, ={z€ C: |z| <r}.
Lemma 1.([8], [9]) Let0<ry<1,t>0 andai(t) € C\{0}. Let:
L(z,t) = a1(t)z + ag(t)z* + - - -

be analytic in U,, for allt > 0, locally absolutely continuous in [0, 0c0) locally

uniform with respect to U,,. For almost all t > 0 suppose that:

OL(z,t)
ot

OL(z,1)

(3) 5,

= p(z,1) z € Uy,

where p(z,t) is analytic in the unit disc U and Rep(z) > 0 in U for all
t>0.1If:

tlim lai(t)] = o0
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and {L(z,t)/a\(t)} forms a normal family in U,,, then, for each t > 0,
L(z,t) has an analytic and univalent extension to the whole unit disc U and

1s a Lowner chain.

Lemma 1 is a variant of the well-known theorem of Pommerenke ([8]) and

it’s proof can be found in [9].

3 Principal result

Let B be the class of analytic functions p in U with p(0) = 1 and p(z) # 0

for all z € U.

Theorem 1. Let f,g € A, p € B and o,3,7v and d compler numbers

satisfying:

W Re T 3

(5) Re(a+3+1)>0

(6) Revy >0

™ Ss-|<nsev
® <

and, for all z € U:

©) \1—7+1+5—p(2)‘z|27+1—22” [aZf’(Z) 29'(2) Zp'(z)}
| 7 @) e 96 @

Then, the function F defined by (2) is analytic and univalent in U.

<1
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Proof. Let :
o (2] 2]

u u

where the powers are considered with their principal branches. The function

h does not vanish in U because f and g are in A.Let define now the function:
—t

1 € z
atp+t / h(u)u*Pdu =1+ bz + -
0

hi(z,t) = (o tz)atBH

where t > 0 and z € U. We consider now the power development of h:
h(u) = 1+chu” , ueU.
n=1

We denote:

a+pB+1 [ - a+p+1
= h O(-‘rﬁd = ]_ R — 7’L‘
o(w) T /0 (u)u u +;cn+a+ﬁ+1w

From (5) we have that Re(a + 5+ 1) > 0 and, consequently:
Re(aw + 4+ 1> —n/2 for all n € N. It follows immediately that:

n
Re >0, neN
n+2a+p+1)
and hence:
_atBHl
n+a+pg+1

Taking into account that h is analytic in U, we deduce that:
. a+f+1
14 cp—————w"
%; n+a+p+1
converges locally uniformly in U, and, thus, ¢ is analytic in U. Because for
every t > 0 and for every z € U we have that e 'z € U we deduce that
(e t2) = hy(z,t) is analytic in U for all ¢ > 0. Let now:

a+/+1
d+1
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ho(z,t) = ple *2)h(e™2), z€ U, t >0
hs(z,t) = hi(z,t) +m(e*" — Dhy(2,t), €U , t > 0.

Suppose now that h3(0,¢;) = 0 for a certain positive rel number ¢, that is

1+ m(e* —1) =0, or:

m—1_ a+p-46
m  a+pf+1

(10) MM =

From (6) we have that [e?| = e**R¢7 > 1 and from (8) we deduce that

a+pB—0
a+p+1

’ < 1. It follows immediately that (10) is false and then, we have:
(11) h3(0,t) # 0 for all ¢ >0

Let now suppose that for all » with 0 < r < 1 it exists at least one ¢, > 0
so that hs(z,t,) has at least one zero in U, = {z € C : |z| < r}. We choose
r=1,1/2,1/3,... and form a sequence (t,)nen S0 that hs(z,t,) has at least
one zero in Uy .

If (,,)nen is bounded, we can find a subsequence (,, )ken of (£, )nen that
converges to 7o > 0. Because hg is continuously with respect to ¢ we obtain:

lim hs(z,t,,) = hs(z, 1) forall z € U.

k—o0

But in this case hy(-, 7o) has at least one zero in every disc Uy, . If we let
now k — oo we deduce that h3(0,7) = 0, which contradicts (11).
If the sequence (t,)nen is umbounded we can consider, without loss of

generality, that lim,,_,., t,, = co. We have now:

hs(z,t) = hi(z,t) + m(e® — Dhy(2,t) = d(e”'2) + m(e® — 1)hy(2,1)
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Because ¢(0) = 1 we deduce that M = max g [¢(e'z)] > 0. Because
p(0)R(0) = 1, there exists r; € (0,1] so that p(w)h(w) # 0 in U,,. Then,
ha(w,t) = p(e~'z)h(e'z) do not vanish in U,, for every ¢t > 0 and, thus, we

have: K = min |ha(w,t)] > 0. From (5) we deduce that m # 0 and

weﬁrl

thus, |m| > 0. It follows immediately that:

lim ‘1 - e%’t‘ = tlim e Rev fe—4tRey _ 96-2ReY cog 2t Imy + 1 = 00

t—o00 —00

because Rey > 0.

Hence, for sufficiently large ¢t we have:
(12)  |m| |1 — €| |ha(z,t)] > |m|[1 — | K > M +1 > |¢(e'z) + 1
In the same time we have:

|hs(z,t)] = !hl(z,t) —m(1—¢e"") h2(27t)’ >

> ||h(z, )] = |m| |1 — "] [ha(z, 1)

From (12) it follows immediately that |hs(z,t)| > 1 for all z € U,, and for
sufficiently large t. Thus, it exists N € N so that hs(-,t,) does not vanish
in U,, for all n > N. For n € [0, N] we have that hs(z,t,) does not vanish

in U,s where:
ro = min{ry, : hg(z,t) #0,2 € Uy, ,t > 0,n € [0, N]}.

If we let now ry = min{ry, 72} we have that hs(-,t,) does not vanish in U,
for every n € N. It follows that the supposition of the nonexistence of a
positive real number o < 1 with the property that hs(z,t) # 0 for all ¢ > 0

and all z € U,, is false. Hence, we can choose 1 € (0, 1] so that hz(z,t) # 0
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for all t > 0 and all z € U,,.
Let hy(z,t) be the uniform branch of [hs(z,t)]"/(*7+1 which takes the value
[14+m (e — 1)]1/(a+ﬁ+1) at the origin. Let us define:

(13) L(z,t) = e "zhy(z,1)

which is analytic for all ¢ > 0.If L(z,t) = a1(t)z + as(2)z* + - - -, it is clear
that L(0,t) = 0 for every ¢ > 0 and:

ar(t) =e " [14+m (e —1)] VetBtl)

From the above written equations we can formally write:

—t

Lz 1) = [Ly (2 )Y@ = [0+ 5+ 1) / g (w)du+

(14) +m(e® — 1)etzf(et2)g% (e 7t2)ple~tz)] M/ @+,

By simple calculations we obtain:

ar(t) = (c+ 1)_ﬁ/@‘+1e27%ﬂff1 [a+B+1—(a+3—c)e ™ a
Thus, e'a;(t) = hy(0,t) = [h(0,t)]"/ @5+ with the choosen uniform
branch. Because hs(-,t) does not vanish in U,, for all ¢ > 0, we obtain
that a1(t) # 0 for every t > 0. If we let t — oo, from (4) and (6) we easily
obtain:

tlim lai(t)] = oo.

Because hy(-,t) is analytic in U,, for every ¢ > 0, we deduce that L(z,t) =
e 'zhy(z,t) is also analytic in U,, for all ¢ > 0.The family {L(z,t)/ai(t) }+>0

consists of analytic functions in U,,,. Hence, this family is uniformly bounded
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in U,,, where 0 < r; < ry. By applying Montel’s theorem we have that
{L(z,t)/ay(t)} forms a normal family in U,,. Let denote:

elzf'e2)  elzd'€2) el

15) e = =Y e el e

pe™)

From (14) we obtain:

OL(z,t 1 _atB _
Sl L e )

- [2yme*'p(e'z) — m(e® — )p(e™'z) —a— B —1—J(z,1)]

It is clear that OL(z,t)/0t is analytic in U,,, where 0 < r5 < 7. Conse-

quently, L(z,t) is locally absolutely continuous and we have also:

OL(z,t 1 _akB _
éz - oy el LG I R A RO T CROR

Am(e* = Dple™2) +a+ B+ 1+ J(z2,1)]

Let:

20L(2,1)/0z  m(e® — )ple™"2) + a+ B+ 1+ J(z,1)
OL(z,t)/0t (27 — D)yme>p(e~tz) + mp(e~tz)

pi(z,t) =

Counsider now the function:

pi(z,t) —1

w(zt) = pi(z,t) +1

Further calculations show that:

m(1 —~)e?ple™z) —mp(e™2) +a+ S+ 1+ J(z,t)

t) =
wizt) yme?tp(ez)

It is clear that w(-,t) is analytic in U,, for all ¢ > 0. Hence, w(-,t) has an

analytic extension (-, t).
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Let now t = 0. Taking into account that m = (o« + 8+ 1)/(d + 1), we

easily obtain from (15):

c+1

7p(2)

and from (7) it follows immediately that |@w(z,0)| < 1.

w(z,0)=—-1+

Let now ¢ > 0. We observe that (-, t) is analyticin U = {z € C : |z| < 1}
because if t > 0, for every z € U we have that e ?z € U. In this case we

have:

Dz, = max | gl = max (0] = [a(,0)

with € R. Let v = e~ € U. After simple calculations we obtain:
1—7+04+ﬁ+1—mp(v)
v ymp(v)
L— P [ of'(v) | Lvg'(v) | op'(v)
Q
f) g(w)  pv)

w(e t) = [v|* +

But:
a+pB+1—mpv) 0+1—p(v)
ymp(v) 7p(v)
and from (9) we deduce that |w(e!’ ¢)] < 1 and hence, |w(z,t)] < 1 in

U for all t > 0. From the definition of w and @ we deduce that p;(-, )
has an analytic extension pi(-,t) to the whole disc U for all ¢ > 0 and
Repi(z,t) > 0 in U for all ¢ > 0. By applying Lemma 1 we obtain that
L(z,t) is a subordination chain and thus, L(z,0) = F(z) is analytic and

univalent in U and the proof of the theorem is complete.

Remark 1. We can write a variant of Theorem 1 with v € R. In this case,

condition (8) can be replaced by:

0+1

(16) S a+4+1

¢ [1,00).
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However, condition (8) was necessary only for showing that hs(0,t) # 0
for all ¢t > 0. But if v € R then hy(0,t) = 0 is equivalent to e** =

(m —1)/m € R. Bat this last equality is impossible because 7" > 1 and

(m—1)/m ¢ [1,00).

4 Some particular cases

If we let in Theorem 1y =1 and p(z) = 1 for all z € U, then we obtain,

using Remark 1 also, the following result:

Corollary 1. If f,g € A and o, 8 and 6 are complex numbers satisfying:

(17) la+ 6| <1

(18) 6] < 1

(19) 1—(0+1)/(a+5+1) ¢][1,00)
e LG O]

@) ke |08 s <1 e

then the function F defined in (2) is analytic and univalent in U.

If in Corollary 1 we let 6 = a + [ we obtain Theorem 1 from [5] and
if we let additionally g(z) = z for all z € U we obtain Theorem 1 from [4].
For = —1 in this last theorem we obtain Theorem 1 from [3].

From Theorem 1 we can obtain many other results by choosing properly
the constants. An interesting example can be obtained if we let a + § = w,
p(z) = 1 and g(2) = f(2)[f'(2)]*/? for all z € U in Theorem 1. For the

power we choose the principal branch and obtain:
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Corollary 2. If f € A and~,6 and w are complex numbers satisfying:

2y
21 1
(21) Rew+1 >
1
(22) Re~y >0, 5%—1‘<1,Rew>—1
0+1
2 — -1 1
(23) w+1 '<
and for all z € U:
1-— 4 1 — 2y "
(24) —7+é|2|27+g(1_|Z|2V)2f (2)+ 2] Zf/ (2) <1
Yy v f(2) v f(?)

then f is univalent in wu.

If we let in Corollary 2 v = 1 and use also Remark 1 we obtain a
generalization of the well-known criterion of univalence of L.V.Ahlfors and

J.Becker ( [1], [2] ), given in (1):

Corollary 3. If f € A, 0 and w € C satisfie:

(25) 6] < 1
(26) lw] <1
@ S ¢ oo)
2 .2 2f'(2) a2 zf"(2) .
29) el e~ P S+ (1 ) S <1, 2 U

then [ is univalent in U.
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For 0 = w = 0 we obtain from Corollary 3 the criterion of univalence
of Ahlfors and Becker.

For 6 =w = (1 — a)/«a, conditions (25) and (26) are equivalent to:
Rea > 1/2 and we obtain the result from [6].

If in Corollary 2 we let w =0 and 7 = (m+ 1)/2, m € R we obtain
the result from [7].
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